JP3888217B2 - Fuel injection valve with fuel heater - Google Patents

Fuel injection valve with fuel heater Download PDF

Info

Publication number
JP3888217B2
JP3888217B2 JP2002125614A JP2002125614A JP3888217B2 JP 3888217 B2 JP3888217 B2 JP 3888217B2 JP 2002125614 A JP2002125614 A JP 2002125614A JP 2002125614 A JP2002125614 A JP 2002125614A JP 3888217 B2 JP3888217 B2 JP 3888217B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
needle valve
heater
injection passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002125614A
Other languages
Japanese (ja)
Other versions
JP2003314402A (en
Inventor
穣 小川
友二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002125614A priority Critical patent/JP3888217B2/en
Publication of JP2003314402A publication Critical patent/JP2003314402A/en
Application granted granted Critical
Publication of JP3888217B2 publication Critical patent/JP3888217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の燃料噴射弁に係わり、特に燃料加熱ヒータを備えた燃料噴射弁に係わる。
【0002】
【従来の技術】
内燃機関の燃料噴射弁は、一般に先端が絞られた噴口として開口する燃料噴射通路と、前記噴口を選択的に開閉するニードル弁体とを有し、前記燃料噴射通路内を圧送された燃料を前記ニードル弁体が前記噴口を開くとき該噴口を経て噴射する基本構造を有する。
【0003】
更に、この種の燃料噴射弁には、機関の冷温始動時に噴射された燃料をよりよく霧化させて機関の始動性を向上させると同時に有害未燃成分の発生を極力抑制すべく、その燃料噴射通路内を流れる燃料に加熱を施すヒータを組み込むことが知られている。かかるヒータは、燃料噴射通路がニードル弁の側方にこれに沿って平行に延在する比較的細い通路として形成されている場合には、実開昭59-107973号公報に示されている如く、燃料噴射通路の一部にそれを取り囲む鞘状のヒータ(シースヒータ)として設けられ、或いは実開平3-83370号公報に示されている如く燃料噴射通路内にそれに沿って延在するよう挿入された電熱線として設けられている。
【0004】
また、燃料噴射通路が先端にて噴口に絞られた比較的大径のシリンダ状空間として形成され、噴口を開閉するニードル弁が燃料噴射通路内に延在する構造の燃料噴射弁に於いて、燃料噴射通路内にニードル弁体の周りに筒状に延在するセラミックヒータを設けることが特表2000-508041号公報に記載されている。
【0005】
【発明が解決しようとする課題】
機関冷温始動時に於ける噴射燃料の加熱は、機関の始動性向上の効果をよりよく発揮する点でもそうではあるが、特に有害未燃成分の発生を抑制する効果をよりよく発揮する点から、最初の燃料噴射に於いて最初に噴射される燃料から始まって燃料によりよい加熱が施されるように行われることが有効である。そのためには、燃料加熱用ヒータはその立ち上がりが可及的に速やかで且つ発熱密度が高いだけでなく、噴口に接する部分に存在する燃料に対しても加熱を施すことができるようになっていることが望まれる。
【0006】
一方、この種の燃料噴射弁に於いては、ニードル弁はその先端が噴口を閉じる閉位置へ向けてばねにより付勢され、噴口を開くときにはニードル弁がその根本部に設けられたアーマチュアにて電磁石により引き付けられるようになっており、その開弁リフトはアーマチュアが電磁石のコアに当接することにより定まるようになっている。そのため、燃料加熱ヒータによりニードル弁が加熱されて熱膨張を生ずると、その分だけ弁リフトが減少することになる。従って、燃料加熱ヒータについては、それによる燃料の加熱によってニードル弁に熱膨張を生じさせることを可及的に抑制することができる構造であることが望まれる。
