JP3888326B2 - Operation method of polymer electrolyte fuel cell - Google Patents

Operation method of polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3888326B2
JP3888326B2 JP2003104287A JP2003104287A JP3888326B2 JP 3888326 B2 JP3888326 B2 JP 3888326B2 JP 2003104287 A JP2003104287 A JP 2003104287A JP 2003104287 A JP2003104287 A JP 2003104287A JP 3888326 B2 JP3888326 B2 JP 3888326B2
Authority
JP
Japan
Prior art keywords
sub
fuel
fuel cell
main
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003104287A
Other languages
Japanese (ja)
Other versions
JP2003303612A (en
Inventor
秀雄 前田
久敏 福本
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003104287A priority Critical patent/JP3888326B2/en
Publication of JP2003303612A publication Critical patent/JP2003303612A/en
Application granted granted Critical
Publication of JP3888326B2 publication Critical patent/JP3888326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学的な反応を利用して発電を行う、例えば電気自動車等で使用される固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
電気化学デバイスの典型例である燃料電池は、周知のように、電解質を介して一対の電極を接触させ、この一方の電極に燃料を、他方の電極に酸化剤を供給し、燃料の酸化反応を電池内で電気化学的に起させることにより化学エネルギーを直接電気エネルギーに変換する装置である。
燃料電池には、用いられる電解質によりいくつかの型のものがあるが、近年、高出力の得られる燃料電池として、電解質に固体高分子電解質膜を用いた固体高分子型燃料電池が注目されている。
【0003】
燃料電池は、燃料極に水素ガスを、酸化剤極に酸素ガスを供給し、外部回路より電流を取り出すとき、下記のような反応が生じる。
燃料極反応:H2→2H++2e-…(1)
酸化剤極反応:2H++2e-+1/2O2→H2O…(2)
このとき電極上の白金等の触媒が有効に作用すれば、上記式(1)の反応ではほとんど過電圧を生じることなく、スムーズに反応が進行する。
一方、燃料に取り扱いが容易なメタノール等の炭化水素を用いる場合には、改質器により、下記式(3)のような反応により水素に改質してから供給することになる。
改質反応:CH3OH+H2O→3H2+CO2…(3)
しかし、次式(4)のシフト反応により、微量のCOが燃料中に混入する。
シフト反応:CO2+H2→CO+H2O…(4)
特に動作温度が低い固体高分子型燃料電池のような電気化学デバイスでは、数十ppmの一酸化炭素(CO)の混入により、触媒が被毒して、燃料極(アノード)反応の過電圧が増大して特性が低下することが問題となっている。
【0004】
そこで、COによる被毒の影響を低減するために、従来より数々の工夫がなされてきた。基本的にはCOの被毒の影響が少ない触媒組成の開発と、燃料中のCOを選択的に除去する方法の開発である。
【0005】
触媒組成については、白金とルテニウムの合金(Pt・Ru)を用いた場合は100ppmのCO濃度まで、高特性を維持できるようになったことが報告されている。(「固体高分子型燃料電池用電極触媒のCO被毒特性」第35回電池討論会講演要旨集3D19、p299〜300(1994))
【0006】
また、燃料中のCOを選択的に除去する方法としては、触媒層中で空気を添加して除去する方法(カナダ特許1,305,212号)、あるいは燃料電池の燃料中に微量の空気を混入する方法(「3次元電極・膜接合方式PEFCの特性評価」第36回電池討論会講演要旨集1C07、p225〜226(1995))等の報告がある。
このような、空気混入による選択酸化では、燃料中のCOを酸化し、被毒を与えない程度にCO濃度が低減されることが確認されている。
【0007】
【発明が解決しようとする課題】
しかし、触媒組成による改善では、Pt・RuでもCO濃度が高い場合には特性が不安定で、それだけでは被毒対策としてはまだ不充分である。
また、空気混入による選択酸化では、同時に大量の水素も燃焼して消費してしまう欠点や空気の主成分である窒素によって燃料ガスが希釈されて特性が低下したり、不活性ガスが滞留して水素ガスが欠乏し、電池部材に腐食が生じたりする欠点があった。
また、空気量が少なすぎるとCOが十分に除去できず、燃料の量やCO濃度に応じて空気量を制御することが重要であるが、簡易にCO濃度を把握する方法がなく、制御が困難であった。
【0008】
そこで、特開平7−105967号公報には、主たる燃料電池の燃料供給路上にCO除去用の燃料電池を配置し、CO除去用の燃料電池の燃料排出路と主たる燃料電池の燃料供給路を連結した構成の燃料電池が記載されている。
水素を主体とする改質ガスはまずCO除去用の燃料電池に供給され、燃料としての水素は前記式(1)の反応により消費されるが、同時にこの燃料に含有されているCOは燃料極の触媒に吸着される。一方、酸化剤極には酸素が供給されることにより前記式(2)の反応が行われるが、その供給圧を調整することによって酸素が電解質膜を透過して反対側の燃料極に到達することができ、燃料極上で次の式(5)の酸化反応が起こり、燃料極に吸着されていた被毒物質であるCOがCO2として脱離し、除去されるため、主たる燃料電池にはCO除去用燃料電池で吸着除去された後のごく微量のCOしか導入されないというものである。
酸化反応:CO+1/2O2→CO2…(5)
しかしながら、式(5)の酸化反応と同時に燃料中の水素の一部が酸素と反応して消費してしまい発電効率が低下するという問題は依然としてある。また、圧により酸素を透過させるため、余分な動力を必要とするという問題点もあった。
【0009】
この発明は上記のような問題点を解消するためになされたもので、燃料電池の発電効率の低下を抑制しながら触媒の被毒等による特性の低下を防止することを目的としている。
【0010】
【課題を解決するための手段】
本発明の第1の構成に係る固体高分子型燃料電池の運転方法は、イオン伝導性の電解質膜の両面にガス拡散性を有する電極を配した単電池と、該単電池の一方の極に燃料を他方の極に酸化剤ガスを供給するガスセパレータとを順次積層した燃料電池主積層部、および上記単電池とセパレータの積層数が上記主積層部より少なく、かつ上記主積層部から電流経路が独立した副積層部を有し、上記主積層部および上記副積層部の両端はそれぞれ一対の集電板で挟まれており、上記主積層部の両端に配置された一対の集電板には第一の負荷が、上記副積層部の両端に配置された一対の集電板には第二の負荷が接続されており、燃料および酸化剤ガスを上記副積層部を通ってから上記主積層部に供給して発電する固体高分子型燃料電池の運転方法において、上記副積層部の電圧の低下を防止するために上記副積層部の電流値を運転の途中から減少させるように上記第二の負荷を調節するものである。
