JP4229597B2 - Injection valve - Google Patents

Injection valve Download PDF

Info

Publication number
JP4229597B2
JP4229597B2 JP2001017075A JP2001017075A JP4229597B2 JP 4229597 B2 JP4229597 B2 JP 4229597B2 JP 2001017075 A JP2001017075 A JP 2001017075A JP 2001017075 A JP2001017075 A JP 2001017075A JP 4229597 B2 JP4229597 B2 JP 4229597B2
Authority
JP
Japan
Prior art keywords
nozzle hole
fluid
outlet side
hole plate
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001017075A
Other languages
Japanese (ja)
Other versions
JP2002221128A (en
Inventor
文明 青木
信夫 今竹
公孝 斎藤
原田  明典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2001017075A priority Critical patent/JP4229597B2/en
Publication of JP2002221128A publication Critical patent/JP2002221128A/en
Application granted granted Critical
Publication of JP4229597B2 publication Critical patent/JP4229597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、内燃機関の燃料噴射弁に適用される噴射弁に関するものであり、詳しくは、流体噴射用の噴孔を形成した噴孔プレートを備える噴射弁に関する。
【0002】
【従来の技術】
近年、エンジン性能向上、エミッション低減のために、燃料の気化率を向上させ、ポートやシリンダ内壁に付着する燃料を低減することが求められている。燃料噴射弁においては、特に、噴霧の高微粒化の要望があり、例えば、エアアシスト式の噴射弁も提案されてあるが、コスト低減の面からはエアアシスト式のような複雑な付加的装置を設けることは不利である。このため、ニードルが収容されるバルブボディの下流側に、微小径の噴孔を複数形成した噴孔プレートを設置して、各々の噴孔から噴射される燃料の微粒化を図っている。
【0003】
このような噴孔プレートを使用した場合、微小径の個々の噴孔からは良好な微粒化噴霧が得られるが、一定の噴射量を得るには、噴孔が微細であるほど噴孔数が増加することになる。このため、隣接する噴孔間の間隔が狭くなり、隣接する噴孔を通過した燃料が合体してしまい、微粒化が阻害される不具合があった。この不具合は、隣接する噴孔間の間隔を広くすれば解消するが、噴孔プレートに形成できる噴孔数が限られる結果、径を十分微小化することができなくなり、各々の噴孔の微粒化度合いを上げられない。そして、微粒化が十分なされない噴霧の特徴として、噴孔出口直下で噴射された燃料の一部が芯状の塊となり、それが下流においても分裂しないために粒径の大きな噴霧となることが判明している。
【0004】
従って、噴射燃料のさらなる微粒化のためには、噴射された燃料同士の合体を回避しつつ、しかも各々の噴孔での微粒化度合いを上げることが必要になる。つまり、噴孔形状を工夫して、噴孔出口直下の燃料の塊をなるべく小さく、好適には、薄い膜状にして下流での分裂を促進すること、隣接する噴孔からの噴霧との合体を回避できるように噴霧の広がりを抑制することが望まれる。
【0005】
【発明が解決しようとする課題】
ここで、例えば、膜状の噴霧を得るために、噴孔にテーパをつけることが考えられる。噴孔の出口側が広がる円錐形状とすることによって、噴霧が噴孔の内周面に沿って広がり、薄い膜状に噴射されることが期待できる。しかしながら、テーパ形状によって形成される液膜状の噴霧は、噴孔の出口形状に左右されるために、出口形状により噴霧の広がり幅が決まる。一般には、径方向に広がる噴霧になりやすく、折角各々の噴孔の微粒化度合いを向上させても、隣接する噴孔の噴霧と合体して、結果的に微粒化が阻害されるといった問題がある。
【0006】
そこで、本発明は、噴射弁の噴孔プレートに形成される噴孔の最適な形状を検討し、特に、出口側形状を工夫することによって、液膜の形成を容易にし、かつその広がりを抑えて、噴霧の微粒化を促進することを目的とする。
【0007】
【課題を解決するための手段】
本発明請求項1の噴射弁は、内部に設けた流体通路の端部に下流側へ向けて縮径するテーパ面を形成して弁座としたバルブボディと、上記弁座に着座することにより上記流体通路を閉塞し、上記弁座から離座することにより上記流体通路を開放する弁部材と、上記弁座の下流側に配置され、上記弁部材の開弁時に上記流体通路から流出する流体を噴射するための噴孔を有する噴孔プレートを備えている。上記噴孔プレートに設けられる上記噴孔は、少なくとも流体出口側の開口形状が略楕円形であるとともに、流体入口側の面積より流体出口側の面積が大きくなるテーパ形状に形成してあり、かつ、流体入口側の中心より流体出口側の中心が上記噴孔プレートの外周側に位置するように、両中心を結ぶ噴孔軸線を上記噴孔プレートの中心軸に対して傾斜している。
【0008】
このように、上記噴孔を下流側へ広がるテーパ形状とし、噴孔軸線を外周側へ傾斜させることで、流入する燃料が噴孔内周面に沿って外周側へ広がりやすくなり、噴孔出口で薄い膜状となるのを促進する。また、少なくとも出口形状を略楕円形とすることで、隣接する噴孔との間隔を広くし、かつ噴射される液膜の短軸方向への広がりを抑制することができる。よって、噴孔出口で燃料の一部が芯状の塊となるのを防止し、燃料の液膜化を良好に行うとともに、その広がりを抑えて、噴霧を微粒化することができる。
【0009】
ここで、請求項1では、上記噴孔において、流体入口側と流体出口側の中心のずれ方向を、流体出口側の上記開口の長軸方向と略一致させる。
【0010】
上記噴孔の出口側の中心が、入口側の中心に対し、楕円の長軸方向でかつ外周側にずれるようにすると、より効果的に、隣接する噴孔からの噴霧との合体を防止して、噴霧の微粒化を促進することができる。
【0011】
請求項では、上記噴孔の流体出口側の上記開口形状を、流体出口側の上記開口の長軸の長さをL1 、短軸方向の最大幅をL2 とした時に、最大幅L2 をとる位置と上記噴孔プレートの中央部よりの長軸上の点Aとの距離xが、(1/2)・L1 ≦x<L1 の範囲となる形状とする。
【0012】
上記噴孔の出口形状を略楕円形とし、さらに、その短軸方向の幅が最大となる位置が、長軸の1/2の位置より外周側となるように形状を設定すると、上記噴孔から噴射される液膜の広がりを抑制する効果が高く、短軸方向に隣接する噴孔からの噴霧との合体を防止して、微粒化を向上させる。
【0013】
請求項では、上記噴孔プレートの出口側端面において、上記噴孔の開口縁近傍に、噴射される膜状流体の広がりを抑制する半円形断面の広がり抑制手段を設ける。
【0014】
上記噴孔の出口側周縁近傍に、半円形断面の上記広がり抑制手段を設けると、噴射される液膜が上記広がり抑制部材の表面に沿って広がり、その頂部付近で剥離する。これによって液膜の広がりを抑制して隣接する噴霧の合体を防止することができる。
【0015】
請求項では、上記噴孔プレートの下流側に第2の噴孔プレートを設けて上記噴孔に連通する略同一またはそれより大きい貫通穴または貫通溝を形成し、噴射される膜状流体の広がりを抑制する広がり抑制手段とする。
【0016】
上記第2の噴孔プレートを設けた上記貫通穴または貫通溝の内壁が、液膜の広がりを抑制するため、これによっても流体の広がりを抑制して隣接する噴霧の合体を防止することができる。
【0017】
【発明の実施の形態】
図1ないし図6に、本発明を内燃機関の燃料噴射弁に適用した第1の実施の形態を示す。図3は燃料噴射弁1の概略構成を示すもので、燃料噴射弁1は、内燃機関の各気筒に燃料を供給するために、図略の吸気管から各気筒への分岐部にそれぞれ取り付けられている。燃料噴射弁1の先端(図の下端)は該吸気管内に突出しており、供給された燃料は、吸気との混合気となって各気筒に供給される。燃料噴射弁1の筒状ハウジング11内には略円筒状の固定鉄心61が設けてあり、その一端(下端)611はハウジング11の先端部111近くまで延びている。固定鉄心61の他端(上端)612はハウジング11の基端112より突出して図略の燃料タンクと接続されている。また、ハウジング11の先端部111に接して、磁性材料からなる段付きの磁性パイプ62が配設してあり、その小径部621がハウジング11内に挿通位置して、固定鉄心61の一端611との間に非磁性材料でなる非磁性パイプ63を挟持している。
【0018】
磁性パイプ62の大径部622内には、下方から環状のスペーサ64を介してバルブボディ3が嵌設してある。バルブボディ3に軸方向に形成された貫通穴3aは、流体通路としての燃料通路1aの一部を構成するもので、先端側を逆円錐状に形成して弁部材であるニードル4が着座する弁座3bとしてある。ニードル4は、燃料噴射弁1を軸方向に貫通する燃料通路1aの下端部内に配設してあり、バルブボディ3内に位置する先端部41には弁座3bに着座する逆円錐状のシート部4aが設けてある。燃料通路1aは、固定鉄心61、非磁性パイプ63、磁性パイプ62、スペーサ64の各内部空間とバルブボディ3の貫通穴3aによって形成され、燃料は、図略の燃料タンクから燃料通路1aを通って弁部に供給される。
【0019】
ニードル4は、先端部41にバルブボディ3の貫通穴3a内を摺動するガイド部411を有するとともに、基部42外周には、固定鉄心61の一端611に対向し磁性パイプ62および非磁性パイプ63内を摺動する可動コア57が溶接により連結されている。また、ハウジング11の下端部内周面に沿って、磁性材料からなる略円筒状のヨーク51が同軸に設けてあって、固定鉄心61、非磁性パイプ63、磁性パイプ62の外周に同軸に設けた樹脂製の略円筒状のスプール52と対向している。そして、スプール52周りに巻回した電磁コイル53への通電を制御することによって、可動コア57を上方へ吸引し、可動コア57と一体のニードル4を上昇させるようにしてある。なお、電磁コイル53は、ハウジング11側面より突出するコネクタ12に設けられたターミナル54と電気的に接続してあり、ターミナル54に接続される図略の電子制御装置から給電されるようになっている。
【0020】
固定鉄心61内にはスプリング55が配設してあり、ニードル4を先端方向(閉弁方向)へ付勢している。固定鉄心61内には、また、円筒状のアジャスティングパイプ56が螺入してあり、軸方向位置を調節することにより、スプリング55のニードル4への付勢力が調整される。なお、ニードル4のガイド部411および基部42は、外周の複数箇所を切削して摺動面との間に空隙を形成してあり、燃料の流通を容易にしている。また、固定鉄心61内には他端612側にフィルタ65が設けられて、燃料噴射弁1に流入する燃料中のゴミ等を除去するようになっている。
【0021】
バルブボディ3の先端面には、複数の噴孔21が形成された噴孔プレート2が設置してある。そして、電磁コイル53への通電により可動コア57が上方へ吸引され、ニードル4が弁座3bから離座すると、燃料通路1aから噴孔21を経て燃料が噴射される。電磁コイル53への通電が停止されると、ニードル4が弁座3bに着座し、燃料通路1aを閉塞されて燃料噴射が停止される。本発明の特徴は、この噴孔プレート2の噴孔形状にあり、以下、これについて詳述する。
【0022】
図1(A)のように、噴孔プレート2は円板形で、その板面の複数箇所を貫通して、略楕円形の断面形状を有する噴孔21が設けてある(ここでは、板面の4箇所(縦2×横2)に楕円の長軸方向が略一致または平行となるように並列配置している)。噴孔形状を略楕円形とすることで、短軸方向に隣接する噴孔21間の間隔を比較的大きくでき、また、後述する形状の制御により噴霧の微粒化を促進できる。各噴孔21は、図1(B)のように、噴孔プレート2の入口側端面(上面)における開口面積より出口側端面(下面)の開口面積が大きいテーパ形状を有し、かつ入口側の中心と出口側の中心を結ぶ噴孔軸線が、噴孔プレート2の中心軸に対して傾斜するように設けられる。
【0023】
この時、図1(C)のように、各噴孔21に流入した燃料は、噴孔内周面21aに沿って広がりながら流れ、噴孔出口21bで薄い膜状になって噴射されることが、可視化試験によって確認されている。形成される液膜7は、噴孔プレート2の中心側から出口形状に沿って外周側へ広がる馬蹄形状となる。一方、図2のように、噴孔軸線を傾斜させただけでテーパ形状を有していない噴孔21´では、図2のように、燃料が噴孔内周面に十分広がらず、噴孔21´直下で芯状の塊8となって噴射されるのを確認した。このように、噴孔軸線を傾斜させ、かつテーパ形状とすることで、燃料の液膜化を良好に行うことができる。
【0024】
噴孔21の傾斜方向は、入口側の中心より出口側の中心が噴孔プレート2の外周側に位置するように設定する。具体的には、例えば図1(A)では、噴孔21の入口側開口と出口側開口における長軸方向を一致させたまま、入口側の中心に対して出口側の中心を外周側にずらして配置している。これにより、長軸方向(図の左右方向)に隣接する2つの噴孔21は、両中心のずれ方向が反対方向となり、噴霧が離れる方向に噴射されるため、噴霧が合体することはない。短軸方向(図の上下方向)に隣接する2つの噴孔21からの噴霧は平行に噴射されるが、噴孔21の出口21b形状を適切に設定することによって、噴射後の液膜の広がりを抑制して噴霧の合体を防止できる。これを図4〜6を用いて説明する。
【0025】
図5(A)は、短軸方向に隣接する2つの噴孔21から噴射される液膜の広がりの様子を示すもので(図4(A)のB−B断面)、噴射される液膜の広がりが大きいと、噴霧が合体して微粒化が阻害される。各噴孔21における液膜の広がり(噴孔プレート2の下面から3mmの位置)と噴霧粒径(SMD)の関係を図5(B)に示し、液膜の広がりが大きいほど噴霧粒径(SMD)が大きくなっていること、すなわち、各噴孔21で良好な液膜で生成されても、噴霧粒径(SMD)が大きくなって、微粒化が阻害されることが分かる。なお、この時の噴孔間隔は限界設計まで広げたものである。このように、多噴孔の設計とした場合、隣接する噴孔21との間隔が制限されるため、噴霧同士の合体による噴霧粒径(SMD)の増大を防ぐには、液膜の広がりを抑制する必要がある。そこで、本発明者等は、液膜の広がりと噴孔形状について検討し、噴孔21の出口21b形状、特に、短軸方向の最大幅L2 の位置が大きく影響することを見出した。
【0026】
図4(B)は、各噴孔21の出口21bの概略形状を示し、長軸の長さ(長軸上の点A、点B間の距離)をL1 、短軸方向の最大幅をL2 とする。また、プレート中心よりの点Aと最大幅L2 をとる位置との距離をxとし、xと液膜の広がりおよび噴霧粒径(SMD)との関係を調べて、それぞれ図6(A)、(B)に示した。図6(A)に明らかなように、点A、点Bの中間位置〔x=(1/2)・L1 〕まではxが点Aから離れるほど、液膜の広がりは小さくなっており、点A、点Bの中間位置より外周側で液膜の広がりはほぼ一定となる。また、噴霧粒径(SMD)も同様の傾向を示している(図6(b))。従って、各噴孔21の出口21b形状を、xが(1/2)・L1 ≦x<L1 の範囲、好ましくは、(1/2)・L1 <x<L1 の範囲となるような略楕円形に形成するのがよい。
【0027】
以上のようにすれば、各噴孔21において薄い液膜を効果的に形成し、しかも隣接する噴孔21からの噴霧合体を回避することが可能であり、高い微粒化効果が得られる。なお、短軸方向に隣接する2つの噴孔21は必ずしも平行である必要はなく、噴霧合体を回避可能な範囲であれば、例えば入口側より出口側の間隔が狭くなるように配置されていてもよい。上記のように形状を設定することで、個々の噴孔21からの噴霧の広がりが最小限に抑制されるので、同様の効果が得られる。
【0028】
図7(A)、(B)に本発明の第2の実施の形態における噴孔プレート2形状を示す。噴孔プレート2以外の燃料噴射弁1の基本構成は上記第1の実施の形態と同様であるため図示を省略する。本実施の形態において、噴孔プレート2は、上記第1の実施の形態と同様、略楕円形断面の複数の噴孔21を有している。さらに、噴孔プレート2の出口側端面には、長軸方向に隣接する2つの噴孔21に渡って、その出口21bの両側周縁に沿うように長軸方向に延びる、半円形断面の広がり抑制手段としての棒状部材22を溶接固定してある。
【0029】
このようにすると、図7(B)のように、短軸方向において、噴孔21の出口21bから噴射される液膜は、棒状部材22の表面に沿って広がろうとし(コアンダ効果)、半円の頂部付近で剥離するために、結果として、液膜の広がりを所定範囲に抑制することができる。よって、隣接する噴霧の合体を防止し、微粒化が向上できる。
【0030】
図8(A)、(B)に本発明の第3の実施の形態における噴孔プレート2形状を示す。噴孔プレート2以外の燃料噴射弁1の基本構成は上記第1の実施の形態と同様であるため図示を省略する。本実施の形態において、噴孔プレート2は、上記第1の実施の形態と同様の構成であり、これに加えて、噴孔プレート2の出口側端面に、各噴孔21の形成位置にその出口形状より僅かに大きい広がり抑制手段としての貫通穴24を設けた第2の噴孔プレート23を溶接固定してある。貫通穴24は入口側と出口側が同一形状でテーパを有しておらず、両プレート2、23の衝合部には段差が形成される。
【0031】
このようにすると、図8(B)のように、噴孔21の出口21bから噴射される液膜は、第2の噴孔プレート23の貫通穴24の内壁面25によって広がりが抑制され、特に短軸方向における液膜の広がりを所定範囲に抑制することができる。よって、隣接する噴霧の合体を防止し、微粒化が向上できる。なお、図8(C)のように、長軸方向に隣接する2つの噴孔21に対応して、第2の噴孔プレート23の出口側端面の2箇所に、短冊状の貫通溝26を設けることもでき、同様の効果が得られる。
【0032】
図9(A)、(B)に本発明の第4の実施の形態における噴孔プレート2形状を示す。噴孔プレート2以外の燃料噴射弁1の基本構成は上記第1の実施の形態と同様であるため図示を省略する。本実施の形態において、噴孔プレート2は、上記第1の実施の形態とほぼ同様の構成であり、これに加えて、噴孔プレート2の出口側端面に、各噴孔21の出口21b両側周縁に沿うように、長軸方向に延びる半円形断面の広がり抑制手段としての棒状突起27を設けてある。この棒状突起27は、噴孔21の加工後に、噴孔プレート2を塑性変形させて該当箇所を隆起させることによって形成される。
【0033】
このようにすると、図9(B)のように、噴孔21の出口21aから噴射される液膜は、短軸方向において棒状突起27の表面に沿って広がろうとし、上記第2の実施の形態と同様に、半円の頂部付近で剥離する結果、液膜の広がりを所定範囲に抑制することができる。よって、隣接する噴霧の合体を防止し、微粒化が向上できる。
【0034】
上記各実施の形態では、噴孔21を噴孔プレート2の4箇所に設け、隣接する噴孔の長軸方向が一致あるいは平行となるように配置したが、噴孔21の数や配置はこれに限るものではない。噴孔21の数や配置が変更された場合、例えば放射状に配置された場合でも、本発明第2〜第4の実施の形態に示す棒状部材22等、広がり抑制手段を設置することで、噴孔21出口直後の液膜の広がりを制御できるので、液膜の広がりを抑える働きを加えて複数孔から形成される噴霧全体の広がりを制御することが可能である。
【図面の簡単な説明】
【図1】(A)は本発明の第1の実施の形態における噴孔プレートの拡大図(上方視図)、(B)は(A)のA−A線断面図、(C)は第1の実施の形態の噴孔プレートから噴射される噴霧の状態を示す図である。
【図2】テーパ形状を有しない噴孔から噴射される噴霧の状態を示す図である。
【図3】本発明の第1の実施の形態における燃料噴射弁の全体断面図である。
【図4】(A)は第1の実施の形態における噴孔プレートの拡大図(上方視図)、(B)は噴孔の出口形状を示す拡大図である。
【図5】(A)は、図4(A)のB−B線断面図、(B)は液膜の広がりと噴霧粒径(SMD)の関係を示す図である。
【図6】(A)は噴孔の出口形状において最大幅L2 をとる位置と液膜の広がりの関係を示す図、(B)は最大幅L2 をとる位置と噴霧粒径(SMD)の関係を示す図である。
【図7】(A)は本発明の第2の実施の形態における噴孔プレートの拡大図(上方視図)、(B)は(A)のC−C線断面図である。
【図8】(A)は本発明の第3の実施の形態における噴孔プレートの拡大図(上方視図)、(B)は(A)のC−C線断面図、(C)は第2の噴孔プレートの他の形状例を示す図である。
【図9】(A)は本発明の第4の実施の形態における噴孔プレートの拡大図(上方視図)、(B)は(A)のC−C線断面図である。
【符号の説明】
1 燃料噴射弁(噴射弁)
1a 燃料通路(流体通路)
2 噴孔プレート
21 噴孔
21a 内周面
21b 出口(開口)
22 棒状部材(広がり抑制手段)
23 第2の噴孔プレート
24 貫通穴(広がり抑制手段)
25 内壁面
27 貫通溝(広がり抑制手段)
27 棒状突起(広がり抑制手段)
3 バルブボディ
3b 弁座
4 ニードル(弁部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an injection valve applied to, for example, a fuel injection valve of an internal combustion engine, and more particularly to an injection valve including an injection hole plate in which an injection hole for fluid injection is formed.
[0002]
[Prior art]
In recent years, in order to improve engine performance and reduce emissions, it has been demanded to improve the fuel vaporization rate and reduce the fuel adhering to the ports and cylinder inner walls. In the fuel injection valve, in particular, there is a demand for high atomization of the spray. For example, an air assist type injection valve has been proposed, but in terms of cost reduction, a complicated additional device such as an air assist type is proposed. Is disadvantageous. For this reason, an injection hole plate in which a plurality of injection holes with a small diameter are formed is installed on the downstream side of the valve body in which the needle is accommodated, and atomization of fuel injected from each injection hole is attempted.
[0003]
When such a nozzle plate is used, a fine atomized spray can be obtained from each nozzle hole having a small diameter. However, in order to obtain a fixed injection amount, the number of nozzle holes becomes smaller as the nozzle hole becomes finer. Will increase. For this reason, the space | interval between adjacent nozzle holes becomes narrow, the fuel which passed the adjacent nozzle holes united, and there existed a malfunction which atomization was inhibited. This problem can be solved by widening the interval between adjacent nozzle holes, but as a result of the limited number of nozzle holes that can be formed in the nozzle hole plate, the diameter cannot be sufficiently reduced. I can not raise the degree of conversion. As a feature of the spray that is not sufficiently atomized, a part of the fuel injected just under the nozzle hole outlet becomes a core-like lump, and since it does not break down even in the downstream, it becomes a spray with a large particle size. It turns out.
[0004]
Therefore, in order to further atomize the injected fuel, it is necessary to increase the degree of atomization at each nozzle hole while avoiding coalescence of the injected fuels. In other words, the shape of the nozzle hole is devised so that the fuel lump directly below the nozzle hole outlet is made as small as possible, preferably a thin film to promote downstream splitting, and coalescence with the spray from the adjacent nozzle hole It is desirable to suppress the spread of the spray so that it can be avoided.
[0005]
[Problems to be solved by the invention]
Here, for example, in order to obtain a film-like spray, it is conceivable to taper the nozzle hole. By adopting a conical shape in which the outlet side of the nozzle hole is widened, it can be expected that the spray spreads along the inner peripheral surface of the nozzle hole and is injected into a thin film. However, since the liquid film-like spray formed by the taper shape depends on the exit shape of the nozzle hole, the spread width of the spray is determined by the exit shape. In general, the spray tends to spread in the radial direction, and even if the degree of atomization of each injection hole is improved, it merges with the spray of the adjacent injection hole, and as a result, atomization is hindered. is there.
[0006]
Therefore, the present invention examines the optimum shape of the injection hole formed in the injection hole plate of the injection valve, and in particular, by devising the shape on the outlet side, it facilitates the formation of the liquid film and suppresses its spread. The purpose is to promote atomization of the spray.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a valve body in which a tapered surface that is reduced in diameter toward the downstream side is formed at an end portion of a fluid passage provided therein, and the valve valve is seated on the valve seat. A valve member that closes the fluid passage and opens the fluid passage by separating from the valve seat, and a fluid that is disposed downstream of the valve seat and flows out of the fluid passage when the valve member is opened An injection hole plate having injection holes for injecting the liquid is provided. The nozzle hole provided in the nozzle plate is formed in a tapered shape in which at least the fluid outlet side opening shape is substantially elliptical, and the fluid outlet side area is larger than the fluid inlet side area, and The nozzle hole axis connecting both centers is inclined with respect to the center axis of the nozzle hole plate so that the center on the fluid outlet side is located on the outer peripheral side of the nozzle hole plate from the center on the fluid inlet side.
[0008]
In this way, the nozzle hole has a tapered shape that extends downstream, and the nozzle axis is inclined to the outer peripheral side, so that the inflowing fuel can easily spread to the outer peripheral side along the inner peripheral surface of the nozzle hole. To promote a thin film. In addition, by making the outlet shape substantially elliptical, it is possible to widen the interval between the adjacent nozzle holes and to suppress the spread of the liquid film to be ejected in the minor axis direction. Therefore, it is possible to prevent a part of the fuel from becoming a core-like lump at the nozzle hole outlet, to make the fuel liquid film well, to suppress the spread thereof, and to atomize the spray.
[0009]
Here, in claim 1, in the nozzle hole, the direction of deviation between the center of the fluid inlet side and the fluid outlet side is made substantially coincident with the major axis direction of the opening on the fluid outlet side.
[0010]
If the center of the outlet side of the nozzle hole is shifted in the major axis direction of the ellipse and the outer peripheral side with respect to the center of the inlet side, the coalescence with the spray from the adjacent nozzle hole is more effectively prevented. Thus, atomization of the spray can be promoted.
[0011]
According to a second aspect of the present invention , the opening shape on the fluid outlet side of the nozzle hole has a maximum width L2 when the length of the major axis of the opening on the fluid outlet side is L1 and the maximum width in the minor axis direction is L2. The distance x between the position and the point A on the long axis from the central portion of the nozzle hole plate is in the shape of (1/2) · L1 ≦ x <L1.
[0012]
When the outlet shape of the nozzle hole is substantially elliptical, and the shape is set so that the position where the width in the minor axis direction is the maximum is on the outer peripheral side from the position of ½ of the major axis, The effect of suppressing the spread of the liquid film injected from the nozzle is high, and coalescence with the spray from the nozzle hole adjacent in the minor axis direction is prevented, thereby improving atomization.
[0013]
According to a third aspect of the present invention, a semicircular cross-sectional expansion suppressing unit that suppresses the expansion of the ejected film-like fluid is provided in the vicinity of the opening edge of the injection hole on the outlet side end face of the injection hole plate.
[0014]
When the spread suppressing means having a semicircular cross section is provided in the vicinity of the outlet side periphery of the nozzle hole, the sprayed liquid film spreads along the surface of the spread suppressing member and peels off near the top. Thereby, the spread of the liquid film can be suppressed and coalescence of adjacent sprays can be prevented.
[0015]
According to a fourth aspect of the present invention , a second nozzle hole plate is provided on the downstream side of the nozzle hole plate so as to form a substantially identical or larger through hole or through groove communicating with the nozzle hole, and The spread suppressing means for suppressing the spread is used.
[0016]
Since the inner wall of the through hole or the through groove provided with the second nozzle hole plate suppresses the spread of the liquid film, the spread of the fluid can also be suppressed thereby preventing the adjacent sprays from being merged. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1 to 6 show a first embodiment in which the present invention is applied to a fuel injection valve of an internal combustion engine. FIG. 3 shows a schematic configuration of the fuel injection valve 1. The fuel injection valve 1 is attached to a branch portion from an intake pipe (not shown) to each cylinder in order to supply fuel to each cylinder of the internal combustion engine. ing. The front end (lower end in the figure) of the fuel injection valve 1 protrudes into the intake pipe, and the supplied fuel is supplied to each cylinder as a mixture with intake air. A substantially cylindrical fixed iron core 61 is provided in the cylindrical housing 11 of the fuel injection valve 1, and one end (lower end) 611 extends to the vicinity of the front end portion 111 of the housing 11. The other end (upper end) 612 of the fixed iron core 61 protrudes from the base end 112 of the housing 11 and is connected to a fuel tank (not shown). In addition, a stepped magnetic pipe 62 made of a magnetic material is disposed in contact with the front end portion 111 of the housing 11, and the small diameter portion 621 is inserted into the housing 11, and is connected to one end 611 of the fixed iron core 61. A nonmagnetic pipe 63 made of a nonmagnetic material is sandwiched between them.
[0018]
The valve body 3 is fitted into the large-diameter portion 622 of the magnetic pipe 62 through an annular spacer 64 from below. The through-hole 3a formed in the valve body 3 in the axial direction constitutes a part of the fuel passage 1a as a fluid passage, and the needle 4 as a valve member is seated with the tip side formed in an inverted conical shape. The valve seat 3b is provided. The needle 4 is disposed in the lower end portion of the fuel passage 1a that penetrates the fuel injection valve 1 in the axial direction, and the tip portion 41 located in the valve body 3 has an inverted conical seat seated on the valve seat 3b. Part 4a is provided. The fuel passage 1a is formed by the internal space of the fixed iron core 61, the nonmagnetic pipe 63, the magnetic pipe 62, and the spacer 64 and the through hole 3a of the valve body 3, and fuel passes from the fuel tank (not shown) through the fuel passage 1a. Supplied to the valve.
[0019]
The needle 4 has a guide portion 411 that slides in the through hole 3 a of the valve body 3 at the distal end portion 41, and a magnetic pipe 62 and a nonmagnetic pipe 63 facing the one end 611 of the fixed iron core 61 on the outer periphery of the base portion 42. A movable core 57 sliding inside is connected by welding. A substantially cylindrical yoke 51 made of a magnetic material is coaxially provided along the inner peripheral surface of the lower end portion of the housing 11, and is provided coaxially on the outer periphery of the fixed iron core 61, the nonmagnetic pipe 63, and the magnetic pipe 62. Opposite to the substantially cylindrical spool 52 made of resin. Then, by controlling energization to the electromagnetic coil 53 wound around the spool 52, the movable core 57 is attracted upward, and the needle 4 integrated with the movable core 57 is raised. The electromagnetic coil 53 is electrically connected to a terminal 54 provided on the connector 12 protruding from the side surface of the housing 11, and is supplied with power from an unillustrated electronic control device connected to the terminal 54. Yes.
[0020]
A spring 55 is disposed in the fixed iron core 61 and urges the needle 4 in the distal direction (valve closing direction). A cylindrical adjusting pipe 56 is screwed into the fixed iron core 61, and the urging force of the spring 55 on the needle 4 is adjusted by adjusting the axial position. In addition, the guide part 411 and the base part 42 of the needle 4 cut | disconnect several places on the outer periphery, and have formed the space | gap between sliding surfaces, and are making the distribution | circulation of a fuel easy. Further, a filter 65 is provided on the other end 612 side in the fixed iron core 61 so as to remove dust and the like in the fuel flowing into the fuel injection valve 1.
[0021]
A nozzle hole plate 2 in which a plurality of nozzle holes 21 are formed is installed on the distal end surface of the valve body 3. When the movable core 57 is attracted upward by energization of the electromagnetic coil 53 and the needle 4 is separated from the valve seat 3b, fuel is injected from the fuel passage 1a through the injection hole 21. When energization of the electromagnetic coil 53 is stopped, the needle 4 is seated on the valve seat 3b, the fuel passage 1a is closed, and fuel injection is stopped. The feature of the present invention lies in the shape of the nozzle hole of the nozzle hole plate 2, which will be described in detail below.
[0022]
As shown in FIG. 1A, the nozzle hole plate 2 has a disk shape, and has a nozzle hole 21 having a substantially elliptical cross-sectional shape penetrating through a plurality of locations on the plate surface (here, a plate). (It is arranged in parallel so that the major axis direction of the ellipse is substantially coincident or parallel to four places (vertical 2 × horizontal 2) of the surface). By making the nozzle hole shape substantially elliptical, the interval between the nozzle holes 21 adjacent in the minor axis direction can be made relatively large, and atomization of the spray can be promoted by controlling the shape to be described later. Each nozzle hole 21 has a tapered shape in which the opening area of the outlet side end surface (lower surface) is larger than the opening area of the inlet side end surface (upper surface) of the nozzle hole plate 2 as shown in FIG. An injection hole axis line connecting the center of the injection hole and the center of the outlet side is provided so as to be inclined with respect to the central axis of the injection hole plate 2.
[0023]
At this time, as shown in FIG. 1C, the fuel flowing into each nozzle hole 21 flows while spreading along the inner peripheral surface 21a of the nozzle hole, and is injected into a thin film at the nozzle hole outlet 21b. Has been confirmed by a visualization test. The formed liquid film 7 has a horseshoe shape extending from the center side of the nozzle hole plate 2 to the outer peripheral side along the outlet shape. On the other hand, as shown in FIG. 2, in the nozzle hole 21 ′ that has the nozzle hole axis inclined and does not have a tapered shape, the fuel does not sufficiently spread on the inner peripheral surface of the nozzle hole as shown in FIG. It was confirmed that a core-like lump 8 was jetted just below 21 '. In this way, by forming the nozzle hole axis in a tilted and tapered shape, it is possible to satisfactorily form a fuel film.
[0024]
The inclination direction of the nozzle hole 21 is set so that the center on the outlet side is positioned on the outer peripheral side of the nozzle hole plate 2 from the center on the inlet side. Specifically, in FIG. 1A, for example, the center on the outlet side is shifted to the outer peripheral side with respect to the center on the inlet side while the major axis directions of the inlet side opening and the outlet side opening of the nozzle hole 21 are matched. Arranged. As a result, the two nozzle holes 21 adjacent to each other in the major axis direction (left-right direction in the figure) are jetted in directions in which the misalignment directions of both centers are opposite and the sprays are separated from each other, so that the sprays do not merge. Sprays from two nozzle holes 21 adjacent in the minor axis direction (vertical direction in the figure) are jetted in parallel, but by appropriately setting the shape of the outlet 21b of the nozzle hole 21, the spread of the liquid film after jetting Can be prevented and coalescence of spray can be prevented. This will be described with reference to FIGS.
[0025]
FIG. 5A shows a state of the spread of the liquid film ejected from the two nozzle holes 21 adjacent in the short axis direction (cross section BB in FIG. 4A). If the spread is large, spraying coalesces and atomization is hindered. FIG. 5B shows the relationship between the spread of the liquid film in each nozzle hole 21 (position 3 mm from the lower surface of the nozzle hole plate 2) and the spray particle size (SMD). It can be seen that the SMD) is large, that is, even if the liquid nozzles 21 are formed with a good liquid film, the spray particle size (SMD) is large and the atomization is inhibited. The nozzle hole interval at this time is extended to the limit design. As described above, when the multi-hole is designed, the distance between the adjacent nozzle holes 21 is limited. Therefore, in order to prevent an increase in the spray particle size (SMD) due to the coalescence of the sprays, the spread of the liquid film should be reduced. It is necessary to suppress it. Therefore, the present inventors examined the spread of the liquid film and the shape of the nozzle hole, and found that the shape of the outlet 21b of the nozzle hole 21, particularly the position of the maximum width L2 in the minor axis direction, greatly affected.
[0026]
FIG. 4B shows a schematic shape of the outlet 21b of each nozzle hole 21, wherein the major axis length (distance between points A and B on the major axis) is L1, and the maximum width in the minor axis direction is L2. And Further, the distance between the point A from the center of the plate and the position having the maximum width L2 is x, and the relationship between x and the spread of the liquid film and the spray particle size (SMD) is examined. B). As is clear from FIG. 6A, the extent of the liquid film decreases as x moves away from the point A up to the intermediate position [x = (1/2) · L1] between the points A and B. The spread of the liquid film is substantially constant on the outer peripheral side from the intermediate position between points A and B. Moreover, the spray particle diameter (SMD) also shows the same tendency (FIG. 6B). Accordingly, the shape of the outlet 21b of each nozzle hole 21 is substantially elliptical so that x is in the range of (1/2) · L1 ≦ x <L1, preferably (1/2) · L1 <x <L1. It should be formed into a shape.
[0027]
In this way, it is possible to effectively form a thin liquid film in each nozzle hole 21 and avoid the spray coalescence from the adjacent nozzle holes 21, and a high atomization effect can be obtained. Note that the two nozzle holes 21 adjacent in the minor axis direction do not necessarily have to be parallel, and are arranged so that the interval on the outlet side is narrower than the inlet side as long as spray coalescence can be avoided. Also good. By setting the shape as described above, the spread of the spray from each nozzle hole 21 is suppressed to the minimum, and the same effect can be obtained.
[0028]
7A and 7B show the shape of the injection hole plate 2 in the second embodiment of the present invention. Since the basic configuration of the fuel injection valve 1 other than the nozzle hole plate 2 is the same as that of the first embodiment, the illustration is omitted. In the present embodiment, the nozzle hole plate 2 has a plurality of nozzle holes 21 having a substantially elliptical cross section, as in the first embodiment. Further, on the end surface on the outlet side of the nozzle hole plate 2, the spread of the semicircular cross section that extends in the major axis direction along the two peripheral edges of the outlet 21 b is extended over the two nozzle holes 21 adjacent in the major axis direction. A rod-like member 22 as a means is fixed by welding.
[0029]
In this way, as shown in FIG. 7B, in the minor axis direction, the liquid film injected from the outlet 21b of the nozzle hole 21 tends to spread along the surface of the rod-shaped member 22 (Coanda effect). Since peeling occurs near the top of the semicircle, the spread of the liquid film can be suppressed to a predetermined range as a result. Therefore, coalescence of adjacent sprays can be prevented and atomization can be improved.
[0030]
FIGS. 8A and 8B show the shape of the nozzle hole plate 2 in the third embodiment of the present invention. Since the basic configuration of the fuel injection valve 1 other than the nozzle hole plate 2 is the same as that of the first embodiment, the illustration is omitted. In the present embodiment, the nozzle hole plate 2 has the same configuration as that of the first embodiment. In addition to this, the nozzle hole plate 2 is provided at the position where each nozzle hole 21 is formed on the end surface of the nozzle hole plate 2. A second injection hole plate 23 provided with a through hole 24 as a spread suppressing means slightly larger than the outlet shape is fixed by welding. The through hole 24 has the same shape on the inlet side and the outlet side and does not have a taper, and a step is formed at the abutting portion of both plates 2 and 23.
[0031]
In this way, as shown in FIG. 8B, the spread of the liquid film injected from the outlet 21b of the nozzle hole 21 is suppressed by the inner wall surface 25 of the through hole 24 of the second nozzle hole plate 23. The spread of the liquid film in the minor axis direction can be suppressed within a predetermined range. Therefore, coalescence of adjacent sprays can be prevented and atomization can be improved. As shown in FIG. 8C, strip-shaped through grooves 26 are formed at two locations on the end surface on the outlet side of the second nozzle hole plate 23 corresponding to the two nozzle holes 21 adjacent in the long axis direction. A similar effect can be obtained.
[0032]
FIGS. 9A and 9B show the shape of the injection hole plate 2 in the fourth embodiment of the present invention. Since the basic configuration of the fuel injection valve 1 other than the nozzle hole plate 2 is the same as that of the first embodiment, the illustration is omitted. In the present embodiment, the nozzle hole plate 2 has substantially the same configuration as that of the first embodiment, and in addition to this, on the outlet side end face of the nozzle hole plate 2, both sides of the outlet holes 21b of the nozzle holes 21 are provided. A rod-like protrusion 27 is provided along the periphery as a means for suppressing the spread of a semicircular cross section extending in the major axis direction. The rod-shaped protrusions 27 are formed by plastically deforming the nozzle hole plate 2 after the nozzle holes 21 are processed to raise the corresponding portions.
[0033]
As a result, as shown in FIG. 9B, the liquid film ejected from the outlet 21a of the nozzle hole 21 tends to spread along the surface of the rod-shaped protrusion 27 in the minor axis direction, and the second embodiment described above. As in the above embodiment, as a result of peeling near the top of the semicircle, the spread of the liquid film can be suppressed within a predetermined range. Therefore, coalescence of adjacent sprays can be prevented and atomization can be improved.
[0034]
In each of the above-described embodiments, the nozzle holes 21 are provided at four positions on the nozzle hole plate 2 and are arranged so that the major axis directions of the adjacent nozzle holes are coincident or parallel, but the number and arrangement of the nozzle holes 21 are the same. It is not limited to. When the number and arrangement of the nozzle holes 21 are changed, for example, even when the nozzle holes 21 are arranged in a radial manner, by installing a spread suppressing means such as the rod-like member 22 shown in the second to fourth embodiments of the present invention, Since the spread of the liquid film immediately after the outlet of the hole 21 can be controlled, it is possible to control the spread of the entire spray formed from a plurality of holes by adding a function of suppressing the spread of the liquid film.
[Brief description of the drawings]
1A is an enlarged view (upward view) of a nozzle hole plate according to a first embodiment of the present invention, FIG. 1B is a sectional view taken along line AA in FIG. 1A, and FIG. It is a figure which shows the state of the spray injected from the nozzle hole plate of 1 embodiment.
FIG. 2 is a view showing a state of spray injected from an injection hole having no taper shape.
FIG. 3 is an overall cross-sectional view of the fuel injection valve according to the first embodiment of the present invention.
4A is an enlarged view (upper view) of the nozzle hole plate in the first embodiment, and FIG. 4B is an enlarged view showing an outlet shape of the nozzle hole.
5A is a cross-sectional view taken along the line BB of FIG. 4A, and FIG. 5B is a diagram showing the relationship between the spread of the liquid film and the spray particle size (SMD).
6A is a diagram showing the relationship between the position where the maximum width L2 is taken and the spread of the liquid film in the outlet shape of the nozzle hole, and FIG. 6B is the relationship between the position where the maximum width L2 is taken and the spray particle size (SMD). FIG.
7A is an enlarged view (upward view) of a nozzle hole plate according to a second embodiment of the present invention, and FIG. 7B is a cross-sectional view taken along line CC of FIG.
8A is an enlarged view (upward view) of a nozzle hole plate according to a third embodiment of the present invention, FIG. 8B is a sectional view taken along the line CC of FIG. 8A, and FIG. It is a figure which shows the other example of a shape of 2 nozzle hole plates.
9A is an enlarged view (upward view) of a nozzle hole plate according to a fourth embodiment of the present invention, and FIG. 9B is a cross-sectional view taken along line CC in FIG. 9A.
[Explanation of symbols]
1 Fuel injection valve (injection valve)
1a Fuel passage (fluid passage)
2 Injection hole plate 21 Injection hole 21a Inner peripheral surface 21b Outlet (opening)
22 Bar-shaped member (spreading suppression means)
23 Second injection hole plate 24 Through hole (expansion suppression means)
25 inner wall surface 27 through groove (spreading suppression means)
27 Rod-like projection (spreading suppression means)
3 Valve body 3b Valve seat 4 Needle (valve member)

Claims (4)

内部に設けた流体通路の端部に下流側へ向けて縮径するテーパ面を形成して弁座としたバルブボディと、上記弁座に着座することにより上記流体通路を閉塞し、上記弁座から離座することにより上記流体通路を開放する弁部材と、上記弁座の下流側に配置され、上記弁部材の開弁時に上記流体通路から流出する流体を噴射するための噴孔を有する噴孔プレートとを備える噴射弁であって、上記噴孔を、少なくとも流体出口側の開口形状が略楕円形であるとともに、流体入口側の面積より流体出口側の面積が大きくなるテーパ形状に形成し、かつ、流体入口側の中心より流体出口側の中心が上記噴孔プレートの外周側に位置するように、両中心を結ぶ噴孔軸線を上記噴孔プレートの中心軸に対して傾斜させ、流体入口側と流体出口側の中心のずれ方向を、流体出口側の上記開口の長軸方向と略一致させたことを特徴とする噴射弁。A valve body having a tapered surface that is reduced in diameter toward the downstream side at an end portion of the fluid passage provided therein, and a valve seat, and the fluid passage is closed by seating on the valve seat, and the valve seat A valve member that opens the fluid passage by being separated from the valve, and an injection hole disposed on the downstream side of the valve seat for injecting a fluid flowing out of the fluid passage when the valve member is opened. An injection valve comprising a hole plate, wherein the nozzle hole is formed in a tapered shape in which at least the opening shape on the fluid outlet side is substantially elliptical and the area on the fluid outlet side is larger than the area on the fluid inlet side. In addition, the nozzle hole axis connecting both centers is inclined with respect to the center axis of the nozzle hole plate so that the center on the fluid outlet side is positioned on the outer peripheral side of the nozzle hole plate from the center on the fluid inlet side , Center of the inlet side and fluid outlet side Direction, injector, characterized in that is substantially coincident with the long axis direction of the fluid outlet side of the opening. 上記噴孔の流体出口側の上記開口形状を、流体出口側の上記開口の長軸の長さをL 1 、短軸方向の最大幅をL 2 とした時に、最大幅L 2 をとる位置と上記噴孔プレートの中央部よりの長軸上の点Aとの距離xが、(1/2)・L 1 ≦x<L 1 の範囲となる形状とする請求項1記載の噴射弁。 The opening shape on the fluid outlet side of the nozzle hole is a position having a maximum width L 2 when the length of the major axis of the opening on the fluid outlet side is L 1 and the maximum width in the minor axis direction is L 2. 2. The injection valve according to claim 1 , wherein a distance x with respect to a point A on the major axis from the center of the injection hole plate is in a range of (½) · L 1 ≦ x <L 1 . 上記噴孔プレートの出口側端面において、上記噴孔の開口縁近傍に、噴射される膜状流体の広がりを抑制する半円形断面の広がり抑制手段を設けた請求項1または2記載の噴射弁。 The injection valve according to claim 1 or 2, further comprising: a semicircular cross-sectional expansion suppressing means for suppressing the expansion of a film-like fluid to be injected in the vicinity of an opening edge of the injection hole on an outlet side end face of the injection hole plate . 上記噴孔プレートの下流側に第2の噴孔プレートを設けて上記噴孔に連通する略同一またはそれより大きい貫通穴または貫通溝を形成し、噴射される膜状流体の広がりを抑制する広がり抑制手段とした請求項1または2記載の噴射弁。 A second nozzle hole plate is provided on the downstream side of the nozzle hole plate to form a substantially identical or larger through hole or through groove communicating with the nozzle hole, thereby suppressing the spread of the ejected membrane fluid. suppressing means and claims 1 or 2 injection valve according.
JP2001017075A 2001-01-25 2001-01-25 Injection valve Expired - Lifetime JP4229597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001017075A JP4229597B2 (en) 2001-01-25 2001-01-25 Injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017075A JP4229597B2 (en) 2001-01-25 2001-01-25 Injection valve

Publications (2)

Publication Number Publication Date
JP2002221128A JP2002221128A (en) 2002-08-09
JP4229597B2 true JP4229597B2 (en) 2009-02-25

Family

ID=18883332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017075A Expired - Lifetime JP4229597B2 (en) 2001-01-25 2001-01-25 Injection valve

Country Status (1)

Country Link
JP (1) JP4229597B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578923B (en) * 2007-09-14 2012-08-15 三垦电气株式会社 Discharge lamp lighting device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742202B1 (en) 2005-10-13 2007-07-24 진명이십일 (주) The injection nozzle structure of injector
JP2007146828A (en) * 2005-10-28 2007-06-14 Hitachi Ltd Fuel injection valve
JP4992801B2 (en) * 2008-04-09 2012-08-08 株式会社デンソー Urea water injection valve
JP4867986B2 (en) * 2008-12-25 2012-02-01 株式会社デンソー Fuel injection nozzle
KR101337713B1 (en) 2012-12-20 2013-12-06 주식회사 현대케피코 Vehicular gdi injector with valve seat body for fuel atomization
JP5983481B2 (en) * 2013-03-21 2016-08-31 トヨタ自動車株式会社 Fuel injection nozzle
JP5987754B2 (en) * 2013-04-01 2016-09-07 トヨタ自動車株式会社 Fuel injection valve
JP6044425B2 (en) * 2013-04-02 2016-12-14 トヨタ自動車株式会社 Fuel injection valve
JP5812050B2 (en) * 2013-07-25 2015-11-11 トヨタ自動車株式会社 Fuel injection valve
JP2016211525A (en) * 2015-05-14 2016-12-15 株式会社エンプラス Nozzle plate for fuel injection device
JP6451663B2 (en) 2016-02-24 2019-01-16 株式会社デンソー Fuel injection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373573U (en) * 1986-10-31 1988-05-17
JPH08232812A (en) * 1995-02-22 1996-09-10 Nippondenso Co Ltd Fluid injection nozzle
JPH11117831A (en) * 1997-10-17 1999-04-27 Toyota Motor Corp Fuel injection valve for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578923B (en) * 2007-09-14 2012-08-15 三垦电气株式会社 Discharge lamp lighting device

Also Published As

Publication number Publication date
JP2002221128A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
US6616072B2 (en) Fluid injection nozzle
US7441746B2 (en) Solenoid device and injection valve having the same
EP1375905B1 (en) Fuel injection device
JP3780472B2 (en) Fuel injection valve
EP1042604B1 (en) Flat needle for pressurized swirl fuel injector
JP4229597B2 (en) Injection valve
KR100299834B1 (en) Fluid injection nozzles and fuel injection valves using them
JP4883102B2 (en) Fuel injection nozzle
EP2937553B1 (en) Vehicular high pressure direct injection type injector with valve seat body for fuel-atomization
JP4097056B2 (en) Fuel injection valve
CN110023616B (en) Fuel injection device
JPH11200998A (en) Fluid injection nozzle
JPH08232812A (en) Fluid injection nozzle
JP3572591B2 (en) Fluid injection nozzle and electromagnetic fuel injection valve using the same
JP4058377B2 (en) Fuel injection valve
JP2005282420A (en) Fuel injection valve
JP2005098231A (en) Fuel injection valve
JP6780087B2 (en) Fuel injection device
JP2013096242A (en) Fuel injection valve
KR100419183B1 (en) Fluid injection nozzle
CZ20003352A3 (en) Fuel injection valve
JP3613363B2 (en) Fuel injection valve
JP2004169571A (en) Fuel injection valve
JPH08232811A (en) Fluid injection nozzle
JP2017210890A (en) Flow rate regulation valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4229597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term