【0007】
本発明は、内燃機関の燃料噴射弁に於ける燃料加熱ヒータに関する上記の如き要請に想到し、これらの要請を満たすことのできる燃料加熱ヒータを備えた燃料噴射弁を提供すること課題としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するものとして、本発明は、シリンダ状空間の先端が絞られた噴口として開口する燃料噴射通路と、前記燃料噴射通路内に延在し前記噴口を選択的に開閉するニードル弁体とを有し、前記燃料噴射通路内を圧送された燃料を前記ニードル弁体が前記噴口を開くとき該噴口を経て噴射するよう構成された燃料噴射弁にして、前記燃料噴射通路内にて前記ニードル弁体の周りに旋回して延在する電熱線よりなる燃料加熱ヒータを有し、前記電熱線の前記燃料噴射通路に沿う旋回の密度は前記噴口に近い部分に於いて前記噴口より隔たる部分よりも高くされていることを特徴とする燃料噴射弁を提供するものである。
【0010】
【発明の作用及び効果】
上記の如くシリンダ状空間の先端が絞られた噴口として開口する燃料噴射通路と、かかる燃料噴射通路内に延在し該噴口を選択的に開閉するニードル弁体とを有し、燃料噴射通路内を圧送された燃料をニードル弁体が噴口を開くとき該噴口を経て噴射するよう構成された燃料噴射弁に於いて、燃料加熱ヒータを燃料噴射通路内にてニードル弁体の周りに旋回して延在する電熱線として構成しておけば、燃料噴射通路の長さに比して電熱線の長さを長くすることができ、その収納スペースに比して大きな発熱表面積を呈するヒータを形成することができる。またこの場合、燃料は旋回して延在する電熱線を横切って流れるので、電熱線から燃料への熱伝達は高い熱伝達率にて行われる。更にまた、かかる旋回形状の電熱線であれば、その巻回の先端部を噴口の周りに密集させることにより、噴口に接してその周りに存在する燃料に対して強力な加熱を施すことができ、最初の燃料噴射のときからその最初に噴射される燃料に対しても強力な加熱効果を与えることができる。
【0011】
更にまた、旋回のピッチを適宜に変えることにより、発熱表面の密度の分布を大きな自由度をもって設定することができ、これによって発熱表面の密度分布を噴口に近いところでこれより隔たったところに於けるよりも高くし、燃料が燃料噴射通路内をその入口部から噴口へ向けて流れるにつれて加熱が加速度的に高められるようにすることができる。こうすることにより、噴口から噴射される燃料の加熱度を高くしても、燃料の加熱に付随してニードル弁に及ぼされる加熱を噴口に近い限られた長さの範囲に抑えることができ、ニードル弁全体が加熱されると、喩え熱膨張率がさほどでなくても、長さが大きいことより全体の熱膨張代が大きくなり、弁リフトが大きく削減されるような好ましからざる事態に至ることを回避することができる。
【0012】
【発明の実施の形態】
添付の図1は、本発明による燃料加熱ヒータを備えた燃料噴射弁の一つの実施例をその要部について示す概略図である。
【0013】
図に於いて、1は燃料噴射弁のハウジングであり、燃料噴射弁にノズル状の形態を与えている。図示の概略図に於いては、ハウジング1は一体の段付き筒状体として示されているが、実施に当たっては、かかるハウジングは製造や取り付けの便宜を考慮していくつかの部材を組み合わせた任意の構造に作られてよいものである。ハウジングはその内部、特にその先端部に、シリンダ状の燃料噴射通路2を備えており、その先端は絞られて噴口3に形成されている。図示の実施例では、燃料噴射通路2は円筒形状に作られており、噴口3は円筒形状の燃料噴射通路の中心に整合して開口している。
【0014】
燃料噴射通路2内には、その中心軸線に沿って延在するニードル弁4が設けられている。ニードル弁4はその根本部にてホルダー5によりそのガイド孔6に沿って摺動するよう案内支持されており、その円錐状に形成された先端にて噴口3を開閉するようになっている。ホルダー5には更に燃料を通す燃料孔7および後述のヒータへの通電端子を通す端子孔8が設けられている。9はホルダー5を取り付けるためのスナップリングである。ニードル弁4の後端にはアーマチュア10が取り付けられている。アーマチュアは、図にて孔11として解図的に示されている如く、それを横切って燃料を通過させる構造に作られている。
【0015】