【0011】
本発明の第2の構成に係る固体高分子型燃料電池の運転方法は、上記第1の構成に加えて、副積層部の単電池は、運転中の所定時間毎に、特性が低下していない単電池に入れ替えられるものである。
【0012】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態1を図について説明する。図1は本実施の形態による燃料電池で用いられる固体高分子型燃料電池単電池の一般的な構成を示す断面模式図、図2は実施の形態1による主積層部と副積層部を有する燃料電池の構成を示す模式図である。図1において、1はイオン伝導性の固体電解質膜であり、例えばポリパーフルオロスルフォン酸膜が用いられる。2はガス拡散性を有するカソード(酸化剤極)、3はガス拡散性を有するアノード(燃料極)であり、これらには電気伝導性の多孔質材料、例えばカーボンペーパが用いられる。4および5は触媒層(4:白金触媒、5:Pt・Ru触媒)であり、これら電解質膜1、電極2、3、および触媒層4、5で単電池10が構成されている。8および9はセパレータ板であり、電気伝導性でガスを通さない材料、例えばカーボン板が用いられる。6および7は、セパレータ板8、9と単電池10によって囲まれたガス流路である。
図2において、11は燃料電池積層体、12は燃料電池主積層部、13は燃料電池副積層部、14は加湿部であり、15〜17は集電板である。主積層部12には単電池10が50枚、副積層部13には単電池が3枚それぞれ積層され、空気および燃料は加湿部14から副積層部13、主積層部12の順に供給される。集電板15、16から主積層部12の電流を、集電板16、17から副積層部13の電流をそれぞれ取り出す。また、12aおよび13aはそれぞれ集電板15と16間および集電板16と17間に接続された負荷である。
【0013】
次に、燃料として水素を供給した場合について説明する。加湿部14で加湿された空気および水素は、先ず副積層部13へ供給され、副積層部内の3枚の各セル(単電池)に配分され、前記式(1)および(2)の反応により発電を行った後、主積層部12に供給されて同様の反応により発電が行われる。
【0014】
図3(a)および(b)はそれぞれ、発電を行ったときの各部の電圧および出力の変化を示すものである。図中、アは主積層部、イは副積層部の電圧および出力の変化を示すもので、ともに500mA/cm2の一定電流で運転を行ったときの変化を示す。2000時間の運転中で主積層部12の出力は変化しなかったが、副積層部13の出力が大きく低下することがわかった。そこで、集電板16と17の間の負荷13aを調節して副積層部13の電流値のみを途中から減少させたところ、図中、ウのように、電圧および出力ともに低下量を低減することができた。
【0015】
さらに、副積層部13を運転後に分析したところ、FeあるいはCr等の配管材料中の金属や、CaあるいはNa等の金属イオンが検出され、供給ガス中の不純物が電解質膜中に蓄積して抵抗が増大し、特性が低下していたことがわかった。そこで、副積層部13のみ、1500時間毎に中の単電池を入れ替えたところ、5000時間を経過しても主積層部12、副積層部13ともに特性の低下が見られず、高い特性を維持できるようになった。
【0016】
以上のように本実施の形態1によれば、供給ガス中の不純物を副積層部13に蓄積させることで除去し、不純物が主積層部12に流入して特性が低下するのを防止している。しかも副積層部13では負荷を制御して不純物蓄積による出力の低下を抑制している。
よって、燃料電池の発電効率の低下を抑制しながら供給ガス中の不純物による特性の低下を防止することができる。
【0017】
参考例1.
次に、参考例1について説明する。固体高分子型燃料電池単電池の構成および燃料電池積層体の構造は図1,2で示した実施の形態1と同一であり、ここでは燃料としてCOを1000ppm含有するメタノール改質模擬ガス(水素75%、二酸化炭素25%)を供給した。
加湿部14で加湿された空気およびメタノール改質模擬ガスは、先ず副積層部13へ供給され、副積層部内の3枚の各セルに配分され、前記式(1)および(2)の反応により発電を行った後、主積層部12に供給されて同様の反応により発電が行われる。
【0018】
本参考例では副積層部13のアノード電位がCOの酸化電位を超えるように、副積層部13の負荷13aを制御して副積層部13の単電池一層(単セル)当たりの電圧が継続的に振動するようにしている。
図4は主積層部12、副積層部13共に500mA/cm2の一定電流で発電を行ったときの電圧の経時変化(20秒)を示しており、図中、アが主積層部12での電圧変化、イが副積層部13での電圧変化を示す。副積層部13の電圧イは、3秒周期で、単セル当たり0.4Vの振幅(0.18〜0.58V)で振動したが、主積層部12の電圧は単セル当たり0.6Vで振動せず、1000ppmという高いCO濃度の燃料を供給しても電圧の安定した直流電圧30Vを得ることができた。この時、副積層部13入口のCO濃度は1000ppmであったが、主積層部12の入口のCO濃度は100ppmに低下していた。これは、燃料中のCOは燃料極の触媒に吸着され、副積層部13の電圧が振動する際にアノード電位がCO酸化電位に達して下記式(6)の反応により、分解されたためであると考えられる。
CO+H2O→CO2+2H++2e-…(6)
この時、COは周囲の水分と反応して二酸化炭素と水素イオンになるが、水素イオンはカソ−ド側に達して前記式(2)の燃料電池反応に利用できる。
【0019】
このように、本参考例によれば、副積層部13において、COは水と反応して二酸化炭素と水素イオンになり、特開平7−105967号公報のように燃料中の水素を浪費することなく、さらにこの反応により水素イオンが得られて燃料電池反応に利用できる。
よって、燃料電池の発電効率の低下を抑制しながら供給ガス中のCOによる特性の低下を防止することができる。
【0020】
参考例2.
本発明の参考例2について説明する。積層体の構造およびガス供給条件は参考例1の場合とほぼ同様であるが、この参考例では冷却水の配管(図示せず)を流れる水量を調節して、発電時の温度を主積層部12(詳しくは例えば積層体の中央部に位置するセパレータ板の温度)が80℃、副積層部13(同様にセパレータ板の温度)が60℃になるように調節している。
【0021】
次に、動作について説明する。図5は主積層部、副積層部共に電流密度が500mA/cm2である一定電流で発電を行ったときの電圧の経時変化(20秒)を示しており、図中、アが主積層部での電圧変化、イが副積層部での電圧変化を示す。副積層部13の電圧イは、1.5秒周期で、単セル当たり0.4Vの振幅(0.1〜0.5V)で振動したが、主積層部12の電圧は単セル当たり0.62Vで振動せず、安定した直流電圧31Vを得ることができた。この時、副積層部13の入口のCO濃度は1000ppmであったが、主積層部12の入口のCO濃度は50ppmと主積層部12と副積層簿13で温度を変えなかった参考例1と比較して大幅に低下している。一般にCOは温度が低い方が吸着しやすく、燃料中のCOが温度の低い副積層部13で多く吸着し、電圧が振動する際に分解されるCOの分解効率が増大したためとわかった。
なお、主積層部12および副積層部13の温度は電解質膜や触媒の種類等によって決められるが、主積層部12を発電効率の最も高い温度に設定し、副積層部13の温度をそれより低くするとよい。
【0022】
参考例3.
以下、本発明の参考例3について説明する。本参考例は例えば図2で示した燃料電池の前段にCO選択酸化部を有する改質器を備えた燃料電池システムに関するものである。
負荷が変動したりすると、改質器内の温度変化等により改質器出口のCO濃度が変化するが、本参考例では、このCO濃度の変化に応じてCO選択酸化部に供給する空気量を最適値に制御することにより、水素の浪費を防止しながらCO濃度の変動を抑制している。
【0023】
図6は本発明の参考例3によるCO選択酸化器を有するメタノール改質器を備えた燃料電池システムの構成を示すブロック図である。図において、31はメタノール改質器であり、気化部31a、触媒燃焼部31b、改質部31c、およびCO選択酸化部31dを有している。32はメタノールタンク、33は水タンク、34a〜cはポンプ、41は空気ブロアである。また、51は後出の図7の相関図をテーブルとして保持し、副積層部13の電圧の振動数や温度からCO濃度を推算する演算部、52は演算部51の演算結果に基づいて改質器31のCO選択酸化部31dへの空気供給量を制御する制御部であり、これら演算部51および制御部52はマイクロコンピュータで構成されている。なお、燃料電池積層体11の構成は実施の形態1と同一である。
【0024】
改質器31では以下の反応が生じている。ポンプ34a、bで送られた水とメタノールが気化部31aで蒸発し、改質部31cに送られて前記式(3)の反応により水素と二酸化炭素が生じるが、同時に前記式(4)のシフト反応で1〜2%のCOが生じるので、CO選択酸化部31dで空気ブロア41から微量の空気を混入してCOを選択的に酸化除去し、CO濃度を1000ppm前後に低減してから燃料電池11に供給する。
なお、触媒燃焼部31bでは、燃料電池11の燃料排ガスと空気を触媒燃焼により反応させ、気化部31aおよび改質部31cで必要な熱を供給している。そのため、負荷の変動が生じると、熱バランスが崩れて温度が変化することがある。
【0025】
図7は、500mA/cm2の一定電流で発電した時の副積層部13における燃料中のCO濃度と電圧の振動数の関係を示すものであり、アが80℃の時、イが60℃の時である。図より、電圧の振動数はCO濃度が高いほど、また運転温度が低いほど大きくなることがわかる。そして、運転温度と振動数が分かれば、供給されたCO濃度が推定できることがわかる。なお、図7の関係は電流によっても異なる。
また、図8は改質器のCO選択酸化部31dにおける、空気混入量とCO濃度の関係を示すものであり、図より、空気混入量を増大させるとCO濃度を低下させることができるが、空気量を過剰に入れても、水素を消費するのみであり、空気混入量を燃料の状態に応じて最適値にする必要があることがわかる。
【0026】
図9は本発明の参考例3に係り、改質器31出口のCO濃度の変動を抑制するためにCO選択酸化部31dへ供給する空気量を制御するフローチャートであり、この処理は演算部51で行われる。
通常、改質器31のCO選択酸化部の空気量は燃料の流量に応じて調節するが、改質器31内の温度変化等により改質器31出口のCO濃度が変化することがある。そこで、本参考例では、燃料流量だけでなく、改質器31出口のCO濃度すなわち燃料電池11に供給されるCO濃度も考慮してCO選択酸化部31dへの空気供給流量を以下のステップで制御する。
ステップ1:燃料電池11に供給すべき燃料のCO濃度Cs及び許容幅ΔCを設定する。本参考例では、設定値Csを50ppm、許容幅ΔCを25ppmとした。これは、燃料電池の特性が低下しない一酸化炭素濃度の上限値およびCO選択酸化部31dでの水素消費量が極端に大きくならない選択酸化部でのCO除去効果および制御精度から割り出したが、機器の特性に応じて適宜変更可能である。
ステップ2:副積層部13の電圧振動数f、副積層部13の運転温度T、副積層部13の電流Iを測定する。
ステップ3:演算部51で上記パラメータすなわち電圧振動数f、運転温度T、電流Iから図7をもとに燃料電池への供給燃料中のCO濃度Cxを推算する。
ステップ4: 推算したCO濃度Cxと許容値Cs+ΔCを比較し、許容値Cs+ΔCを超えた場合は燃料電池の特性が低下するのを防ぐためステップ6へ進み、超えなかった場合は次のステップ5へと進む。
ステップ5:推算したCO濃度Cxと下限値Cs−ΔCを比較し、下限値Cs−ΔC未満の場合はCO選択酸化部31dでの過剰な水素消費を抑制するためステップ7へ進み、下限値以上の場合はステップ2へ戻る。
ステップ6:制御部52によりCO選択酸化部31dへの空気供給量を増加させる。
ステップ7:制御部52によりCO選択酸化部31dへの空気供給量を減少させる。
【0027】
前述のように、負荷が変動したりすると、改質器31内の温度変化等により改質器31出口のCO濃度が変化する。これにより燃料電池発電部11に供給される燃料のCO濃度が変化するが、その変化が、補正制御を行う前は、設定値50ppmに対してプラス側400%(250ppm)、マイナス側80%(10ppm)と大きく変動していたのが、本参考例による補正制御を行うことによってCO濃度の変動がプラス側100%(100ppm)以内、マイナス側50%(25ppm)以内にそれぞれ抑えることができた。
これにより、セル電圧が安定して発電効率が向上するとともに、余分な燃料消費を抑えることで、システム効率が向上した。
【0028】
なお、上記参考例では供給空気量を制御したが、CO選択除去部31dの温度を制御する、すなわちCO濃度が高い場合は温度を下げ、CO濃度が低い場合は温度を上げることによっても、同様に燃料電池に供給する燃料中のCO濃度の変化を抑制することができた。
さらに、供給空気量と温度の両方を制御してもよい。
また、上記参考例では副積層部13の電圧振動数f、運転温度T、電流Iから図7をもとに燃料電池への供給燃料中のCO濃度Cxを推算したが、必ずしも電圧振動数f、運転温度T、電流Iをすべて測定しなくてもよく、例えば運転温度は測定しなくてもよい。すなわち、副積層部13と主積層部12は一定幅で同じような変動をしており、その温度によって許容CO濃度も変化する。したがって、実際のCO濃度は分からなくても、主積層部12に適したCO濃度調整には支障はない。
【0029】
参考例4.
次に、本発明の参考例4による燃料電池システムについて説明する。システムの全体構成は図6で示したものと同様である。
図10は本発明の参考例4に係り、改質器出口のCO濃度を一定に保つためにCO選択酸化部へ供給する空気量を補正制御するフローチャートである。
本参考例では、燃料電池11に供給されるCO濃度の変化を予測してCO選択酸化部31dへの空気供給流量を以下のステップで最適に制御する。
ステップ11:燃料電池11に供給すべき燃料のCO濃度Cs及び許容幅ΔCを設定する。本参考例では、設定値Csを50ppm、許容幅ΔCを15ppmとした。このように許容幅を狭くできたのは、上述の参考例3による制御と比べて先行制御であるので制御精度が向上したためであり、この許容幅は機器の特性に応じて変更可能である。
ステップ12:時間t=tiにおける副積層部13の電圧振動数fi、副積層部13の運転温度T、電流Iiを測定する。
ステップ13:副積層部13の次の瞬間t=ti+Δt(本参考例では0.3秒後)における電圧振動数fi+1、電流Ii+1を測定する。なお、温度Ti+1は瞬間的には変化しないので測定しなかった。
ステップ14:演算部51で上記パラメータすなわち副積層部13の電圧振動数fi、fi+1、運転温度T、電流Ii、Ii+1から図7の関係を用いて燃料電池への供給燃料中のt=tiからt=ti+Δtの間のCO濃度の変化量を推算し、所定時間後(本参考例では1.5秒後)のCO濃度の変化量ΔCxを予測する。なお、ここでの時間設定は、CO選択酸化部31dへ供給する空気量を変化させてから、供給されるガスのCO濃度に変化が現れる時間および許容幅に依存するのでシステム構成により適宜変更可能である。
ステップ15:ステップ14で予測された所定時間(1.5秒)後のCO濃度の変化量ΔCxと許容幅ΔCを比較し、変化量ΔCxが許容幅ΔCを越えた場合はステップ16へ進み、越えなかった場合はステップ12に戻る。
ステップ16:ステップ14で予測された1.5秒後のCO濃度の変化量に応じて空気供給補正量を計算する。
ステップ17:ステップ16で得られた空気供給補正量に応じて空気供給量を補正する。すなわち、許容幅ΔCを越えてCO濃度が大きくなる場合は、燃料電池の特性が低下するのを防ぐためCO選択酸化部31dへの空気供給量を増加する。また、許容幅ΔCを越えてCO濃度が小さくなる場合は、CO選択酸化部31dでの過剰な水素消費を抑制するためCO選択酸化部31dへの空気供給量を減少させる。
【0030】
以上のように、本参考例では副積層部13における0.3秒間における電圧の振動数の変化より、所定時間(1.5秒)後のCO濃度の変化を予測し、CO濃度が変化する前に供給空気量の制御を行うことで、CO濃度をプラスマイナス30%以内(50±15ppm)に制御することができた。
これにより、セル電圧が安定して発電効率が参考例3よりさらに向上するとともに、余分な燃料消費を抑えることができ、システム効率が格段に向上した。
【0031】
なお、上記参考例では供給空気量を制御したが、改質器31の温度を制御してもよく、さらに、供給空気量と温度の両方を制御してもよい。
また、上記参考例では所定時間後のCO濃度の変化量ΔCxを予測したが、所定時間後のCO濃度を予測してもよく、この場合は参考例3で説明した図9のステップ3〜7により制御できる。
また、上記参考例では副積層部13の電圧振動数f、運転温度T、電流Iから図7をもとに燃料電池への供給燃料中のCO濃度の変化量ΔCxを予測したが、必ずしも電圧振動数f、運転温度T、電流Iをすべて測定しなくてもよく、例えば運転温度は測定しなくてもよい。すなわち、副積層部13と主積層部12は一定幅で同じような変動をしており、その温度によって許容CO濃度も変化する。したがって、実際のCO濃度は分からなくても、主積層部12に適したCO濃度調整には支障はない。
【0032】
【発明の効果】
以上のように本発明の第1の構成によれば、イオン伝導性の電解質膜の両面にガス拡散性を有する電極を配した単電池と、該単電池の一方の極に燃料を他方の極に酸化剤ガスを供給するガスセパレータとを順次積層した燃料電池主積層部、および上記単電池とセパレータの積層数が上記主積層部より少なく、かつ上記主積層部から電流経路が独立した副積層部を有し、上記主積層部および上記副積層部の両端はそれぞれ一対の集電板で挟まれており、上記主積層部の両端に配置された一対の集電板には第一の負荷が、上記副積層部の両端に配置された一対の集電板には第二の負荷が接続されており、燃料および酸化剤ガスを上記副積層部を通ってから上記主積層部に供給して発電する固体高分子型燃料電池の運転方法において、上記副積層部の電圧の低下を防止するために上記副積層部の電流値を運転の途中から減少させるように上記第二の負荷を調節するので、燃料電池の発電効率の低下を抑制しながら供給ガス中の不純物による特性の低下を防止できる。
【0033】
本発明の第2の構成によれば、上記第1の構成に加えて、副積層部の単電池は、運転中の所定時間毎に、特性が低下していない単電池に入れ替えられるので、高い特性を維持できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る単電池の構成を示す断面図である。
【図2】 本発明の実施の形態1による燃料電池積層体の構成を模式的に示す図である。
【図3】 本発明の実施の形態1による燃料電池積層体の各特性の経時変化を示す図であり、(a)が電圧、(b)が出力変化を示す。
【図4】 本発明の参考例1による燃料電池の各積層部での単セル当たりの電圧変化を示す図である。
【図5】 本発明の参考例2による燃料電池の各積層部での単セル当たりの電圧変化を示す図である。。
【図6】 本発明の参考例3による燃料電池システムの構成を示す図である。
【図7】本発明の参考例3に係わり燃料中のCO濃度と電圧振動数の関係を示す図である。
【図8】 本発明の参考例3に係わりCO選択酸化部に供給する空気量と出口CO濃度の関係を示す図である。
【図9】 本発明の参考例3に係る制御動作を説明するためのフローチャートである。
【図10】 本発明の参考例4に係る制御動作を説明するためのフローチャートである。
【符号の説明】
1 電解質膜、2 カソード、3 アノード、4、5 触媒層、6、7 ガス流路、10 単電池、11 燃料電池積層体、12 主積層部、13 副積層部、12a,13a 負荷、14 加湿部、15〜17 集電板、31 メタノール改質器、31a 気化部、31b 触媒燃焼部、31c 改質部、31d CO選択酸化部、32 メタノールタンク、33 水タンク、34a〜c ポンプ、41 空気ブロア、51 演算部、52 制御部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell that uses an electrochemical reaction to generate power, for example, used in an electric vehicle.
[0002]
[Prior art]
As is well known, a fuel cell, which is a typical example of an electrochemical device, contacts a pair of electrodes via an electrolyte, supplies fuel to one electrode, and supplies an oxidant to the other electrode, thereby oxidizing the fuel. Is an apparatus that converts chemical energy directly into electrical energy by electrochemically starting up the battery.
Although there are several types of fuel cells depending on the electrolyte used, in recent years, solid polymer fuel cells using a solid polymer electrolyte membrane as an electrolyte have attracted attention as fuel cells that can obtain high output. Yes.
[0003]
In the fuel cell, when hydrogen gas is supplied to the fuel electrode and oxygen gas is supplied to the oxidant electrode and current is taken out from the external circuit, the following reaction occurs.
Fuel electrode reaction: H 2 → 2H + + 2e - ... (1)
Oxidant electrode reaction: 2H + + 2e - + 1 / 2O 2 → H 2 O ... (2)
If a catalyst such as platinum on the electrode acts effectively at this time, the reaction proceeds smoothly with almost no overvoltage in the reaction of the above formula (1).
On the other hand, when a hydrocarbon such as methanol that is easy to handle is used as the fuel, it is supplied after being reformed into hydrogen by a reaction such as the following formula (3) by a reformer.
Reforming reaction: CH Three OH + H 2 O → 3H 2 + CO 2 ... (3)
However, a small amount of CO is mixed into the fuel by the shift reaction of the following formula (4).
Shift reaction: CO 2 + H 2 → CO + H 2 O ... (4)
Especially in electrochemical devices such as polymer electrolyte fuel cells with low operating temperatures, the catalyst is poisoned by the incorporation of several tens of ppm of carbon monoxide (CO), increasing the overvoltage of the fuel electrode (anode) reaction. Therefore, the problem is that the characteristics deteriorate.
[0004]
Therefore, in order to reduce the influence of poisoning due to CO, various devices have been made conventionally. Basically, the development of a catalyst composition that is less affected by CO poisoning and the development of a method for selectively removing CO in fuel.
[0005]
Regarding the catalyst composition, it has been reported that when a platinum-ruthenium alloy (Pt · Ru) is used, high characteristics can be maintained up to a CO concentration of 100 ppm. ("CO poisoning characteristics of the electrode catalyst for polymer electrolyte fuel cells" 35th Battery Symposium Abstracts 3D19, p299-300 (1994))
[0006]
As a method for selectively removing CO in the fuel, a method for removing air by adding air in the catalyst layer (Canadian Patent No. 1,305,212) or a small amount of air in the fuel cell fuel is used. There is a report of a method of mixing ("Characteristic evaluation of three-dimensional electrode / membrane bonding type PEFC", 36th Battery Symposium Abstracts 1C07, p225-226 (1995)).
It has been confirmed that such selective oxidation by air mixing oxidizes CO in the fuel and reduces the CO concentration to such an extent that it is not poisoned.
[0007]
[Problems to be solved by the invention]
However, in the improvement by the catalyst composition, even if Pt · Ru has a high CO concentration, the characteristics are unstable, and this alone is still insufficient as a poisoning countermeasure.
In addition, in selective oxidation by air mixing, the fuel gas is diluted with nitrogen, which is the main component of air, and the characteristics are deteriorated due to burning and consumption of a large amount of hydrogen at the same time, or inert gas is retained. There is a drawback that the hydrogen gas is deficient and the battery member is corroded.
Also, if the amount of air is too small, CO cannot be removed sufficiently, and it is important to control the amount of air according to the amount of fuel and the CO concentration. It was difficult.
[0008]
Japanese Patent Application Laid-Open No. 7-105967 discloses that a fuel cell for removing CO is disposed on a fuel supply path of a main fuel cell, and a fuel discharge path of the fuel cell for removing CO is connected to a fuel supply path of the main fuel cell. A fuel cell having the above structure is described.
The reformed gas mainly composed of hydrogen is first supplied to a fuel cell for removing CO, and hydrogen as fuel is consumed by the reaction of the above formula (1), but at the same time, CO contained in the fuel is fuel electrode. Adsorbed on the catalyst. On the other hand, when the oxygen is supplied to the oxidizer electrode, the reaction of the above formula (2) is performed. By adjusting the supply pressure, oxygen passes through the electrolyte membrane and reaches the fuel electrode on the opposite side. The oxidation reaction of the following formula (5) occurs on the fuel electrode, and the poisonous substance CO adsorbed on the fuel electrode is CO. 2 Therefore, only a very small amount of CO after being adsorbed and removed by the CO removing fuel cell is introduced into the main fuel cell.
Oxidation reaction: CO + 1 / 2O 2 → CO 2 ... (5)
However, there is still a problem that a part of hydrogen in the fuel reacts with oxygen and is consumed at the same time as the oxidation reaction of the formula (5), and the power generation efficiency is lowered. There is also a problem that extra power is required to allow oxygen to permeate by pressure.
[0009]
The present invention has been made to solve the above-described problems, and an object thereof is to prevent deterioration of characteristics due to poisoning of a catalyst or the like while suppressing a decrease in power generation efficiency of a fuel cell.
[0010]
[Means for Solving the Problems]
An operation method of a polymer electrolyte fuel cell according to a first configuration of the present invention includes a unit cell in which electrodes having gas diffusibility are arranged on both surfaces of an ion conductive electrolyte membrane, and one electrode of the unit cell. A fuel cell main stack portion in which fuel is sequentially stacked with a gas separator that supplies an oxidant gas to the other electrode, and the number of stacks of the unit cells and the separator is less than the main stack portion, and a current path from the main stack portion Has an independent sub-laminate part, and both ends of the main laminate part and the sub-laminate part are sandwiched between a pair of current collector plates, and a pair of current collector plates arranged at both ends of the main laminate part The first load is connected to the pair of current collector plates disposed at both ends of the sub-stacking portion, and the second load is connected to the main load after passing the fuel and oxidant gas through the sub-stacking portion. In the operation method of a polymer electrolyte fuel cell that supplies power to the stack and generates electricity Te, the current value of the sub-laminate in order to prevent a decrease in the voltage of the sub-laminate operation The second load is adjusted so as to decrease from the middle.
[0011]
The solid polymer fuel cell operating method according to the second configuration of the present invention, in addition to the first configuration, driving The battery is replaced with a unit cell whose characteristics have not deteriorated every predetermined time.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a general configuration of a polymer electrolyte fuel cell unit cell used in a fuel cell according to the present embodiment, and FIG. 2 shows a fuel having a main stack portion and a sub stack portion according to the first embodiment. It is a schematic diagram which shows the structure of a battery. In FIG. 1, reference numeral 1 denotes an ion conductive solid electrolyte membrane, for example, a polyperfluorosulfonic acid membrane. Reference numeral 2 denotes a cathode (oxidant electrode) having gas diffusibility, and 3 denotes an anode (fuel electrode) having gas diffusibility, and an electrically conductive porous material such as carbon paper is used for these. Reference numerals 4 and 5 denote catalyst layers (4: platinum catalyst, 5: Pt · Ru catalyst), and the electrolyte membrane 1, electrodes 2, 3, and catalyst layers 4, 5 constitute a unit cell 10. 8 and 9 are separator plates, which are made of an electrically conductive material that does not pass gas, such as a carbon plate. Reference numerals 6 and 7 denote gas flow paths surrounded by the separator plates 8 and 9 and the unit cell 10.
In FIG. 2, 11 is a fuel cell stack, 12 is a fuel cell main stack, 13 is a fuel cell sub-stack, 14 is a humidifier, and 15 to 17 are current collectors. 50 main cells 10 are stacked on the main stack 12 and three single cells are stacked on the sub stack 13, and air and fuel are supplied from the humidifier 14 to the sub stack 13 and the main stack 12 in this order. . The current of the main laminated part 12 is taken out from the current collecting plates 15 and 16, and the current of the sub laminated part 13 is taken out from the current collecting plates 16 and 17, respectively. Reference numerals 12a and 13a denote loads connected between the current collecting plates 15 and 16 and between the current collecting plates 16 and 17, respectively.
[0013]
Next, the case where hydrogen is supplied as fuel will be described. The air and hydrogen humidified by the humidifying unit 14 are first supplied to the sub-stacking unit 13 and distributed to each of the three cells (unit cells) in the sub-stacking unit, and by the reactions of the above formulas (1) and (2) After power generation, the power is supplied to the main laminated portion 12 and generated by the same reaction.
[0014]
3 (a) and 3 (b) show changes in voltage and output at each part when power generation is performed. In the figure, “a” indicates changes in voltage and output of the main laminated portion, and “a” indicates changes in voltage and output of the sub laminated portion, both of which are 500 mA / cm 2 The change when operating at a constant current of. Although the output of the main laminated portion 12 did not change during the operation for 2000 hours, it was found that the output of the sub laminated portion 13 was greatly reduced. Therefore, when the load 13a between the current collector plates 16 and 17 is adjusted to reduce only the current value of the sub-stacked portion 13 from the middle, the amount of decrease in both voltage and output is reduced as shown in FIG. I was able to.
[0015]
Further, when the sub-stacked portion 13 is analyzed after operation, a metal in the piping material such as Fe or Cr and a metal ion such as Ca or Na are detected, and impurities in the supply gas accumulate in the electrolyte film to cause resistance. It was found that the characteristics increased and the characteristics deteriorated. Therefore, when only the sub-stack portion 13 is replaced every 1500 hours, the main stack portion 12 and the sub-stack portion 13 are not deteriorated in characteristics even after 5000 hours, and the high characteristics are maintained. I can do it now.
[0016]
As described above, according to the first embodiment, the impurities in the supply gas are removed by accumulating in the sub-stacked portion 13 to prevent the impurities from flowing into the main stacked portion 12 to deteriorate the characteristics. Yes. In addition, the sub-stacking unit 13 controls the load to suppress a decrease in output due to impurity accumulation.
Therefore, it is possible to prevent deterioration of characteristics due to impurities in the supply gas while suppressing reduction in power generation efficiency of the fuel cell.
[0017]
Reference Example 1
Next, Reference Example 1 will be described. The structure of the polymer electrolyte fuel cell unit and the structure of the fuel cell stack are the same as those of the first embodiment shown in FIGS. 1 and 2, and here, a methanol reforming simulation gas (hydrogen) containing 1000 ppm of CO as fuel. 75%, carbon dioxide 25%).
The air and the methanol reforming simulation gas humidified by the humidifying unit 14 are first supplied to the sub-stacking unit 13 and distributed to the three cells in the sub-stacking unit, and by the reactions of the above formulas (1) and (2) After power generation, the power is supplied to the main laminate 12 and generated by the same reaction.
[0018]
In this reference example, the load per unit cell (single cell) of the sub-stack unit 13 is continuously controlled by controlling the load 13a of the sub-stack unit 13 so that the anode potential of the sub-stack unit 13 exceeds the oxidation potential of CO. To vibrate.
FIG. 4 shows 500 mA / cm for both the main laminated portion 12 and the sub laminated portion 13. 2 2 shows a change with time in voltage (20 seconds) when power generation is performed at a constant current of (a), in which (a) shows a voltage change in the main laminated part 12 and (a) shows a voltage change in the sub laminated part 13. The voltage A of the sub-layered portion 13 oscillates with an amplitude (0.18 to 0.58 V) per unit cell at a cycle of 3 seconds, but the voltage of the main layered portion 12 is 0.6 V per unit cell. Even if a fuel having a high CO concentration of 1000 ppm was supplied without vibration, a DC voltage of 30 V with a stable voltage could be obtained. At this time, the CO concentration at the inlet of the sub-layered portion 13 was 1000 ppm, but the CO concentration at the inlet of the main laminated portion 12 was reduced to 100 ppm. This is because CO in the fuel is adsorbed by the catalyst of the fuel electrode, and the anode potential reaches the CO oxidation potential when the voltage of the sub-stacking portion 13 oscillates and is decomposed by the reaction of the following formula (6). it is conceivable that.
CO + H 2 O → CO 2 + 2H + + 2e - (6)
At this time, CO reacts with surrounding moisture to form carbon dioxide and hydrogen ions, but the hydrogen ions reach the cathode side and can be used for the fuel cell reaction of the above formula (2).
[0019]
As described above, according to this reference example, CO reacts with water to form carbon dioxide and hydrogen ions in the sub-stacking portion 13 and wastes hydrogen in the fuel as disclosed in JP-A-7-105967. Furthermore, hydrogen ions are obtained by this reaction and can be used for the fuel cell reaction.
Therefore, it is possible to prevent deterioration in characteristics due to CO in the supply gas while suppressing reduction in power generation efficiency of the fuel cell.
[0020]
Reference Example 2
Reference Example 2 of the present invention will be described. The structure of the laminate and the gas supply conditions are almost the same as in Reference Example 1, but in this reference example, the amount of water flowing through a cooling water pipe (not shown) is adjusted to control the temperature during power generation in the main laminate section. 12 (specifically, for example, the temperature of the separator plate located at the center of the laminate) is adjusted to 80 ° C., and the sub-stack portion 13 (similarly, the temperature of the separator plate) is adjusted to 60 ° C.
[0021]
Next, the operation will be described. FIG. 5 shows that the current density is 500 mA / cm in both the main laminated portion and the sub laminated portion. 2 2 shows a change with time in voltage (20 seconds) when power generation is performed at a constant current, where A represents a voltage change in the main laminated portion and A represents a voltage change in the sub laminated portion. The voltage A of the sub-layered portion 13 oscillates with an amplitude of 0.4 V per unit cell (0.1 to 0.5 V) at a cycle of 1.5 seconds, but the voltage of the main layered portion 12 is 0.5 per unit cell. A stable DC voltage of 31 V could be obtained without vibration at 62 V. At this time, the CO concentration at the inlet of the sub-stacking portion 13 was 1000 ppm, but the CO concentration at the inlet of the main stacking portion 12 was 50 ppm, and the temperature was not changed between the main stacking portion 12 and the sub-stacking book 13 and Reference Example 1 Compared to a significant drop. In general, it was found that CO was more easily adsorbed at a lower temperature, and that CO in the fuel was adsorbed more in the sub-laminate 13 having a lower temperature, and the decomposition efficiency of CO decomposed when the voltage oscillated increased.
The temperatures of the main laminate 12 and the sub laminate 13 are determined by the type of electrolyte membrane, catalyst, etc., but the main laminate 12 is set to the highest power generation efficiency and the temperature of the sub laminate 13 is set higher than that. Lower it.
[0022]
Reference Example 3
Hereinafter, Reference Example 3 of the present invention will be described. This reference example relates to a fuel cell system including a reformer having a CO selective oxidation unit at the front stage of the fuel cell shown in FIG. 2, for example.
When the load fluctuates, the CO concentration at the reformer outlet changes due to a temperature change in the reformer. In this reference example, the amount of air supplied to the CO selective oxidation unit according to the change in the CO concentration. By controlling the value to the optimum value, fluctuations in CO concentration are suppressed while preventing waste of hydrogen.
[0023]
FIG. 6 is a block diagram showing a configuration of a fuel cell system including a methanol reformer having a CO selective oxidizer according to Reference Example 3 of the present invention. In the figure, reference numeral 31 denotes a methanol reformer, which has a vaporization section 31a, a catalytic combustion section 31b, a reforming section 31c, and a CO selective oxidation section 31d. 32 is a methanol tank, 33 is a water tank, 34a to c are pumps, and 41 is an air blower. In addition, 51 holds a correlation diagram of FIG. 7 described later as a table and calculates a CO concentration from the frequency and temperature of the voltage of the sub-stacking unit 13, and 52 changes based on the calculation result of the calculating unit 51. This is a control unit that controls the amount of air supplied to the CO selective oxidation unit 31d of the mass device 31, and these calculation unit 51 and control unit 52 are constituted by a microcomputer. The configuration of the fuel cell stack 11 is the same as that of the first embodiment.
[0024]
In the reformer 31, the following reaction occurs. Water and methanol sent by the pumps 34a and 34b evaporate in the vaporizing section 31a and sent to the reforming section 31c to generate hydrogen and carbon dioxide by the reaction of the formula (3). At the same time, the formula (4) Since 1 to 2% of CO is generated by the shift reaction, a small amount of air is mixed from the air blower 41 in the CO selective oxidation unit 31d to selectively oxidize and remove the CO, and then reduce the CO concentration to around 1000 ppm before fuel. The battery 11 is supplied.
In the catalytic combustion unit 31b, the fuel exhaust gas of the fuel cell 11 and air are reacted by catalytic combustion, and necessary heat is supplied in the vaporization unit 31a and the reforming unit 31c. Therefore, when the load fluctuates, the heat balance may be lost and the temperature may change.
[0025]
FIG. 7 shows 500 mA / cm. 2 The relationship between the CO concentration in the fuel and the frequency of the voltage in the sub-stacked portion 13 when power is generated at a constant current is shown when a is 80 ° C. and a is 60 ° C. From the figure, it can be seen that the frequency of the voltage increases as the CO concentration increases and the operating temperature decreases. If the operating temperature and frequency are known, the supplied CO concentration can be estimated. Note that the relationship in FIG. 7 also varies depending on the current.
FIG. 8 shows the relationship between the air mixing amount and the CO concentration in the CO selective oxidation unit 31d of the reformer. From the figure, the CO concentration can be lowered by increasing the air mixing amount. It can be seen that even if the air amount is excessive, only hydrogen is consumed, and the air mixing amount needs to be an optimum value according to the state of the fuel.
[0026]
FIG. 9 relates to Reference Example 3 of the present invention and is a flowchart for controlling the amount of air supplied to the CO selective oxidation unit 31d in order to suppress fluctuations in the CO concentration at the outlet of the reformer 31, and this processing is performed by the calculation unit 51. Done in
Normally, the amount of air in the CO selective oxidation section of the reformer 31 is adjusted according to the flow rate of the fuel, but the CO concentration at the outlet of the reformer 31 may change due to a temperature change in the reformer 31 or the like. Therefore, in this reference example, not only the fuel flow rate but also the CO concentration at the outlet of the reformer 31, that is, the CO concentration supplied to the fuel cell 11 is taken into consideration, and the air supply flow rate to the CO selective oxidation unit 31 d is as follows. Control.
Step 1: The CO concentration Cs and the allowable width ΔC of the fuel to be supplied to the fuel cell 11 are set. In this reference example, the set value Cs was 50 ppm, and the allowable width ΔC was 25 ppm. This is calculated from the upper limit value of the carbon monoxide concentration at which the characteristics of the fuel cell do not deteriorate and the CO removal effect and the control accuracy in the selective oxidation unit where the hydrogen consumption in the CO selective oxidation unit 31d does not become extremely large. It can be appropriately changed according to the characteristics.
Step 2: The voltage frequency f of the sub-laminate 13, the operating temperature T of the sub-laminate 13, and the current I of the sub-laminate 13 are measured.
Step 3: The calculation unit 51 estimates the CO concentration Cx in the fuel supplied to the fuel cell from the above parameters, that is, the voltage frequency f, the operating temperature T, and the current I based on FIG.
Step 4: The estimated CO concentration Cx is compared with the allowable value Cs + ΔC, and if the allowable value Cs + ΔC is exceeded, the process proceeds to step 6 to prevent the characteristics of the fuel cell from deteriorating. If not, the next step 5 is performed. Proceed with
Step 5: The estimated CO concentration Cx is compared with the lower limit value Cs-ΔC, and if it is less than the lower limit value Cs-ΔC, the process proceeds to Step 7 to suppress excessive hydrogen consumption in the CO selective oxidation unit 31d, and the upper limit value is exceeded. In the case of, return to Step 2.
Step 6: The air supply amount to the CO selective oxidation unit 31d is increased by the control unit 52.
Step 7: The control unit 52 reduces the amount of air supplied to the CO selective oxidation unit 31d.
[0027]
As described above, when the load fluctuates, the CO concentration at the outlet of the reformer 31 changes due to a temperature change in the reformer 31 or the like. As a result, the CO concentration of the fuel supplied to the fuel cell power generation section 11 changes. Before the correction control is performed, the change is 400% (250 ppm) on the positive side and 80% on the negative side with respect to the set value 50 ppm ( The fluctuation of CO concentration was suppressed to within 100% (100ppm) on the plus side and within 50% (25ppm) on the minus side by performing the correction control according to this reference example. .
As a result, the cell voltage is stabilized and the power generation efficiency is improved, and the system efficiency is improved by suppressing excessive fuel consumption.
[0028]
In the above reference example, the amount of supplied air is controlled, but the temperature of the CO selective removal unit 31d is controlled, that is, the temperature is lowered when the CO concentration is high, and the temperature is raised when the CO concentration is low. In addition, it was possible to suppress changes in the CO concentration in the fuel supplied to the fuel cell.
Further, both the supply air amount and the temperature may be controlled.
Further, in the above reference example, the CO concentration Cx in the fuel supplied to the fuel cell is estimated from the voltage frequency f, the operating temperature T, and the current I of the sub-laminate 13 based on FIG. The operation temperature T and the current I need not be measured. For example, the operation temperature need not be measured. That is, the sub-stacking portion 13 and the main stacking portion 12 have the same variation with a constant width, and the allowable CO concentration also changes depending on the temperature. Therefore, even if the actual CO concentration is not known, there is no problem in adjusting the CO concentration suitable for the main laminated portion 12.
[0029]
Reference Example 4
Next, a fuel cell system according to Reference Example 4 of the present invention will be described. The overall configuration of the system is the same as that shown in FIG.
FIG. 10 is a flowchart according to Reference Example 4 of the present invention for correcting and controlling the amount of air supplied to the CO selective oxidation unit in order to keep the CO concentration at the reformer outlet constant.
In this reference example, a change in the concentration of CO supplied to the fuel cell 11 is predicted, and the air supply flow rate to the CO selective oxidation unit 31d is optimally controlled by the following steps.
Step 11: The CO concentration Cs and the allowable width ΔC of the fuel to be supplied to the fuel cell 11 are set. In this reference example, the set value Cs was 50 ppm, and the allowable width ΔC was 15 ppm. The permissible width can be narrowed in this way because the control accuracy is improved because the control is advanced compared to the control according to the reference example 3 described above, and the permissible width can be changed according to the characteristics of the device.
Step 12: Time t = t i The voltage frequency f of the sub-laminate 13 at i , Operating temperature T, current I i Measure.
Step 13: The next instant t = t of the sub-laminate 13 i Voltage frequency f at + Δt (0.3 seconds in this reference example) i + 1 , Current I i + 1 Measure. The temperature T i + 1 Was not measured because it does not change instantaneously.
Step 14: In the calculation unit 51, the above parameter, that is, the voltage frequency f of the sub-laminate 13 i , F i + 1 , Operating temperature T, current I i , I i + 1 To t = t in the fuel supplied to the fuel cell using the relationship of FIG. i To t = t i The amount of change in CO concentration between + Δt is estimated, and the amount of change in CO concentration ΔCx after a predetermined time (1.5 seconds in this reference example) is predicted. Note that the time setting here can be changed as appropriate depending on the system configuration because it depends on the time and allowable range in which the CO concentration of the supplied gas changes after the amount of air supplied to the CO selective oxidation unit 31d is changed. It is.
Step 15: The change amount ΔCx of the CO concentration after the predetermined time (1.5 seconds) predicted in Step 14 is compared with the allowable width ΔC. If the change amount ΔCx exceeds the allowable width ΔC, the process proceeds to Step 16. If not, return to Step 12.
Step 16: The air supply correction amount is calculated according to the change amount of the CO concentration after 1.5 seconds predicted in Step 14.
Step 17: The air supply amount is corrected according to the air supply correction amount obtained in Step 16. That is, when the CO concentration increases beyond the allowable width ΔC, the air supply amount to the CO selective oxidation unit 31d is increased in order to prevent deterioration of the characteristics of the fuel cell. Further, when the CO concentration becomes smaller than the allowable width ΔC, the air supply amount to the CO selective oxidation unit 31d is reduced in order to suppress excessive hydrogen consumption in the CO selective oxidation unit 31d.
[0030]
As described above, in this reference example, the change in the CO concentration after a predetermined time (1.5 seconds) is predicted from the change in the frequency of the voltage in 0.3 seconds in the sub-stacking portion 13, and the CO concentration changes. By controlling the amount of supplied air before, the CO concentration could be controlled within plus or minus 30% (50 ± 15 ppm).
As a result, the cell voltage was stabilized and the power generation efficiency was further improved as compared with Reference Example 3, and the excessive fuel consumption could be suppressed, thereby greatly improving the system efficiency.
[0031]
Although the supply air amount is controlled in the above reference example, the temperature of the reformer 31 may be controlled, and both the supply air amount and the temperature may be controlled.
In the reference example, the change amount ΔCx of the CO concentration after a predetermined time is predicted. However, the CO concentration after the predetermined time may be predicted. In this case, steps 3 to 7 in FIG. Can be controlled.
Further, in the above reference example, the change amount ΔCx of the CO concentration in the fuel supplied to the fuel cell is predicted from the voltage frequency f, the operating temperature T, and the current I of the sub-stacking portion 13 based on FIG. It is not necessary to measure all of the frequency f, the operating temperature T, and the current I. For example, the operating temperature may not be measured. That is, the sub-stacking portion 13 and the main stacking portion 12 have the same variation with a constant width, and the allowable CO concentration also changes depending on the temperature. Therefore, even if the actual CO concentration is not known, there is no problem in adjusting the CO concentration suitable for the main laminated portion 12.
[0032]
【The invention's effect】
As described above, according to the first configuration of the present invention, a unit cell in which electrodes having gas diffusibility are arranged on both surfaces of an ion conductive electrolyte membrane, and fuel is supplied to one electrode of the unit cell and the other electrode. A fuel cell main laminated portion in which a gas separator for supplying an oxidant gas is sequentially laminated, and a sub-laminate in which the number of laminated cells and separators is smaller than that of the main laminated portion, and the current path is independent from the main laminated portion The main laminated part and the sub laminated part are sandwiched between a pair of current collector plates, and the pair of current collector plates disposed at both ends of the main laminated part have a first load However, a second load is connected to a pair of current collector plates arranged at both ends of the sub-stacking portion, and fuel and oxidant gas are supplied to the main stacking portion after passing through the sub-stacking portion. In the method for operating a polymer electrolyte fuel cell that generates electric power, The current value of the sub-laminate in order to prevent a decrease in voltage operation To reduce the second load from the middle Adjustment Therefore, it is possible to prevent deterioration of characteristics due to impurities in the supply gas while suppressing reduction in power generation efficiency of the fuel cell.
[0033]
According to the second configuration of the present invention, in addition to the first configuration, the unit cell of the sub-stacking unit includes: driving Since the battery is replaced with a unit cell whose characteristics are not deteriorated every predetermined time, high characteristics can be maintained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a unit cell according to Embodiment 1 of the present invention.
FIG. 2 is a diagram schematically showing a configuration of a fuel cell stack according to Embodiment 1 of the present invention.
FIGS. 3A and 3B are diagrams showing changes with time of each characteristic of the fuel cell stack according to Embodiment 1 of the present invention, where FIG. 3A shows voltage and FIG. 3B shows output change.
FIG. 4 is a diagram showing a change in voltage per unit cell in each stacked portion of the fuel cell according to Reference Example 1 of the present invention.
FIG. 5 is a diagram showing a change in voltage per unit cell in each stacked portion of the fuel cell according to Reference Example 2 of the present invention. .
FIG. 6 is a diagram showing a configuration of a fuel cell system according to Reference Example 3 of the present invention.
7 is a graph showing the relationship between the CO concentration in fuel and the voltage frequency according to Reference Example 3 of the present invention. FIG.
FIG. 8 is a diagram showing the relationship between the amount of air supplied to the CO selective oxidation unit and the outlet CO concentration according to Reference Example 3 of the present invention.
FIG. 9 is a flowchart for explaining a control operation according to Reference Example 3 of the present invention.
FIG. 10 is a flowchart for explaining a control operation according to Reference Example 4 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane, 2 cathode, 3 anode, 4, 5 catalyst layer, 6, 7 gas flow path, 10 cell, 11 fuel cell laminated body, 12 main laminated part, 13 sub laminated part, 12a, 13a load, 14 humidification Part, 15-17 current collector plate, 31 methanol reformer, 31a vaporization part, 31b catalytic combustion part, 31c reforming part, 31d CO selective oxidation part, 32 methanol tank, 33 water tank, 34a-c pump, 41 air Blower, 51 arithmetic unit, 52 control unit.

Claims (2)

イオン伝導性の電解質膜の両面にガス拡散性を有する電極を配した単電池と、該単電池の一方の極に燃料を他方の極に酸化剤ガスを供給するガスセパレータとを順次積層した燃料電池主積層部、および上記単電池とセパレータの積層数が上記主積層部より少なく、かつ上記主積層部から電流経路が独立した副積層部を有し、上記主積層部および上記副積層部の両端はそれぞれ一対の集電板で挟まれており、上記主積層部の両端に配置された一対の集電板には第一の負荷が、上記副積層部の両端に配置された一対の集電板には第二の負荷が接続されており、燃料および酸化剤ガスを上記副積層部を通ってから上記主積層部に供給して発電する固体高分子型燃料電池の運転方法において、上記副積層部の電圧の低下を防止するために上記副積層部の電流値を運転の途中から減少させるように上記第二の負荷を調節することを特徴とする固体高分子型燃料電池の運転方法。A fuel in which a unit cell in which electrodes having gas diffusibility are arranged on both surfaces of an ion conductive electrolyte membrane, and a gas separator that sequentially supplies fuel to one electrode of the unit cell and oxidant gas to the other electrode A battery main laminate portion, and a sub laminate portion in which the number of stacked cells and separators is smaller than that of the main laminate portion, and a current path is independent from the main laminate portion, and the main laminate portion and the sub laminate portion Both ends are sandwiched between a pair of current collector plates, and a first load is applied to a pair of current collector plates disposed at both ends of the main laminate portion, and a pair of current collectors disposed at both ends of the sub laminate portion. In the operation method of the polymer electrolyte fuel cell, wherein a second load is connected to the electric plate, and the fuel and the oxidant gas are supplied to the main stack portion after passing through the sub stack portion, and the power is generated. In order to prevent a voltage drop in the sub-laminate, the sub-laminate Polymer electrolyte fuel cell operating method characterized by adjusting the second load to reduce from the middle of the driving current value. 副積層部の単電池は、運転中の所定時間毎に、特性が低下していない単電池に入れ替えられるものであることを特徴とする請求項1記載の固体高分子型燃料電池の運転方法。2. The method for operating a polymer electrolyte fuel cell according to claim 1, wherein the unit cell of the sub-stacking unit is replaced with a unit cell whose characteristics are not deteriorated at every predetermined time during operation.
JP2003104287A 2003-04-08 2003-04-08 Operation method of polymer electrolyte fuel cell Expired - Fee Related JP3888326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104287A JP3888326B2 (en) 2003-04-08 2003-04-08 Operation method of polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104287A JP3888326B2 (en) 2003-04-08 2003-04-08 Operation method of polymer electrolyte fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28145798A Division JP3440843B2 (en) 1998-10-02 1998-10-02 Polymer electrolyte fuel cell and its system

Publications (2)

Publication Number Publication Date
JP2003303612A JP2003303612A (en) 2003-10-24
JP3888326B2 true JP3888326B2 (en) 2007-02-28

Family

ID=29398230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104287A Expired - Fee Related JP3888326B2 (en) 2003-04-08 2003-04-08 Operation method of polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3888326B2 (en)

Also Published As

Publication number Publication date
JP2003303612A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
JP3440843B2 (en) Polymer electrolyte fuel cell and its system
US6896792B2 (en) Method and device for improved catalytic activity in the purification of fluids
JP5003792B2 (en) Fuel cell system
US20100233554A1 (en) Fuel cell system and operating method thereof
WO2020138338A1 (en) Fuel cell activation method and apparatus
US20060183007A1 (en) Method of operating fuel cell
US9178233B2 (en) Smart in-vehicle reactive recovery strategy
JP2007141744A (en) Fuel cell system
JP2022056862A (en) Fuel cell system
JP4834963B2 (en) FUEL CELL CONTROL DEVICE, FUEL CELL SYSTEM, AND FUEL CELL CONTROL METHOD
JP3888326B2 (en) Operation method of polymer electrolyte fuel cell
JP2009110666A (en) Fuel cell system and its control method
JP2007323993A (en) Fuel cell system
CA2666675C (en) Fuel cell battery system
JP2006302578A (en) Operation method of fuel cell and fuel cell system
JP2002231283A (en) Solid polymer electrolyte fuel cell generating device and its operating method
JP2000233905A (en) Device for reducing carbon monoxide concentration in gaseous hydrogen-containing carbon monoxide and fuel cell power generation system using the same
JPH07105967A (en) Fuel cell
JP2005268091A (en) Operation method of fuel cell, and fuel cell system
JP7331825B2 (en) fuel cell system
JP2007323816A (en) Fuel cell power generation device
JP2012009182A (en) Fuel cell system, power generation method of fuel cell and method of determining flooding
JP4507971B2 (en) Fuel cell device
JP5703706B2 (en) Fuel cell operating method and fuel cell power generator
JP2022069754A (en) Fuel cell system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees