JP2002231283A - Solid polymer electrolyte fuel cell generating device and its operating method - Google Patents

Solid polymer electrolyte fuel cell generating device and its operating method

Info

Publication number
JP2002231283A
JP2002231283A JP2001022922A JP2001022922A JP2002231283A JP 2002231283 A JP2002231283 A JP 2002231283A JP 2001022922 A JP2001022922 A JP 2001022922A JP 2001022922 A JP2001022922 A JP 2001022922A JP 2002231283 A JP2002231283 A JP 2002231283A
Authority
JP
Japan
Prior art keywords
fuel cell
air
solid polymer
polymer electrolyte
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001022922A
Other languages
Japanese (ja)
Inventor
Makoto Aoki
信 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001022922A priority Critical patent/JP2002231283A/en
Publication of JP2002231283A publication Critical patent/JP2002231283A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell generating set and its operating method, capable of obtaining a high cell output by keeping an electrolyte film in a sufficiently wet condition, even if a cell operating condition fluctuates. SOLUTION: Differences between the partial pressure of steam in exhaust air from the cell 2, the partial pressure of steam in exhaust fuel gas, at least one measured value among internal resistances of the cell, and reference values preset in advance are monitored, and when the value of the partial pressure rise of the steam in the air, the value of the partial pressure drop of the steam in the fuel gas, and the value of the internal resistance rise reach prescribed values, the humidified condition of the electrolyte film is determined to be abnormal, at least either one of the partial pressures of the steam in the air led into the cell or in the fuel gas is raised, the flow of the air is reduced, the flow of the fuel gas is increased, and at least one control among those control operations to lower the temperature of the cell is carried out. In addition, in order to lower the temperature of the cell, either one of those controls such as a control to lower the temperature of a cell coolant, a control to increase the flow of the cell coolant, or a control to reduce operating current density is carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子電解
質型燃料電池発電装置とその運転方法、特に、固体高分
子電解質膜の加湿を適正化する方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell power generator and a method of operating the same, and more particularly to a method and a device for optimizing the humidification of a solid polymer electrolyte membrane.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池発電装置
は、燃料電池の最小単位である単セルを多数積層した燃
料電池スタック(以下、単に「電池」,「燃料電池」と
もいう。)と、この燃料電池に反応ガス(水素を含有す
る燃料ガスおよび酸素を含有する酸化剤ガス、通常は空
気)を必要量供給するためのガス供給装置と、その他周
辺装置および制御装置とを基本として構成される。
2. Description of the Related Art A solid polymer electrolyte fuel cell power generator includes a fuel cell stack (hereinafter, also simply referred to as "cell", "fuel cell") in which a plurality of single cells, which are the minimum units of a fuel cell, are stacked. The fuel cell is basically composed of a gas supply device for supplying a required amount of a reaction gas (a fuel gas containing hydrogen and an oxidizing gas containing oxygen, usually air), and other peripheral devices and a control device. You.

【0003】図4は、従来の一般的な固体高分子電解質
型燃料電池発電装置のシステム構成の模式図を示す。原
燃料として例えば、天然ガス,メタノール等を供給する
場合、原燃料は脱硫器,改質器,CO変成器,CO除去器等
から構成される燃料処理装置1により数十ppm程度のCO
および20%程度のCO2を含む水素を主成分とする燃料
ガスに改質され、電池2に供給される。電池2には空気
ブロア3から空気が供給され、電池2において水素と酸
素の電気化学反応により発電を行う。
FIG. 4 is a schematic diagram showing a system configuration of a conventional general solid polymer electrolyte fuel cell power generator. For example, when supplying natural gas, methanol, or the like as a raw fuel, the raw fuel is supplied to the fuel processing apparatus 1 including a desulfurizer, a reformer, a CO shift converter, a CO remover, and the like, so that about several tens ppm of CO
Then, the fuel gas is reformed into a fuel gas mainly containing hydrogen containing about 20% of CO 2 and supplied to the battery 2. Air is supplied to the battery 2 from the air blower 3, and the battery 2 generates power by an electrochemical reaction between hydrogen and oxygen.

【0004】電池2で消費されなかった空気は大気中に
排気され、燃料ガスは燃料処理装置1に戻されて改質反
応に必要な熱の供給源として燃焼消費される。電池2の
温度を適度に保つため電池冷却媒体4が供給され、冷却
媒体としては一般的に水が使用されるが空冷の場合もあ
る。電池冷却媒体4は熱交換器6で冷却された後、循環
ポンプ5により電池2に供給される。電池出力はDCであ
るため、AC出力が必要な場合にはインバータが組込まれ
る。
[0004] The air not consumed by the battery 2 is exhausted to the atmosphere, and the fuel gas is returned to the fuel processor 1 to be burned and consumed as a heat source necessary for the reforming reaction. A battery cooling medium 4 is supplied to keep the temperature of the battery 2 at an appropriate level. As the cooling medium, water is generally used, but air cooling may be used. After being cooled by the heat exchanger 6, the battery cooling medium 4 is supplied to the battery 2 by the circulation pump 5. Since the battery output is DC, an inverter is incorporated when AC output is required.

【0005】ところで、固体高分子電解質型燃料電池の
最小発電単位であるセルの構成は、一般に、図5のよう
に表わされる。膜電極接合体(MEA:Membran
eElectrode Assembly)は、電解質
膜31の両面に貴金属(主として白金)を含む触媒層4
0(以下、電極触媒層ともいう。)を接合して形成され
る。MEAの外側には多孔質の拡散層33(以下、拡散
電極層ともいう。)があって、反応ガスとしての燃料ガ
スと酸化剤ガスを通過させると同時に、電流を外部に伝
える働きをする。
The structure of a cell, which is the minimum power generation unit of a solid polymer electrolyte fuel cell, is generally represented as shown in FIG. Membrane electrode assembly (MEA: Membrane)
eElectrode Assembly) is a catalyst layer 4 containing a noble metal (mainly platinum) on both surfaces of the electrolyte membrane 31.
0 (hereinafter also referred to as an electrode catalyst layer). A porous diffusion layer 33 (hereinafter, also referred to as a diffusion electrode layer) is provided outside the MEA, and serves to pass a fuel gas and an oxidizing gas as a reaction gas and to transmit a current to the outside.

【0006】多孔質の拡散層33と触媒層40とを合わ
せて、燃料ガスが通流される側をアノード電極,酸化剤
ガスが通流される側をカソード電極という。また、広義
のMEAには拡散層を含めることもある。上記両電極
を、燃料ガス流路および酸化剤ガス流路を備えたセパレ
ータ32で挟むことにより、セルが構成される。
When the porous diffusion layer 33 and the catalyst layer 40 are combined, the side through which the fuel gas flows is called the anode electrode, and the side through which the oxidizing gas flows is the cathode electrode. Further, the MEA in a broad sense may include a diffusion layer. A cell is formed by sandwiching the two electrodes between the separators 32 each having a fuel gas flow path and an oxidizing gas flow path.

【0007】電解質膜にはフッ素系の高分子材料が最も
一般的に使用されている。代表的な市販の電解質膜には
NafionTM(米国・デュポン社製商品名)がある。これら
の電解質膜の特徴は、他の高分子電解質と比較してプロ
トン伝導性が高いことと、電解質膜が乾燥すると急激に
プロトン伝導性が低下することである。このため固体高
分子電解質型燃料電池では常に電解質膜を適当な含水状
態に制御することが求められる。通常は反応ガスを加湿
することによって電解質膜の乾燥を防止する。
For the electrolyte membrane, a fluorine-based polymer material is most commonly used. Typical commercially available electrolyte membranes include
There is Nafion TM (trade name, manufactured by DuPont, USA). The features of these electrolyte membranes are that they have higher proton conductivity than other polymer electrolytes, and that the proton conductivity rapidly decreases when the electrolyte membrane dries. For this reason, in a solid polymer electrolyte fuel cell, it is required to always control the electrolyte membrane to an appropriate water-containing state. Usually, drying of the electrolyte membrane is prevented by humidifying the reaction gas.

【0008】図6は、図5とは一部異なるセル構成の模
式的断面図である。図6に示す高分子電解質型燃料電池
においては、固体高分子の電解質膜31の両側に、電極
触媒層40,拡散電極層33を配設し、これらを、ガス
流通溝50を有するカソード側セパレータ32kおよび
アノード側セパレータ32aで挟持し、電池単セルを構
成しているが、図6に示すセパレータの片面には、発電
反応による発熱を冷却するための冷却水流通溝60が加
工してある。
FIG. 6 is a schematic sectional view of a cell configuration partially different from FIG. In the polymer electrolyte fuel cell shown in FIG. 6, an electrode catalyst layer 40 and a diffusion electrode layer 33 are provided on both sides of a solid polymer electrolyte membrane 31, and these are connected to a cathode separator having a gas flow groove 50. The battery unit cell is constituted by being sandwiched between the 32k and the anode-side separator 32a. A cooling water flow groove 60 for cooling heat generated by the power generation reaction is formed on one surface of the separator shown in FIG.

【0009】ところで、前述のように、固体高分子電解
質型燃料電池に用いられる固体高分子電解質膜は、水を
含んだ湿潤状態において高いイオン(プロトン)伝導性
を示すため、反応ガスを水で加湿することにより高い電
池特性が得られる。図4に示す燃料加湿装置7および空
気加湿装置8は、それぞれ燃料ガスおよび空気を電池2
に導入する前に加湿し、ガス中の水蒸気分圧を上昇させ
る装置である。
As described above, the solid polymer electrolyte membrane used in the solid polymer electrolyte fuel cell exhibits high ionic (proton) conductivity in a wet state containing water. High battery characteristics can be obtained by humidification. The fuel humidifier 7 and the air humidifier 8 shown in FIG.
This is a device that humidifies the gas before introducing it into the gas and raises the partial pressure of water vapor in the gas.

【0010】これらの加湿装置は、電池2の各単セルの
構成材である電解質膜31が乾燥し、イオン伝導性が低
下するのを防ぐ目的で設けられる。図4においては、加
湿装置を燃料電池発電装置の一構成部材として示した
が、実際には電池2に内蔵させたり、また電池反応の生
成水や改質燃料ガス中の水蒸気を活用することにより、
その一方または両方を省略することもある。
These humidifiers are provided for the purpose of preventing the electrolyte membrane 31, which is a constituent material of each single cell of the battery 2, from drying and lowering the ion conductivity. In FIG. 4, the humidifier is shown as one component of the fuel cell power generator. However, actually, the humidifier is built in the battery 2 or by utilizing the water generated by the battery reaction or the steam in the reformed fuel gas. ,
One or both may be omitted.

【0011】通常、反応ガスを加湿する方法としては、
スタックの外部に設けた加湿用タンクなどで反応ガスを
加湿してから供給する方法(外部加湿方式)や、単電池
と類似の寸法/形状の加湿セルをスタックの一部に組み
込み、加湿セルを通った反応ガスを発電部に供給する方
法(内部加湿方式)が考えられている。
Usually, the method of humidifying the reaction gas includes:
A method of humidifying the reaction gas with a humidification tank provided outside the stack and then supplying it (external humidification method), or incorporating a humidification cell with a size / shape similar to that of a cell into a part of the stack, A method of supplying the passed reaction gas to the power generation unit (internal humidification method) has been considered.

【0012】例えば、外部加湿方式としては、バブリン
グタンク方式と呼称される方式で、加湿用容器に貯留さ
れた水の中に反応ガスを散気し、水中から脱気した反応
ガスを積層燃料電池へ通流するように構成したもの、ま
た、内部加湿方式としては、ガス流通溝を有するセパレ
ータと、加湿水流通溝を有するセパレータとで多孔質支
持体を介して水透過膜を挟持し、全体で加湿板を構成
し、加湿膜としての水透過膜を介して反応ガスの加湿を
行うように構成したもの等である。
For example, as an external humidification system, a reaction gas is diffused into water stored in a humidification container, and the reaction gas degassed from the water is deposited on a laminated fuel cell by a system called a bubbling tank system. And a separator having a gas circulation groove, and a separator having a humidification water circulation groove sandwiching a water permeable membrane via a porous support, and the entire structure as an internal humidification method. And a humidifying plate configured to humidify the reaction gas through a water permeable membrane as a humidifying membrane.

【0013】いずれにしても、電解質膜を十分に湿潤し
た適切な状態つことが、電池2の高い出力を得る上で必
要である。
In any case, a proper condition in which the electrolyte membrane is sufficiently wetted is necessary for obtaining a high output of the battery 2.

【0014】ところで、上記のように、加湿装置を備え
た固体高分子電解質型燃料電池発電装置であっても、燃
料ガスおよび空気の水蒸気分圧が、電池2の各単セルの
運転温度における飽和水蒸気圧よりも低いと、燃料ガス
あるいは空気が電解質膜より水分を奪い、その結果、電
解質膜の水分含有量が減少することがある。よって、電
解質膜を十分に湿潤に保つ観点からは、燃料ガスおよび
空気の水蒸気分圧が電池入口において、電池2の各単セ
ルの運転温度における飽和水蒸気圧相当以上の水蒸気分
圧を有していることが望まれる。
As described above, even in a solid polymer electrolyte fuel cell power generator equipped with a humidifier, the partial pressure of water vapor of fuel gas and air is saturated at the operating temperature of each unit cell of the battery 2. If the pressure is lower than the water vapor pressure, the fuel gas or air deprives the electrolyte membrane of water, and as a result, the water content of the electrolyte membrane may decrease. Therefore, from the viewpoint of keeping the electrolyte membrane sufficiently wet, the steam partial pressure of the fuel gas and air at the battery inlet has a steam partial pressure equal to or higher than the saturated steam pressure at the operating temperature of each single cell of the battery 2. Is desired.

【0015】一方、水蒸気分圧の高い反応ガスを電池2
に導入すると、図6中のセパレータ32a,32kのガ
ス流通溝50に過飽和となった水分が水滴となって滞留
し、反応ガスの流通を阻害し、電池出力の低下を招くこ
とがある。よって、ガス流路での水滴によるガス流通性
低下の防止の観点からは、電池2に導入する反応ガス中
の水蒸気分圧を電池2の各単電池の運転温度における飽
和水蒸気圧相当よりも下げることが望ましい。
On the other hand, a reaction gas having a high water vapor partial pressure is supplied to the battery 2
In this case, the supersaturated water stays in the gas flow grooves 50 of the separators 32a and 32k in FIG. 6 as water droplets, impeding the flow of the reaction gas, and possibly lowering the battery output. Therefore, from the viewpoint of preventing a decrease in gas flowability due to water droplets in the gas flow path, the partial pressure of water vapor in the reaction gas introduced into the battery 2 is made lower than the saturated vapor pressure at the operating temperature of each unit cell of the battery 2. It is desirable.

【0016】以上の相反する課題に対処する好ましい燃
料電池の構成としては、電池反応の結果として空気極側
で生成する水を有効に活用して電解質膜を加湿できる構
成を有するものが望ましく、そのためには、反応ガスと
しての燃料ガスと空気とが、互いに対向するように通流
される構成を有する燃料電池が望ましい。
As a preferable configuration of the fuel cell which addresses the above contradictory problems, it is desirable to have a configuration capable of humidifying the electrolyte membrane by effectively utilizing water generated on the air electrode side as a result of the cell reaction. For the fuel cell, a fuel cell having a configuration in which a fuel gas as a reaction gas and air flow so as to face each other is desirable.

【0017】すなわち、カソード(空気極)側で生成し
た水分によりセル出口部の空気の水蒸気分圧は高くなっ
ており、空気のセル出口部に電解質膜を挟んで相対する
部位より燃料ガスを導入すると、燃料ガス中の水蒸気分
圧が空気のそれよりも低い場合には空気から燃料ガスに
電解質膜を介して水分の移動が生じ、セル入口部の燃料
ガスの水蒸気分圧は高くなる。
That is, the water vapor partial pressure of the air at the cell outlet is increased by the moisture generated at the cathode (air electrode) side, and the fuel gas is introduced into the cell outlet of the air from the opposite part with the electrolyte membrane interposed therebetween. Then, when the partial pressure of water vapor in the fuel gas is lower than that of air, the movement of water from the air to the fuel gas via the electrolyte membrane occurs, and the partial pressure of water vapor of the fuel gas at the cell inlet increases.

【0018】上記のように、空気と燃料ガスとを対向流
とすることにより、電池に導入する反応ガスの水蒸気分
圧を下げてもカソード(空気極)で生じる電池反応の生
成水により、電池反応部の反応ガスの水蒸気分圧を高く
維持し、電解質膜を良好な湿潤状態に保つことができ
る。
As described above, by causing the air and the fuel gas to flow in opposite directions, even if the water vapor partial pressure of the reaction gas introduced into the battery is lowered, the water produced by the battery reaction generated at the cathode (air electrode) can be used. The steam partial pressure of the reaction gas in the reaction section can be kept high, and the electrolyte membrane can be kept in a good wet state.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、前記の
ように空気と燃料ガスとを対向流とし、燃料電池反応生
成水によって電解質膜を加湿する燃料電池発電装置にお
いても、運転継続中に何らかの要因で電解質の湿潤性が
低下した際には、電池出力が、反応ガス流量,水蒸気分
圧,電池温度などの運転条件の影響を受けて変動しやす
い問題がある。
However, even in the fuel cell power generation apparatus in which the air and the fuel gas flow in opposite directions and the electrolyte membrane is humidified by the water produced by the reaction of the fuel cell as described above, the operation of the fuel cell power generation apparatus may continue for some reason during operation. When the wettability of the electrolyte decreases, there is a problem that the battery output is likely to fluctuate under the influence of operating conditions such as the flow rate of the reaction gas, the partial pressure of steam, and the battery temperature.

【0020】この原因は、電解質膜の湿潤性が低下した
際には、前記の電解質膜を介した反応ガス間の水分の移
動が阻害され、電池出口の空気中の水蒸気分圧が上昇す
る反面、燃料ガス中の水蒸気分圧が低下すること、また
その時に電池の内部抵抗が上昇することにあることが判
明した。
This is because, when the wettability of the electrolyte membrane is reduced, the movement of water between the reaction gases through the electrolyte membrane is hindered, and the partial pressure of water vapor in the air at the outlet of the battery increases. It has been found that the partial pressure of water vapor in the fuel gas decreases, and at that time the internal resistance of the battery increases.

【0021】一方、発電装置として電池を運転する場合
には、要求出力の変動に伴い、ある程度の運転条件の変
動は不可避である。
On the other hand, when a battery is operated as a power generator, a certain degree of change in operating conditions is inevitable with a change in required output.

【0022】上記のような状況において、安定して高い
電池出力を得るためには、運転条件が変動した場合にお
いても、電解質膜の湿潤不足により電池出力が低下しな
いように、発電装置を制御する必要がある。
In such a situation, in order to obtain a stable and high battery output, the power generator is controlled so that the battery output does not decrease due to insufficient wetting of the electrolyte membrane even when the operating conditions fluctuate. There is a need.

【0023】しかし、電池出力の低下は、電解質膜の乾
燥以外の原因でも生じるため、電池出力のみを監視して
いても、発電装置を最適に制御することは不可能であ
る。
However, since the decrease in the battery output is caused by a cause other than the drying of the electrolyte membrane, it is impossible to optimally control the power generator even if only the battery output is monitored.

【0024】この発明は、上記の点に鑑みてなされたも
ので、この発明の課題は、電池運転条件に変動が生じた
場合でも電解質膜を十分に湿潤状態に維持し高い電池出
力が得られるように発電装置を制御することが可能な固
体高分子電解質型燃料電池発電装置とその運転方法を提
供することにある。
The present invention has been made in view of the above points, and it is an object of the present invention to maintain a sufficiently wet electrolyte membrane and obtain a high battery output even when the operating conditions of the battery fluctuate. It is an object of the present invention to provide a solid polymer electrolyte fuel cell power generation device capable of controlling the power generation device as described above and an operation method thereof.

【0025】[0025]

【課題を解決するための手段】前述の課題を解決するた
めには、従来の固体高分子電解質型燃料電池発電装置の
運転方法における問題が、前記電解質膜の湿潤性が低下
した際に、電解質膜を介した反応がス間の水分の移動が
阻害され、電池出口の空気中の水蒸気分圧が上昇する反
面、燃料ガス中の水蒸気分圧が低下すること、またその
時に電池の内部抵抗が上昇することにあることに鑑み、
電解質膜の湿潤性が低下して電池出力が低下した場合に
電池出力を回復させる運転方法としては、電池に導入す
る空気あるいは燃料ガスの少なくとも一方の水蒸気分圧
を上昇させること、反応空気流量を低減する、燃料流量
を増加する、電池温度を下げる等の少なくともいずれか
一つの制御が有効であり、さらに、前記電池温度を降下
させるためには、電池冷却媒体の温度を下げるか、電池
冷却媒体の流量を増やす、または運転電流密度を低減す
ること等により、前記課題が達成できる。
In order to solve the above-mentioned problems, a problem in a conventional method for operating a solid polymer electrolyte fuel cell power generator is that when the wettability of the electrolyte membrane is reduced, the The reaction through the membrane hinders the movement of water between the cells, and the partial pressure of water vapor in the air at the outlet of the cell increases, but the partial pressure of water vapor in the fuel gas decreases. Given that it is rising,
When the wettability of the electrolyte membrane is reduced and the battery output is reduced, the operation method for restoring the battery output is to increase the partial pressure of water vapor of at least one of air or fuel gas introduced into the battery, and to increase the reaction air flow rate. At least one control such as reducing, increasing the fuel flow rate, or lowering the battery temperature is effective.Furthermore, in order to lower the battery temperature, the temperature of the battery cooling medium is reduced or the battery cooling medium is reduced. The above problem can be achieved by, for example, increasing the flow rate or reducing the operating current density.

【0026】即ち、この発明においては、下記請求項1
ないし7のいずれかの発明により達成できる。請求項1
の発明によれば、固体高分子電解質膜を挟んで配設した
電極触媒層を有するアノード電極およびカソード電極
と、冷却媒体によって冷却する冷却装置とを有し、前記
アノード電極に水素を含む燃料ガスを、前記カソード電
極に酸化剤ガスとして空気を、互いに対向するように通
流される燃料電池を備えた固体高分子電解質型燃料電池
発電装置の運転方法であって、前記燃料電池から排出さ
れる反応後の空気中の水蒸気分圧,同反応後の燃料ガス
中の水蒸気分圧,および前記燃料電池の内部抵抗の内の
少なくとも一つの計測値と、予め設定した基準値との差
である上昇値または低下値を監視し、前記空気中の水蒸
気分圧の上昇値,前記燃料ガス中の水蒸気分圧の低下値
および前記内部抵抗の上昇値が所定値となった際に前記
電解質膜の加湿状態異常と判断し、前記燃料電池へ供給
する空気流量を減少する制御を行うこととする。
That is, in the present invention, the following claim 1
The invention can be achieved by any one of the inventions of (7) to (7). Claim 1
According to the invention, a fuel gas comprising an anode electrode and a cathode electrode having an electrode catalyst layer disposed with a solid polymer electrolyte membrane interposed therebetween, and a cooling device for cooling with a cooling medium, wherein the anode electrode contains hydrogen A method for operating a solid polymer electrolyte fuel cell power generator including a fuel cell in which air as an oxidant gas flows through the cathode electrode so as to face each other, wherein a reaction discharged from the fuel cell is performed. A rising value which is a difference between a measured value of at least one of the following partial pressure of water vapor in air, the partial pressure of water vapor in fuel gas after the reaction, and the internal resistance of the fuel cell, and a preset reference value. Alternatively, the humidification state of the electrolyte membrane is monitored when the decrease value of the partial pressure of water vapor in the air, the decrease value of the partial pressure of water vapor in the fuel gas, and the increase value of the internal resistance become predetermined values. It determines that the normal, and performing control to reduce the air flow rate supplied to the fuel cell.

【0027】前記請求項1の発明は、燃料電池へ供給す
る空気流量を減少する制御を行なう運転方法であるが、
前記空気流量を減少する制御に代えて、下記請求項2な
いし5の発明が好適である。即ち、請求項1記載の運転
方法において、前記燃料電池へ供給する空気流量を減少
する制御に代えて、燃料電池へ供給する燃料ガス流量を
増加する制御を行なうこととする(請求項2の発明)。
The first aspect of the present invention is an operation method for performing control for reducing the flow rate of air supplied to a fuel cell.
Instead of the control for reducing the air flow rate, the following inventions 2 to 5 are preferable. That is, in the operation method according to the first aspect, instead of the control for decreasing the flow rate of the air supplied to the fuel cell, the control for increasing the flow rate of the fuel gas supplied to the fuel cell is performed (the invention of the second aspect). ).

【0028】さらに、空気流量を減少する制御に代え
て、前記燃料電池を冷却する冷却媒体流量を増加する制
御を行なうこと(請求項3の発明)、または燃料電池を
冷却する冷却媒体の温度を低下する制御を行なうこと
(請求項4の発明)、または燃料電池の運転電流密度を
低下することによって燃料電池の運転温度を低下する制
御を行なうこと(請求項5の発明)とする。
Further, instead of the control for decreasing the air flow rate, control for increasing the flow rate of the cooling medium for cooling the fuel cell is performed (the invention of claim 3), or the temperature of the cooling medium for cooling the fuel cell is reduced. It is assumed that the control for decreasing the operation temperature is performed (invention of claim 4) or the control for decreasing the operating temperature of the fuel cell by decreasing the operating current density of the fuel cell is performed (invention of claim 5).

【0029】また、前記燃料ガスまたは空気を加湿する
加湿装置を備える固体高分子電解質型燃料電池発電装置
の場合には、下記請求項6の発明も好適である。即ち、
請求項1記載の運転方法において、前記固体高分子電解
質型燃料電池発電装置は、さらに、前記燃料ガスまたは
空気を加湿する加湿装置を備えるものとし、前記燃料電
池へ供給する空気流量を減少する制御に代えて、前記加
湿装置における燃料ガスまたは空気の加湿量を増加する
ことによって燃料ガスまたは空気中の水蒸気分圧を増加
する制御を行なうこととする。
In the case of a solid polymer electrolyte fuel cell power generator having a humidifier for humidifying the fuel gas or air, the invention of claim 6 described below is also suitable. That is,
2. The operating method according to claim 1, wherein the solid polymer electrolyte fuel cell power generator further includes a humidifier for humidifying the fuel gas or air, and controls to reduce a flow rate of air supplied to the fuel cell. Instead, control is performed to increase the partial pressure of water vapor in the fuel gas or air by increasing the amount of humidification of the fuel gas or air in the humidifier.

【0030】さらにまた、原燃料を水蒸気改質した燃料
ガスを燃料電池に供給する改質器を備える固体高分子電
解質型燃料電池発電装置の場合には、下記請求項7の発
明も好適である。即ち、請求項1記載の運転方法におい
て、前記固体高分子電解質型燃料電池発電装置は、さら
に、原燃料を水蒸気改質した燃料ガスを前記燃料電池に
供給する改質器を備えるものとし、前記燃料電池へ供給
する空気流量を減少する制御に代えて、前記改質器に供
給する燃料改質用の水蒸気流量を増加することによって
燃料電池へ供給する燃料ガス中の水蒸気分圧を増加する
制御を行なうこととする。
Further, in the case of a solid polymer electrolyte fuel cell power generator having a reformer for supplying a fuel gas obtained by steam reforming a raw fuel to a fuel cell, the invention of the following claim 7 is also suitable. . That is, in the operation method according to claim 1, the solid polymer electrolyte fuel cell power generator further includes a reformer that supplies a fuel gas obtained by steam reforming raw fuel to the fuel cell, A control for increasing the partial pressure of steam in the fuel gas supplied to the fuel cell by increasing the flow rate of steam for fuel reforming supplied to the reformer instead of the control for decreasing the flow rate of air supplied to the fuel cell Shall be performed.

【0031】また、前記運転方法を実施するための固体
高分子電解質型燃料電池発電装置としては、下記請求項
8ないし10の発明が好ましい。
As the solid polymer electrolyte fuel cell power generator for carrying out the operation method, the following claims 8 to 10 are preferable.

【0032】即ち、請求項1ないし5のいずれかに記載
の固体高分子電解質型燃料電池発電装置の運転方法を実
施するための装置であって、固体高分子電解質膜を挟ん
で配設した電極触媒層を有するアノード電極およびカソ
ード電極と、冷却媒体によって冷却する冷却装置とを有
し、前記アノード電極に水素を含む燃料ガスを、前記カ
ソード電極に酸化剤ガスとして空気を、互いに対向する
ように通流される燃料電池を備えた固体高分子電解質型
燃料電池発電装置において、前記燃料電池から排出され
る反応後の空気中の水蒸気分圧を計測する空気用水蒸気
分圧計測手段,前記燃料電池から排出される反応後の燃
料ガス中の水蒸気分圧を計測する空気用水蒸気分圧計測
手段,および前記燃料電池の内部抵抗を計測する内部抵
抗計測手段の内の少なくとも一つの手段と、請求項1な
いし5のいずれかに記載の制御を行うための、1)空気
流量調節手段,2)燃料ガス流量調節手段,3)冷却媒
体流量調節手段,4)冷却媒体温度調節手段,5)燃料
電池の運転電流密度調節手段の内の少なくとも一つの手
段と、前記少なくとも一つの計測値を入力して、反応後
の空気中の水蒸気分圧の上昇値,同反応後の燃料ガス中
の水蒸気分圧の低下値,および前記燃料電池の内部抵抗
の上昇値の内の少なくとも一つを監視し、この上昇値も
しくは低下値が所定値となった際に前記電解質膜の加湿
状態異常と判断して、請求項1ないし5のいずれかに記
載の制御を行うための前記1)ないし5)の少なくとも
いずれかの調節手段に制御指令を出力する制御手段とを
備えるものとする(請求項8の発明)。
That is, an apparatus for carrying out the method for operating the solid polymer electrolyte fuel cell power generator according to any one of claims 1 to 5, wherein the electrodes are provided with the solid polymer electrolyte membrane interposed therebetween. An anode and a cathode having a catalyst layer, and a cooling device for cooling with a cooling medium, a fuel gas containing hydrogen on the anode, air as an oxidant gas on the cathode, opposed to each other. In a solid polymer electrolyte fuel cell power generator including a flowing fuel cell, a water vapor partial pressure measuring means for measuring a partial pressure of water vapor in air after reaction discharged from the fuel cell; Among the air vapor partial pressure measuring means for measuring the water vapor partial pressure in the discharged fuel gas after reaction, and the internal resistance measuring means for measuring the internal resistance of the fuel cell, At least one means for performing control according to any one of claims 1 to 5, 1) air flow rate adjusting means, 2) fuel gas flow rate adjusting means, 3) cooling medium flow rate adjusting means, 4) cooling. Medium temperature adjusting means, 5) At least one of the operating current density adjusting means of the fuel cell and the at least one measured value are input, and the increased value of the partial pressure of water vapor in the air after the reaction is measured. At least one of a lowering value of the partial pressure of water vapor in the fuel gas and a rising value of the internal resistance of the fuel cell are monitored, and when the rising value or the decreasing value reaches a predetermined value, the electrolyte membrane is monitored. And a control means for outputting a control command to at least any one of the above-mentioned adjustment means for performing the control according to any one of claims 1 to 5 by judging that the humidification state is abnormal. (The invention of claim 8) .

【0033】さらに、請求項8に記載の固体高分子電解
質型燃料電池発電装置において、さらに、前記燃料ガス
または空気を加湿する加湿装置を備え、前記1)ないし
5)の調節手段に代えて、燃料ガスまたは空気の加湿量
調節手段を備えるものとする(請求項9の発明)。
Further, the solid polymer electrolyte fuel cell power generator according to claim 8, further comprising a humidifier for humidifying the fuel gas or air, in place of the adjusting means of 1) to 5), A fuel gas or air humidification amount adjusting means is provided (the invention of claim 9).

【0034】さらにまた、請求項8に記載の固体高分子
電解質型燃料電池発電装置において、さらに、原燃料を
水蒸気改質した燃料ガスを前記燃料電池に供給する改質
器を備え、前記1)ないし5)の調節手段に代えて、前
記改質器に供給する燃料改質用の水蒸気流量調節手段を
備えるものとする(請求項10の発明)。
The solid polymer electrolyte fuel cell power generator according to claim 8, further comprising a reformer for supplying a fuel gas obtained by steam reforming raw fuel to the fuel cell, wherein In place of the adjusting means of (5), a steam flow rate adjusting means for fuel reforming to be supplied to the reformer is provided (the invention of claim 10).

【0035】[0035]

【発明の実施の形態】図面に基づき、この発明の実施例
について以下にのべる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0036】図1ないし図3は、この発明のそれぞれ異
なる実施例に関わる固体高分子電解質型燃料電池発電装
置のシステム構成の模式図を示し、図1,2および3
は、図4に示すシステム構成の模式図に対して、計測手
段としてそれぞれ、排空気用の水蒸気分圧計測器12,
排燃料ガス用の水蒸気分圧計測器12aおよび内部抵抗
計測器13を追加した以外は、図の上では図4と同一で
ある。
FIGS. 1 to 3 are schematic diagrams of a system configuration of a solid polymer electrolyte fuel cell power generator according to different embodiments of the present invention.
Are different from the schematic diagram of the system configuration shown in FIG.
4 is the same as FIG. 4 except that a vapor pressure partial pressure measuring device 12a for exhaust gas and an internal resistance measuring device 13 are added.

【0037】(実施例1)図1に示す実施例において
は、電池2から排出される反応後の空気中の水蒸気分圧
を計測する水蒸気分圧計測器12として半導体センサー
式の露点計を取り付け、図1に示す発電装置を構成し
た。反応ガスの加湿装置7および8は簡便のため、空
気、燃料ガスともに加熱ヒータを有するバブリングタン
ク方式とした。電池温度を80℃、バブリングタンク温度
を70℃に制御して発電装置を運転した。
(Embodiment 1) In the embodiment shown in FIG. 1, a semiconductor sensor type dew point meter is mounted as a water vapor partial pressure measuring device 12 for measuring the partial pressure of water vapor in the air after reaction discharged from the battery 2. The power generation device shown in FIG. For simplicity, the humidifiers 7 and 8 for the reaction gas were of a bubbling tank type having heaters for both air and fuel gas. The power generator was operated while controlling the battery temperature at 80 ° C and the bubbling tank temperature at 70 ° C.

【0038】電池運転温度を故意に85℃に上げたとこ
ろ、取り付けた排空気用の水蒸気分圧計測器12の計測
水蒸気分圧が上昇し、電池の出力が低下した。
When the operating temperature of the battery was intentionally raised to 85 ° C., the partial pressure of water vapor measured by the attached water vapor partial pressure measuring device 12 for exhaust air increased, and the output of the battery decreased.

【0039】そこで、請求項1ないし7の発明に関わる
下記の制御操作を、それぞれ単独で実施したところ、水
蒸気分圧計測器12の計測水蒸気分圧が元に戻り、電池
の出力も回復した。
Then, when the following control operations according to the first to seventh aspects of the present invention were performed independently, the steam partial pressure measured by the steam partial pressure measuring device 12 returned to the original state, and the output of the battery was restored.

【0040】(制御操作)・空気流量を20%低減した
・燃料流量を20%増加した ・冷却水流量を10%増加し
た ・冷却水温度を5℃下げた ・電池運転電流密度を2
0%下げた ・燃料加湿装置の温度を75℃に上げた ・
燃料処理装置における改質器に導入する改質用水蒸気の
流量を20%増やした (実施例2)次に、図2に示す実施例においては、電池
2から排出される反応後の燃料ガス中の水蒸気分圧を計
測する水蒸気分圧計測器12aとして、半導体センサー
式の露点計を取り付け、図2に示す発電装置を構成し、
前記実施例1と同様に、電池温度を80℃、バブリングタ
ンク温度を70℃に制御して発電装置を運転し、さらに電
池運転温度を故意に85℃に上げた上で、同様の実験を行
なった。
(Control operation) Air flow reduced by 20%
-Fuel flow increased by 20%-Cooling water flow increased by 10%-Cooling water temperature decreased by 5 ° C-Battery operating current density increased by 2
0% lowered ・ The temperature of the fuel humidifier was raised to 75 ℃
The flow rate of the reforming steam introduced into the reformer in the fuel processor was increased by 20% (Example 2) Next, in the example shown in FIG. A semiconductor sensor type dew point meter is attached as a water vapor partial pressure measuring device 12a that measures the water vapor partial pressure of the power generation device shown in FIG.
In the same manner as in Example 1, the battery temperature was controlled at 80 ° C., the bubbling tank temperature was controlled at 70 ° C., and the power generator was operated. Was.

【0041】上記実験により、排燃料ガス中の計測水蒸
気分圧の降下とともに電池出力が低下し、実施例1と同
様の制御操作により、計測水蒸気分圧が元に戻るととも
に電池出力が回復することが確認された。なお、この実
施例における制御操作としては、空気加湿装置の温度を
75℃に上げても、同様の効果が得られる。
According to the above experiment, the battery output decreases as the measured water vapor partial pressure in the exhaust fuel gas decreases. By the same control operation as in the first embodiment, the measured water vapor partial pressure returns to the original value and the battery output recovers. Was confirmed. The control operation in this embodiment includes the temperature of the air humidifier.
The same effect can be obtained by increasing the temperature to 75 ° C.

【0042】(実施例3)次に、図3に示す実施例にお
いては、電池2の内部抵抗計測器13として、ミリオー
ムメータを取り付け図3に示す発電装置を構成した。反
応ガスの加湿装置は、実施例1と同様に、空気、燃料ガ
スともに加熱ヒータを有するバブリングタンクとした。
また、電池温度を80℃、バブリングタンク温度を70℃に
制御して発電装置を運転し、さらに電池運転温度を故意
に85℃に上げた上で、同様の実験を行なった。
(Embodiment 3) Next, in the embodiment shown in FIG. 3, a milliohm meter was attached as the internal resistance measuring device 13 of the battery 2 to constitute a power generator shown in FIG. The humidifier for the reaction gas was a bubbling tank having a heater for both air and fuel gas, as in Example 1.
The same experiment was performed after operating the power generator with the battery temperature controlled at 80 ° C. and the bubbling tank temperature at 70 ° C., and further intentionally increasing the battery operating temperature to 85 ° C.

【0043】上記実験により、電池内部抵抗の上昇とと
もに電池出力が低下し、実施例2と同様の制御操作によ
り、計測内部抵抗が元に戻るとともに電池出力が回復す
ることが確認された。
From the above experiment, it was confirmed that the battery output decreased as the battery internal resistance increased, and the measured internal resistance returned to the original state and the battery output recovered by the same control operation as in the second embodiment.

【0044】上記実施例1ないし3においては、電池運
転温度が上昇した場合を模擬したが、その他の温度や流
量などの前記運転条件を変えた場合にも、電解質膜の湿
潤性が低下する条件の場合には、同様に計測水蒸気分圧
の上昇または降下とともに電池出力が低下し、上述の請
求項1ないし7の発明に関わる前記制御操作により、計
測水蒸気分圧が元に戻るとともに電池出力が回復した。
In the above Examples 1 to 3, the case where the battery operating temperature was increased was simulated. However, even when the operating conditions such as the temperature and the flow rate were changed, the condition under which the wettability of the electrolyte membrane was reduced was also considered. In the case of the above, the battery output similarly decreases as the measured steam partial pressure rises or falls, and the measured steam partial pressure returns to the original value and the battery output decreases by the control operation according to the above-described claims 1 to 7. Recovered.

【0045】[0045]

【発明の効果】上記のとおり、この発明によれば、反応
ガスとしての燃料ガスと空気とを対向して通流するよう
にした固体高分子電解質型燃料電池発電装置において、
燃料電池から排出される反応後の空気中の水蒸気分圧,
同反応後の燃料ガス中の水蒸気分圧,および前記燃料電
池の内部抵抗の内の少なくとも一つの計測値と、予め設
定した基準値との差である上昇値または低下値を監視
し、前記空気中の水蒸気分圧の上昇値,前記燃料ガス中
の水蒸気分圧の低下値および前記内部抵抗の上昇値が所
定値となった際に、電解質膜の加湿状態異常と判断し、
燃料電池に導入する空気あるいは燃料ガスの少なくとも
一方の水蒸気分圧を上昇させる、反応空気流量を低減す
る、燃料流量を増加する、電池温度を下げる制御操作の
内少なくとも一つの制御を行い、さらに、前記電池温度
を降下させるためには、電池冷却媒体の温度を下げる
か、電池冷却媒体の流量を増やすか、または運転電流密
度を低減する等の制御の内少なくともいずれか一つの制
御を行うことにより、電池運転条件に変動が生じた場合
でも電解質膜を十分に湿潤状態に維持し高い電池出力が
得られるように発電装置を制御することが可能となる。
As described above, according to the present invention, there is provided a solid polymer electrolyte fuel cell power generator in which a fuel gas as a reaction gas and air flow in opposition to each other.
Partial pressure of water vapor in the air after reaction discharged from the fuel cell,
A rise or fall value, which is a difference between a measured value of at least one of the partial pressure of water vapor in the fuel gas after the reaction and the internal resistance of the fuel cell and a preset reference value, is monitored. When the increase value of the partial pressure of water vapor in the fuel gas, the decrease value of the partial pressure of water vapor in the fuel gas, and the increase value of the internal resistance become predetermined values, it is determined that the humidification state of the electrolyte membrane is abnormal,
Increase the water vapor partial pressure of at least one of the air or fuel gas to be introduced into the fuel cell, reduce the reaction air flow rate, increase the fuel flow rate, perform at least one of the control operations of lowering the cell temperature, To lower the battery temperature, lower the temperature of the battery cooling medium, increase the flow rate of the battery cooling medium, or perform at least one of the controls such as reducing the operating current density by performing In addition, even when the battery operating conditions fluctuate, it is possible to control the power generator so that the electrolyte membrane is maintained in a sufficiently wet state and a high battery output is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に関わる固体高分子電解質型
燃料電池発電装置のシステム構成の模式図
FIG. 1 is a schematic diagram of a system configuration of a solid polymer electrolyte fuel cell power generator according to an embodiment of the present invention.

【図2】この発明の図1とは異なる実施例に関わるシス
テム構成の模式図
FIG. 2 is a schematic diagram of a system configuration according to an embodiment different from FIG. 1 of the present invention;

【図3】この発明の図1とはさらに異なる実施例に関わ
るシステム構成の模式図
FIG. 3 is a schematic diagram of a system configuration according to an embodiment different from FIG. 1 of the present invention;

【図4】従来の固体高分子電解質型燃料電池発電装置の
システム構成の模式図
FIG. 4 is a schematic diagram of a system configuration of a conventional solid polymer electrolyte fuel cell power generator.

【図5】従来の燃料電池のセル構成を示す斜視図FIG. 5 is a perspective view showing a cell configuration of a conventional fuel cell.

【図6】従来の燃料電池の異なるセル構成を示す模式断
面図
FIG. 6 is a schematic cross-sectional view showing a different cell configuration of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1:燃料処理装置、2:電池、7:燃料加湿装置、8:
空気加湿装置、12,12a:水蒸気分圧計測器、1
3:内部抵抗計測器、31:電解質膜、32k:カソー
ド側セパレータ、32a:アノード側セパレータ、3
3:拡散電極層、40:電極触媒層、50:ガス流通
溝。
1: fuel processor, 2: battery, 7: fuel humidifier, 8:
Air humidifier, 12 and 12a: water vapor partial pressure measuring instrument, 1
3: internal resistance measuring instrument, 31: electrolyte membrane, 32k: cathode side separator, 32a: anode side separator, 3
3: diffusion electrode layer, 40: electrode catalyst layer, 50: gas flow groove.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を挟んで配設した電
極触媒層を有するアノード電極およびカソード電極と、
冷却媒体によって冷却する冷却装置とを有し、前記アノ
ード電極に水素を含む燃料ガスを、前記カソード電極に
酸化剤ガスとして空気を、互いに対向するように通流さ
れる燃料電池を備えた固体高分子電解質型燃料電池発電
装置の運転方法であって、 前記燃料電池から排出される反応後の空気中の水蒸気分
圧,同反応後の燃料ガス中の水蒸気分圧,および前記燃
料電池の内部抵抗の内の少なくとも一つの計測値と、予
め設定した基準値との差である上昇値または低下値を監
視し、前記空気中の水蒸気分圧の上昇値,前記燃料ガス
中の水蒸気分圧の低下値および前記内部抵抗の上昇値が
所定値となった際に前記電解質膜の加湿状態異常と判断
し、 前記燃料電池へ供給する空気流量を減少する制御を行う
ことを特徴とする固体高分子電解質型燃料電池発電装置
の運転方法。
1. An anode electrode and a cathode electrode each having an electrode catalyst layer disposed with a solid polymer electrolyte membrane interposed therebetween,
A solid polymer having a cooling device for cooling with a cooling medium, and a fuel cell in which a fuel gas containing hydrogen flows through the anode electrode and air flows as an oxidant gas through the cathode electrode so as to face each other. An operating method of an electrolyte fuel cell power generator, comprising: a partial pressure of water vapor in air after reaction discharged from the fuel cell, a partial pressure of water vapor in fuel gas after the reaction, and an internal resistance of the fuel cell. And monitoring a rising value or a falling value, which is a difference between at least one of the measured values and a preset reference value. And determining that the humidification state of the electrolyte membrane is abnormal when the rise value of the internal resistance becomes a predetermined value, and performing control to reduce the flow rate of air supplied to the fuel cell. Burning Operating method of cell power plant.
【請求項2】 請求項1記載の運転方法において、前記
燃料電池へ供給する空気流量を減少する制御に代えて、
燃料電池へ供給する燃料ガス流量を増加する制御を行な
うことを特徴とする固体高分子電解質型燃料電池発電装
置の運転方法。
2. The operating method according to claim 1, wherein instead of the control for reducing the flow rate of the air supplied to the fuel cell,
A method for operating a solid polymer electrolyte fuel cell power generator, characterized by performing control to increase the flow rate of fuel gas supplied to a fuel cell.
【請求項3】 請求項1記載の運転方法において、前記
燃料電池へ供給する空気流量を減少する制御に代えて、
前記燃料電池を冷却する冷却媒体流量を増加する制御を
行なうことを特徴とする固体高分子電解質型燃料電池発
電装置の運転方法。
3. The operating method according to claim 1, wherein instead of controlling to reduce the flow rate of air supplied to the fuel cell,
A method for operating a solid polymer electrolyte fuel cell power generator, wherein control is performed to increase a flow rate of a cooling medium for cooling the fuel cell.
【請求項4】 請求項1記載の運転方法において、前記
燃料電池へ供給する空気流量を減少する制御に代えて、
前記燃料電池を冷却する冷却媒体の温度を低下する制御
を行なうことを特徴とする固体高分子電解質型燃料電池
発電装置の運転方法。
4. The operating method according to claim 1, wherein the control for reducing the flow rate of the air supplied to the fuel cell is performed,
A method for operating a solid polymer electrolyte fuel cell power generator, characterized by performing control to lower the temperature of a cooling medium for cooling the fuel cell.
【請求項5】 請求項1記載の運転方法において、前記
燃料電池へ供給する空気流量を減少する制御に代えて、
前記燃料電池の運転電流密度を低下することによって燃
料電池の運転温度を低下する制御を行なうことを特徴と
する固体高分子電解質型燃料電池発電装置の運転方法。
5. The operating method according to claim 1, wherein instead of the control for reducing the flow rate of the air supplied to the fuel cell,
A method for operating a solid polymer electrolyte fuel cell power generator, wherein control is performed to lower the operating temperature of the fuel cell by lowering the operating current density of the fuel cell.
【請求項6】 請求項1記載の運転方法において、前記
固体高分子電解質型燃料電池発電装置は、さらに、前記
燃料ガスまたは空気を加湿する加湿装置を備えるものと
し、前記燃料電池へ供給する空気流量を減少する制御に
代えて、前記加湿装置における燃料ガスまたは空気の加
湿量を増加することによって燃料ガスまたは空気中の水
蒸気分圧を増加する制御を行なうことを特徴とする固体
高分子電解質型燃料電池発電装置の運転方法。
6. The operating method according to claim 1, wherein the solid polymer electrolyte fuel cell power generator further comprises a humidifier for humidifying the fuel gas or air, and the air supplied to the fuel cell. A solid polymer electrolyte type characterized by performing control to increase the partial pressure of water vapor in the fuel gas or air by increasing the humidification amount of the fuel gas or air in the humidifier instead of the control to decrease the flow rate. An operation method of the fuel cell power generator.
【請求項7】 請求項1記載の運転方法において、前記
固体高分子電解質型燃料電池発電装置は、さらに、原燃
料を水蒸気改質した燃料ガスを前記燃料電池に供給する
改質器を備えるものとし、前記燃料電池へ供給する空気
流量を減少する制御に代えて、前記改質器に供給する燃
料改質用の水蒸気流量を増加することによって燃料電池
へ供給する燃料ガス中の水蒸気分圧を増加する制御を行
なうことを特徴とする固体高分子電解質型燃料電池発電
装置の運転方法。
7. The operating method according to claim 1, wherein the solid polymer electrolyte fuel cell power generator further comprises a reformer for supplying a fuel gas obtained by steam reforming raw fuel to the fuel cell. In place of the control for decreasing the flow rate of air supplied to the fuel cell, the partial pressure of steam in the fuel gas supplied to the fuel cell is increased by increasing the flow rate of steam for fuel reforming supplied to the reformer. A method for operating a solid polymer electrolyte fuel cell power generator, characterized by performing increasing control.
【請求項8】 請求項1ないし5のいずれかに記載の固
体高分子電解質型燃料電池発電装置の運転方法を実施す
るための装置であって、 固体高分子電解質膜を挟んで配設した電極触媒層を有す
るアノード電極およびカソード電極と、冷却媒体によっ
て冷却する冷却装置とを有し、前記アノード電極に水素
を含む燃料ガスを、前記カソード電極に酸化剤ガスとし
て空気を、互いに対向するように通流される燃料電池を
備えた固体高分子電解質型燃料電池発電装置において、 前記燃料電池から排出される反応後の空気中の水蒸気分
圧を計測する空気用水蒸気分圧計測手段,前記燃料電池
から排出される反応後の燃料ガス中の水蒸気分圧を計測
する空気用水蒸気分圧計測手段,および前記燃料電池の
内部抵抗を計測する内部抵抗計測手段の内の少なくとも
一つの手段と、 請求項1ないし5のいずれかに記載の制御を行うため
の、1)空気流量調節手段,2)燃料ガス流量調節手
段,3)冷却媒体流量調節手段,4)冷却媒体温度調節
手段,5)燃料電池の運転電流密度調節手段の内の少な
くとも一つの手段と、前記少なくとも一つの計測値を入
力して、反応後の空気中の水蒸気分圧の上昇値,同反応
後の燃料ガス中の水蒸気分圧の低下値,および前記燃料
電池の内部抵抗の上昇値の内の少なくとも一つを監視
し、この上昇値もしくは低下値が所定値となった際に前
記電解質膜の加湿状態異常と判断して、請求項1ないし
5のいずれかに記載の制御を行うための前記1)ないし
5)の少なくともいずれかの調節手段に制御指令を出力
する制御手段とを備えることを特徴とする固体高分子電
解質型燃料電池発電装置。
8. An apparatus for carrying out the method for operating the solid polymer electrolyte fuel cell power generator according to claim 1, wherein the electrodes are arranged with the solid polymer electrolyte membrane interposed therebetween. An anode electrode and a cathode electrode having a catalyst layer, and a cooling device for cooling with a cooling medium, a fuel gas containing hydrogen on the anode electrode, air as an oxidant gas on the cathode electrode, so as to face each other. In a solid polymer electrolyte fuel cell power generator including a flowing fuel cell, a water vapor partial pressure measuring means for measuring a water vapor partial pressure in air after reaction discharged from the fuel cell; Of the air vapor partial pressure measuring means for measuring the partial pressure of water vapor in the discharged fuel gas after the reaction and the internal resistance measuring means for measuring the internal resistance of the fuel cell, only a few are used. 6) A means for controlling according to any one of claims 1 to 5, 1) air flow rate adjusting means, 2) fuel gas flow rate adjusting means, 3) cooling medium flow rate adjusting means, 4) cooling medium. Temperature adjusting means, 5) At least one of the operating current density adjusting means of the fuel cell and the at least one measured value are inputted to increase the partial pressure of water vapor in the air after the reaction, At least one of a decrease value of the partial pressure of water vapor in the fuel gas and an increase value of the internal resistance of the fuel cell, and when the increase value or the decrease value reaches a predetermined value, the electrolyte membrane of the fuel cell is monitored. 6. A control means for outputting a control command to at least one of the above-mentioned 1) to 5) adjusting means for performing the control according to any one of claims 1 to 5 when judging that the humidification state is abnormal. Characterized solid polymer electrolysis Type fuel cell power plant.
【請求項9】 請求項8に記載の固体高分子電解質型燃
料電池発電装置において、さらに、前記燃料ガスまたは
空気を加湿する加湿装置を備え、前記1)ないし5)の
調節手段に代えて、燃料ガスまたは空気の加湿量調節手
段を備えることを特徴とする固体高分子電解質型燃料電
池発電装置。
9. The solid polymer electrolyte fuel cell power generator according to claim 8, further comprising a humidifier for humidifying the fuel gas or air, wherein the humidifier is replaced with the adjusting means of 1) to 5) above. A solid polymer electrolyte fuel cell power generator comprising a fuel gas or air humidification amount adjusting means.
【請求項10】 請求項8に記載の固体高分子電解質型
燃料電池発電装置において、さらに、原燃料を水蒸気改
質した燃料ガスを前記燃料電池に供給する改質器を備
え、前記1)ないし5)の調節手段に代えて、前記改質
器に供給する燃料改質用の水蒸気流量調節手段を備える
ことを特徴とする固体高分子電解質型燃料電池発電装
置。
10. The solid polymer electrolyte fuel cell power generator according to claim 8, further comprising a reformer for supplying a fuel gas obtained by steam reforming raw fuel to the fuel cell, wherein A solid polymer electrolyte fuel cell power generator comprising a steam flow rate adjusting means for fuel reforming supplied to the reformer in place of the adjusting means of 5).
JP2001022922A 2001-01-31 2001-01-31 Solid polymer electrolyte fuel cell generating device and its operating method Pending JP2002231283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022922A JP2002231283A (en) 2001-01-31 2001-01-31 Solid polymer electrolyte fuel cell generating device and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022922A JP2002231283A (en) 2001-01-31 2001-01-31 Solid polymer electrolyte fuel cell generating device and its operating method

Publications (1)

Publication Number Publication Date
JP2002231283A true JP2002231283A (en) 2002-08-16

Family

ID=18888265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022922A Pending JP2002231283A (en) 2001-01-31 2001-01-31 Solid polymer electrolyte fuel cell generating device and its operating method

Country Status (1)

Country Link
JP (1) JP2002231283A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170409A (en) * 2007-12-18 2009-07-30 Commissariat A L'energie Atomique Method of using fuel cell comprising step of regeneration by lowering temperature
JP2010129226A (en) * 2008-11-25 2010-06-10 Nissan Motor Co Ltd Fuel cell system and its control method
WO2011008189A1 (en) * 2009-07-16 2011-01-20 Utc Power Corporation Variable air utilization increases fuel cell membrane durability
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
KR101845144B1 (en) 2013-12-25 2018-04-03 도요타지도샤가부시키가이샤 Fuel battery system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170409A (en) * 2007-12-18 2009-07-30 Commissariat A L'energie Atomique Method of using fuel cell comprising step of regeneration by lowering temperature
JP2010129226A (en) * 2008-11-25 2010-06-10 Nissan Motor Co Ltd Fuel cell system and its control method
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
JP5310738B2 (en) * 2008-12-26 2013-10-09 トヨタ自動車株式会社 Fuel cell moisture amount estimation device and fuel cell system
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2011008189A1 (en) * 2009-07-16 2011-01-20 Utc Power Corporation Variable air utilization increases fuel cell membrane durability
US9029031B2 (en) 2009-07-16 2015-05-12 Ballard Power Systems Inc. Variable air utilization increases fuel cell membrane durability
KR101845144B1 (en) 2013-12-25 2018-04-03 도요타지도샤가부시키가이샤 Fuel battery system

Similar Documents

Publication Publication Date Title
JP4072707B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP5324756B2 (en) Multi-pressure controlled control to minimize RH excursion during transients
JPH1131520A (en) Solid high molecular type fuel cell
JP2006310109A (en) Fuel cell power generating system
JP2013101914A (en) Fuel cell and method of operating the same
JP5419255B2 (en) Reversible cell operation switching method
JP2002367641A (en) Fuel cell and driving method of the same
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP2002015759A (en) Operating method of phosphoric acid fuel cell
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
US20130164640A1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP2002231283A (en) Solid polymer electrolyte fuel cell generating device and its operating method
JP2000277128A (en) Solid polymer type fuel cell
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP2001148253A (en) High polymer electrolyte type fuel cell and its operation method
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP3895899B2 (en) Solid polymer fuel cell power generator and solid polymer fuel cell operating method
JP5425092B2 (en) FUEL CELL, FUEL CELL SYSTEM, AND FUEL CELL OPERATING METHOD
JP2014209416A (en) Fuel cell system and method for controlling fuel cell system
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP4672120B2 (en) Fuel cell device and method of operating fuel cell device.
JPH11162489A (en) Fuel cell device and operating method for fuel cell device
JP5411901B2 (en) Fuel cell system
JP7076418B2 (en) Fuel cell system and its control method
JP2007323993A (en) Fuel cell system