12は電磁コイルであり、その通電により励磁されるコア13と共にアーマチュア10を選択的に吸引する電磁石を構成している。コア13の中心部には、そこに空けられた筒状の空隙14に沿って圧縮コイルばね15が設けられており、その根本部をばねホルダー16により支持され、その先端部にてアーマチュア10に当接し、ニードル弁4をその先端にて噴口3を閉じる閉位置へ付勢している。
【0016】
図には示されていない燃料噴射ポンプより圧送されてきた燃料は、図の上方から空隙14を通ってハウジング1内へ導入され、燃料噴射通路2を通って噴口3へ向かう。電磁コイル12が通電されていないときには、噴口3はニードル弁4により閉じられているが、電磁コイル12が通電されると、ニードル弁はアーマチュア10がコア13に当接するまで圧縮コイルばね15のばね力に抗して図にて上方へ引き上げられ、噴口3が開かれる。この場合のニードル弁の開弁リフトは閉弁時に於けるアーマチュア10とコア13の間のクリアランスLに相当する。
【0017】
燃料噴射通路2内には、ニードル弁4の周りを回って旋回する電熱線17よりなる燃料加熱用ヒータが設けられている。電熱線17の図に於ける上端は、端子孔8を通って配設された端子18に接続されており、下端はハウジング1の噴口3の周りに当接し、ハウジングを介して接地されている。
【0018】
このように発熱体を線状の電熱線とし、シリンダ状の燃料噴射通路の中心部に沿ってニードル弁が延在することによりその間に残された環筒状の空間内に、該電熱線をニードル弁の周りを回るように旋回配置することにより、円筒状のセラミックヒータ等に比してより大きい発熱表面を形成して熱伝達率を上げることができ、これによって最初の燃料噴射のときからその最初に噴射される燃料に対しても強力な加熱効果を与えることができる。更に、ニードル弁4の周りに旋回する電熱線17の配設の密度は、図示の実施例に示されている如く、噴口3に近い部分にてこれより遠い部分に比して高くされてよい。図示の実施例では、噴口3に隣接する部分とこれより隔たる部分とで2通りに異なる密度とされているが、電熱線の密度の変化はかかる実施例に限られず、他に任意の適当な変化とされてよい。
【0019】
燃料噴射弁の作動中、即ち燃料噴射通路2内を燃料が噴口3へ向けて流れている状態で電熱線17に通電が行われると、燃料噴射通路2に沿って流れる燃料は電熱線の始端が位置する0位置から始まって加熱を受け、噴口3へ向かうにつれてその温度が次第に上昇していく。今、燃料が一定の流量にて流れている状態で電熱線に一定の電流が流されている状態を考えると、燃料は流れの方向に沿って順次単位量当たりに電熱線の密度に比例する量の熱を受け、それに比例した温度差だけ温度が上昇していく。この場合、そのような状態がある所定時間以上継続すると、燃料は継続して流れていても、燃料噴射通路2に沿う燃料の温度分布は定常になり、ニードル弁4の燃料噴射通路2内に延在する部分の各部の温度は燃料噴射通路2に沿う燃料の温度分布に対応するものとなる。
【0020】
そこで、本発明による燃料加熱ヒータの作動によりニードル弁4が加熱されて膨張し、ニードル弁の開弁リフトが減少する度合を、燃料加熱ヒータが前述の特表2000-508041号公報に於ける円筒状のセラミックヒータの如く燃料噴射通路2に沿って一様な発熱密度にて発熱するヒータである場合と比較する。円筒状セラミックヒータをそれに対応して電熱線に置き代えると、それは電熱線が燃料噴射通路内に一様なピッチにて旋回するよう配設されていることに相当する。
【0021】
図2は、横軸にニードル弁の加熱開始位置からの各局分の距離Sをとり、縦軸に各局分の温度Tをとって表したグラフである。燃料噴射通路2に沿うヒータの発熱密度が一様である場合には、ニードル弁の各局分の温度は、直線Aにて示す如く、加熱開始位置から隔たるにつれて一様に増大し、その距離がStとなる先端にて通電量に対応するある最高温度Tfに達する。従って、この場合、ニードル弁の加熱による伸びは、各局部に於ける伸びの集積であり、各局部の微小長さをΔSとし、その温度をTとすれば、ニードル弁の全体の伸び、即ち開弁リフトの減少量は、(T−To)ΔSをS=0からS=Stまで積分した値となり、それは直線Aが横軸に対してなす面積(三角形0−e−St)の面積に比例した値である。
【0022】
これに対し、図1に示した本発明の実施例に於ける如く、電熱線17の旋回のピッチが燃料噴射通路2の前半にて粗くされ、後半にて蜜にされているときには、噴口より噴射される燃料の温度が同一であり、ニードル弁先端の温度が同じ温度Tfとなるときにも、それに至る各局部の温度は直線B1とB2を繋いだものとなり、ニードル弁全体の伸びは、直線B1−B2が横軸に対してなす面積、即ち三角形0−m−Smと四角形Sm−m−e−Stの和に比例した値となる。これは上記の三角形0−e−Stに比して三角形0−e−mの面積に相当する量だけ小さく,この分だけ燃料加熱に起因してニードル弁の開弁リフトが削減される量が少なくなることを意味する。
【0023】
また、上記の通り電熱線17の配設密度は任意に設定されてよいので、例えばこれをその始端より噴口に隣接する終端へ向けて無段に漸増させ、ニードル弁の局部の温度が図2に於いて曲線Cにて示す如く変化するようにすれば、噴口から噴出される燃料の加熱最終温度をTfより高めても、燃料加熱に起因する弁リフトの減少を更に小さく抑えることが可能である。
【0024】
以上に於いては本発明を一つの実施例について詳細に説明したが、かかる実施例について本発明の範囲内にて種々の修正が可能であることは当業者にとって明らかであろう。
【図面の簡単な説明】
【図1】本発明による燃料加熱ヒータを備えた燃料噴射弁の一つの実施例をその要部について示す概略図。
【図2】燃料噴射通路に沿うヒータの発熱密度の変化によりニードル弁に熱膨張が生ずる態様を本発明と公知例について比較して示すグラフ。
【符号の説明】
1…ハウジング
2…燃料噴射通路
3…噴口
4…ニードル弁
5…ホルダー
6…ガイド孔
7…燃料孔
8…端子孔
9…スナップリング
10…アーマチュア
11…燃料通過孔
12…電磁コイル
13…コア
14…筒状空隙
15…圧縮コイルばね
16…ばねホルダー
17…電熱線
18…端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection valve for an internal combustion engine, and more particularly to a fuel injection valve provided with a fuel heater.
[0002]
[Prior art]
A fuel injection valve of an internal combustion engine generally has a fuel injection passage that opens as a nozzle hole with a narrowed tip, and a needle valve body that selectively opens and closes the nozzle hole, and fuel that is pumped through the fuel injection path When the needle valve body opens the nozzle hole, the needle valve body has a basic structure of jetting through the nozzle hole.
[0003]
Furthermore, this type of fuel injection valve has a fuel injection system that improves atomization by better atomizing the fuel injected at the cold start of the engine and at the same time suppresses the generation of harmful unburned components as much as possible. It is known to incorporate a heater that heats the fuel flowing in the injection passage. When such a heater is formed as a relatively narrow passage extending in parallel to the side of the needle valve, such a heater is disclosed in Japanese Utility Model Publication No. 59-107973. A sheath-like heater (sheath heater) is provided in a part of the fuel injection passage, or is inserted into the fuel injection passage to extend along the fuel injection passage as disclosed in Japanese Utility Model Publication No. 3-83370. It is provided as a heating wire.
[0004]
Further, in the fuel injection valve having a structure in which the fuel injection passage is formed as a relatively large-diameter cylindrical space constricted to the injection nozzle at the tip, and a needle valve that opens and closes the injection nozzle extends into the fuel injection passage. Japanese Unexamined Patent Publication No. 2000-508041 discloses that a ceramic heater extending in a cylindrical shape around a needle valve body is provided in the fuel injection passage.
[0005]
[Problems to be solved by the invention]
The heating of the injected fuel at the time of engine cold start is the same as the effect of improving the startability of the engine better, but in particular, the effect of suppressing the generation of harmful unburned components is better, It is effective that the initial fuel injection is performed so that the fuel is heated starting from the first injected fuel. For this purpose, the heater for fuel heating not only has a rapid rise as much as possible and has a high heat generation density, but can also heat the fuel present in the portion in contact with the nozzle hole. It is desirable.
[0006]
On the other hand, in this type of fuel injection valve, the needle valve is urged by a spring toward the closed position where the tip of the needle valve closes, and when the nozzle is opened, the needle valve is formed by an armature provided at the base of the needle valve. The valve lift is attracted by an electromagnet, and the valve opening lift is determined by the armature coming into contact with the core of the electromagnet. Therefore, when the needle valve is heated by the fuel heater and thermal expansion occurs, the valve lift decreases accordingly. Therefore, it is desirable for the fuel heater to have a structure capable of suppressing as much as possible the occurrence of thermal expansion in the needle valve by heating the fuel.
[0007]
The present invention is conceived of the above-described requirements regarding the fuel heater in the fuel injection valve of the internal combustion engine, and an object of the present invention is to provide a fuel injection valve including a fuel heater that can satisfy these requirements.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a fuel injection passage that opens as a nozzle with a narrowed tip of a cylindrical space, and a needle valve that extends into the fuel injection passage and selectively opens and closes the nozzle. A fuel injection valve configured to inject fuel pumped through the fuel injection passage through the injection port when the needle valve body opens the injection port. have a fuel heater consisting heating wire extending pivot around the needle valve body, septum from the injection port the density of the swirling along the fuel injection passage at the portion close to the nozzle hole of the heating wire The present invention provides a fuel injection valve characterized in that the fuel injection valve is made higher than the corresponding portion .
[0010]
[Action and effect of the invention]
As described above, a fuel injection passage that opens as a nozzle hole whose tip of the cylindrical space is constricted, and a needle valve body that extends into the fuel injection path and selectively opens and closes the nozzle hole, In a fuel injection valve configured to inject fuel pumped through the nozzle opening when the needle valve body opens the nozzle hole, a fuel heater is swung around the needle valve element in the fuel injection passage. If configured as an extended heating wire, the length of the heating wire can be increased compared to the length of the fuel injection passage, and a heater having a large heat generating surface area compared to the storage space is formed. be able to. Further, in this case, since the fuel flows across the heating wire extending while swirling, heat transfer from the heating wire to the fuel is performed with a high heat transfer coefficient. Furthermore, with such a swirl-shaped heating wire, the tip of the winding is concentrated around the nozzle hole, so that the fuel existing around the nozzle hole can be heated strongly. In addition, a powerful heating effect can be given to the first fuel injected from the time of the first fuel injection.
[0011]
Furthermore, by changing the swirl pitch appropriately, the density distribution of the heat generating surface can be set with a large degree of freedom, and the density distribution of the heat generating surface is thereby separated from the nozzle near the nozzle hole. The heating can be accelerated at an accelerated rate as the fuel flows in the fuel injection passage from the inlet portion toward the injection port. By doing so, even if the heating degree of the fuel injected from the nozzle hole is increased, the heating exerted on the needle valve accompanying the heating of the fuel can be suppressed to a limited length range close to the nozzle hole, When the entire needle valve is heated, even if the coefficient of thermal expansion is not modest, the overall thermal expansion allowance increases due to the large length, leading to an undesirable situation where the valve lift is greatly reduced. Can be avoided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 attached herewith is a schematic view showing an essential part of one embodiment of a fuel injection valve equipped with a fuel heater according to the present invention.
[0013]
In the figure, reference numeral 1 denotes a housing of a fuel injection valve, which gives the fuel injection valve a nozzle shape. In the illustrated schematic diagram, the housing 1 is shown as an integral stepped cylindrical body. However, in practice, such a housing is an arbitrary combination of several members for convenience of manufacture and installation. It may be made in the structure of The housing is provided with a cylindrical fuel injection passage 2 at the inside, particularly at the tip thereof, and the tip of the housing is squeezed to form a nozzle hole 3. In the illustrated embodiment, the fuel injection passage 2 is formed in a cylindrical shape, and the injection hole 3 opens in alignment with the center of the cylindrical fuel injection passage.
[0014]
A needle valve 4 extending along the central axis is provided in the fuel injection passage 2. The needle valve 4 is guided and supported by the holder 5 so as to slide along the guide hole 6 at the base portion, and the nozzle 3 is opened and closed at the tip formed in a conical shape. The holder 5 is further provided with a fuel hole 7 through which fuel passes and a terminal hole 8 through which an energization terminal for a heater described later is passed. Reference numeral 9 denotes a snap ring for attaching the holder 5. An armature 10 is attached to the rear end of the needle valve 4. The armature is constructed in a structure that allows fuel to pass across it, as shown diagrammatically as hole 11 in the figure.
[0015]
An electromagnetic coil 12 constitutes an electromagnet that selectively attracts the armature 10 together with a core 13 that is excited by energization thereof. A compression coil spring 15 is provided at the center of the core 13 along a cylindrical gap 14 formed in the core 13, and a root portion of the compression spring 15 is supported by a spring holder 16. The needle valve 4 is urged to a closed position where the nozzle hole 3 is closed at its tip.
[0016]
The fuel pumped from a fuel injection pump (not shown) is introduced into the housing 1 through the gap 14 from the upper side of the drawing, and travels toward the injection port 3 through the fuel injection passage 2. When the electromagnetic coil 12 is not energized, the nozzle hole 3 is closed by the needle valve 4. However, when the electromagnetic coil 12 is energized, the needle valve is a spring of the compression coil spring 15 until the armature 10 contacts the core 13. It is lifted upward in the figure against the force, and the nozzle 3 is opened. The opening lift of the needle valve in this case corresponds to the clearance L between the armature 10 and the core 13 when the valve is closed.
[0017]
In the fuel injection passage 2, there is provided a heater for heating the fuel including a heating wire 17 that turns around the needle valve 4. The upper end of the heating wire 17 in the figure is connected to a terminal 18 disposed through the terminal hole 8, and the lower end abuts around the nozzle hole 3 of the housing 1 and is grounded via the housing. .
[0018]
In this way, the heating element is a linear heating wire, and the heating wire is placed in the annular cylindrical space left between the needle valve extending along the center of the cylindrical fuel injection passage. By swiveling around the needle valve, it is possible to increase the heat transfer rate by forming a larger heat generation surface compared to a cylindrical ceramic heater, etc. A powerful heating effect can be given to the fuel injected first. Further, the density of the heating wire 17 swirling around the needle valve 4 may be made higher in the portion closer to the nozzle 3 than in the portion farther than this, as shown in the illustrated embodiment. . In the illustrated embodiment, the density adjacent to the nozzle hole 3 and the distance from the nozzle hole 3 are different in density, but the change in the density of the heating wire is not limited to such density, and any other appropriate It may be a change.
[0019]
When the heating wire 17 is energized during the operation of the fuel injection valve, that is, in the state where the fuel flows in the fuel injection passage 2 toward the injection port 3, the fuel flowing along the fuel injection passage 2 is at the beginning of the heating wire. Starting from the 0 position where the is located, it is heated, and its temperature gradually increases toward the nozzle hole 3. Considering a state where a constant current is flowing through the heating wire while the fuel is flowing at a constant flow rate, the fuel is proportional to the heating wire density per unit amount sequentially along the flow direction. It receives an amount of heat and the temperature rises by a proportional temperature difference. In this case, if such a state continues for a predetermined time or more, even if the fuel continues to flow, the temperature distribution of the fuel along the fuel injection passage 2 becomes steady and enters the fuel injection passage 2 of the needle valve 4. The temperature of each part of the extending portion corresponds to the temperature distribution of the fuel along the fuel injection passage 2.
[0020]
Therefore, the degree to which the needle valve 4 is heated and expanded by the operation of the fuel heater according to the present invention and the opening lift of the needle valve is reduced is determined by the cylinder in the above-mentioned Japanese Patent Publication No. 2000-508041. This is compared with the case of a heater that generates heat at a uniform heat generation density along the fuel injection passage 2 such as a ceramic heater. If the cylindrical ceramic heater is correspondingly replaced with a heating wire, it corresponds to the heating wire being arranged in the fuel injection passage so as to turn at a uniform pitch.
[0021]
FIG. 2 is a graph in which the horizontal axis represents the distance S for each station from the heating start position of the needle valve, and the vertical axis represents the temperature T for each station. When the heat generation density of the heater along the fuel injection passage 2 is uniform, the temperature of each part of the needle valve increases uniformly as the distance from the heating start position increases, as shown by the straight line A, and the distance. Reaches a certain maximum temperature Tf corresponding to the energization amount at the tip where becomes St. Therefore, in this case, the elongation due to heating of the needle valve is an accumulation of the elongation at each local portion. If the micro length of each local portion is ΔS and the temperature is T, the total elongation of the needle valve, that is, The reduction amount of the valve opening lift is a value obtained by integrating (T−To) ΔS from S = 0 to S = St, which is an area of the area formed by the straight line A with respect to the horizontal axis (triangle 0−e−St). It is a proportional value.
[0022]
On the other hand, when the pitch of the swirl of the heating wire 17 is roughened in the first half of the fuel injection passage 2 and made nectar in the second half as in the embodiment of the present invention shown in FIG. Even when the temperature of the injected fuel is the same and the temperature at the tip of the needle valve is the same temperature Tf, the temperature of each local area leading to it is connected to the straight lines B 1 and B 2 , and the entire needle valve is stretched. Is a value proportional to the area formed by the straight line B 1 -B 2 with respect to the horizontal axis, that is, the sum of the triangle 0-m-Sm and the square Sm-m-e-St. This is smaller than the above triangle 0-e-St by an amount corresponding to the area of the triangle 0-e-m, and the amount by which the valve lift of the needle valve is reduced due to fuel heating is reduced by this amount. It means less.
[0023]
Further, since the arrangement density of the heating wires 17 may be arbitrarily set as described above, for example, the heating wire 17 is gradually increased from the start end toward the end adjacent to the injection port, and the temperature of the local portion of the needle valve is as shown in FIG. In this case, if it is changed as shown by curve C, it is possible to further reduce the decrease in valve lift caused by fuel heating even if the final heating temperature of the fuel ejected from the nozzle is higher than Tf. is there.
[0024]
While the invention has been described in detail with reference to an embodiment thereof, it will be apparent to those skilled in the art that various modifications may be made to the embodiment without departing from the scope of the invention.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an essential part of one embodiment of a fuel injection valve equipped with a fuel heater according to the present invention.
FIG. 2 is a graph showing an aspect in which thermal expansion occurs in a needle valve due to a change in heat generation density of a heater along a fuel injection passage, in comparison with the present invention and a known example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Housing 2 ... Fuel injection passage 3 ... Injection hole 4 ... Needle valve 5 ... Holder 6 ... Guide hole 7 ... Fuel hole 8 ... Terminal hole 9 ... Snap ring 10 ... Armature 11 ... Fuel passage hole 12 ... Electromagnetic coil 13 ... Core 14 ... cylindrical gap 15 ... compression coil spring 16 ... spring holder 17 ... heating wire 18 ... terminal

Claims (1)

シリンダ状空間の先端が絞られた噴口として開口する燃料噴射通路と、前記燃料噴射通路内に延在し前記噴口を選択的に開閉するニードル弁体とを有し、前記燃料噴射通路内を圧送された燃料を前記ニードル弁体が前記噴口を開くとき該噴口を経て噴射するよう構成された燃料噴射弁にして、前記燃料噴射通路内にて前記ニードル弁体の周りに旋回して延在する電熱線よりなる燃料加熱ヒータを有し、前記電熱線の前記燃料噴射通路に沿う旋回の密度は前記噴口に近い部分に於いて前記噴口より隔たる部分よりも高くされていることを特徴とする燃料噴射弁。A fuel injection passage that opens as a nozzle with a narrowed tip of a cylindrical space, and a needle valve body that extends into the fuel injection passage and selectively opens and closes the nozzle, and pumps the inside of the fuel injection passage A fuel injection valve configured to inject the generated fuel through the injection port when the needle valve body opens the injection port, and extends around the needle valve body in the fuel injection passage. the fuel heater consisting heating wire possess the density of the swirling along said fuel injection passages of the heating wire is characterized in that it is higher than the portion spaced from the nozzle hole at the portion close to the injection port Fuel injection valve.
JP2002125614A 2002-04-26 2002-04-26 Fuel injection valve with fuel heater Expired - Fee Related JP3888217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125614A JP3888217B2 (en) 2002-04-26 2002-04-26 Fuel injection valve with fuel heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125614A JP3888217B2 (en) 2002-04-26 2002-04-26 Fuel injection valve with fuel heater

Publications (2)

Publication Number Publication Date
JP2003314402A JP2003314402A (en) 2003-11-06
JP3888217B2 true JP3888217B2 (en) 2007-02-28

Family

ID=29540284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125614A Expired - Fee Related JP3888217B2 (en) 2002-04-26 2002-04-26 Fuel injection valve with fuel heater

Country Status (1)

Country Link
JP (1) JP3888217B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069911B2 (en) 2004-08-06 2008-04-02 株式会社日立製作所 Heated fuel injection valve
WO2009016885A1 (en) * 2007-08-01 2009-02-05 Nissan Motor Co., Ltd. Fuel injection device

Also Published As

Publication number Publication date
JP2003314402A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP4092526B2 (en) Fuel injection device
US7387263B2 (en) Fuel injection valve of engine, fuel injection method and assembling method of the same
JP2009530547A (en) Fuel injector with induction heater
US20070095952A1 (en) Fuel injector
JP2660388B2 (en) Electromagnetic fuel injection valve
WO1998004828A1 (en) Method and apparatus for controlled atomization in a fuel injector for an internal combustion engine
JP4097056B2 (en) Fuel injection valve
US10273918B2 (en) High pressure gasoline injector seat to reduce particle emissions
JP3888217B2 (en) Fuel injection valve with fuel heater
JP4229597B2 (en) Injection valve
JP2008196363A (en) Fuel injection valve
JP2005307781A (en) Fuel injection valve
JP2000291506A (en) Fuel injection device, method for fuel injection, and internal combustion engine
JP2004084549A (en) Fuel injection nozzle, and fuel injection device using it
JP4224666B2 (en) Fuel injection nozzle and processing method thereof
JP3546490B2 (en) Electromagnetic fuel injection valve
JPH08210229A (en) Fuel injection device used for internal combustion engine
US9404459B2 (en) Pressure compensated fuel injector with solenoid pumping
JP3613363B2 (en) Fuel injection valve
WO2018221076A1 (en) Fuel injection valve and engine system
JP2010159677A (en) Fuel injection valve
JP2013224630A (en) Fuel injection device
JP4118216B2 (en) Fuel injection device
JP4789913B2 (en) Fuel injection apparatus and internal combustion engine equipped with the same
JP2017210890A (en) Flow rate regulation valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees