JP3887926B2 - Production method of transparent thick film - Google Patents

Production method of transparent thick film Download PDF

Info

Publication number
JP3887926B2
JP3887926B2 JP01582098A JP1582098A JP3887926B2 JP 3887926 B2 JP3887926 B2 JP 3887926B2 JP 01582098 A JP01582098 A JP 01582098A JP 1582098 A JP1582098 A JP 1582098A JP 3887926 B2 JP3887926 B2 JP 3887926B2
Authority
JP
Japan
Prior art keywords
film
electrodeposition
substrate
thick film
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01582098A
Other languages
Japanese (ja)
Other versions
JPH11209896A (en
Inventor
健一 仲間
勝秀 新毛
努 南
昌弘 辰巳砂
厚範 松田
清治 忠永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP01582098A priority Critical patent/JP3887926B2/en
Publication of JPH11209896A publication Critical patent/JPH11209896A/en
Application granted granted Critical
Publication of JP3887926B2 publication Critical patent/JP3887926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、有機無機複合粒子の電気泳動電着による透明厚膜の製造方法に関し、特に、基体の保護膜、光学膜、又は従来の研磨法による薄板ガラスの代替として有用で、微小光学素子としての応用が可能な高品質透明厚膜の製造方法に関する。
【0002】
【従来の技術】
従来、電気泳動電着による厚膜の製造方法については種々提案がなされており、例えば、特開平5−246701号公報には、テトラエトキシシランをイソプロピルアルコールに溶解し、これに希薄アンモニア水を加えて更に撹拌した溶液を電気泳動電着浴として用いて、陽極酸化アルミニウム基板上に数十μm程度の厚さのシリカ厚膜を形成することが報告されている。
【0003】
また、テトラエトキシシシランのエタノール溶液に希薄アンモニア水を加え、粒子サイズ、電荷及び分散性の制御を目的としてドデシル硫酸ナトリウムを添加し、更に乾燥抑制剤として1,4−ジオキサンを加えた溶液を電気泳動電着浴として用いて、ステンレス基板上に数μmの厚さのシリカ厚膜を形成することも報告されている(1994年日本セラミックス協会「年会講演予稿集2H08」p513)。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、得られる厚膜は粒子の散乱によって白濁しており、透明な厚膜を得ることは困難であった。また、従来の方法では、形成される厚膜の膜厚にも制限がある上に、膜厚の厚い膜を形成した場合、膜の品質が劣化する傾向にあるという欠点もある。
【0005】
このようなことから、従来法による厚膜は、基体の保護膜、光学膜、従来の研磨法による薄板ガラスの代替、更には微小光学素子への応用には不適当であった。
【0006】
本発明は、上記従来の問題点を解決し、電気泳動電着法による厚膜の形成において、得られる電着膜の透明性を大幅に改善すると共に、膜劣化を引き起こすことなく、形成できる最大膜厚を増大することができ、以て得られる透明厚膜付き基体の保護膜、光学膜、従来の研磨法による薄板ガラスの代替、更には微小光学素子としての応用を可能とする透明厚膜の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の透明厚膜の製造方法は、有機無機複合粒子の分散液中に、少なくとも表面が導電性の基体を浸漬し、該液中に設置された対向電極と該基体との間に電圧を印加して該基体の導電性表面に、前記有機無機複合粒子を電気泳動電着させ、次いで、該基体上に形成された電着膜を均一に融解させて、厚さ3〜20μmの透明厚膜を形成する方法であって、前記有機無機複合粒子が、一般式PhMR’x+y−1(ただし、Phはフェニル基、Mは価数(x+y)の陽性イオン、R’は加水分解重縮合可能な官能基)で表される化合物の1種又は2種以上を出発原料とする複合粒子であることを特徴とする。
【0008】
本発明に係る有機無機複合粒子で、電気泳動電着法により形成した電着膜は、熱、光、プラズマ、圧力、反応性ガス等の外部エネルギーを作用させることによって均一に融解させることができ、これにより、電着膜は無孔化され、微細孔のない極めて均質な透明厚膜となる。
【0009】
また、電着膜を均一に融解させる方法としては熱処理による方法が好適である
【0010】
【発明の実施の形態】
下に本発明の実施の形態を詳細に説明する。
【0011】
まず、本発明に係る有機無機複合粒子の出発原料について説明する。この出発原料となる一般式PhMR’x+y−1で表される化合物(以下単に「出発原料」と称す場合がある。)において、Phはフェニル基である。また、加水分解重縮合可能な官能基R’としては、エトキシ基、メトキシ基等のアルコキシ基、クロロ、ブロモ等のハロゲン等が挙げられる。また、陽性イオンMとしては、Si,Ti,Al,B,P,Ta,Zr,V,W等が例示できる。
【0012】
出発原料としては、具体的には、フェニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリクロロシラン、ベンジルトリクロロシラン、ベンジルトリエトキシシラン、p−アミノフェニルトリエトキシシラン、トリルトリクロロシランなどが例示できる。中でもフェニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリクロロシラン等が好ましい。
【0013】
上記出発原料は、1種類を単独で又は2種類以上を組み合わせて使用することができる。また、上記出発原料と共に、一般式MR’x+y(M,R’,x,yは前記定義に同じ。)で表される化合物を併用しても良い。
【0014】
上記出発原料から本発明に係る有機無機複合粒子を製造する方法には特に制限はないが、例えば、酸性条件下で上記出発原料を加水分解した後、塩基性条件下で粒子を作製する方法を採用することができる(第32回ガラスおよびフォトニクス材料討論会講演要旨集(1991)p139−140)。具体的には、上記出発原料に塩酸等の酸を加えpH2〜3程度で、出発原料に対してモル比で4〜10倍程度の水を加えて加水分解し、得られたゾルにアンモニア等のアルカリを加え、pH11〜13程度で粒子を成長させる。
【0015】
有機無機複合粒子の粒径は0.1〜1.0μmであることが好ましく、従って、粒径が大きい場合には、適宜粉砕する。
【0016】
電着液の調製に当り、有機無機複合粒子を分散させる分散媒としては、目的に応じて各種のものを用いることができ、有機無機複合粒子の調製に用いた溶液をそのまま電着液として用いることもできる。また、調製した有機無機複合粒子を一旦遠心分離等の手法を用いて回収し、必要に応じて、乾燥又は熱処理、粉砕等の処理を行った後、適当な分散媒に再分散させて電着液とすることもできる。この場合、分散媒としては、例えば、水と、メタノール、エタノール、プロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、メチルエーテル等のエーテル類、或いはメチルセルソルブ等との混合液を用いることができ、特に、水:アルコール=1:1〜2(体積比)とするのが好ましい。なお、電着液中の有機無機複合粒子の濃度は、0.1〜10vol%とすることが好ましい。また、電着液には、有機無機複合粒子の表面電荷を制御する目的で、界面活性剤を添加することができる。この場合、界面活性剤としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム等が挙げられ、その添加濃度は0.01〜0.08wt%とするのが好ましい。
【0017】
本発明において、電気泳動電着法により電着膜を形成する基体としては、鉄、鋼、アルミニウム、銅、ニッケル等の金属や合金、或いはITO等の導電性薄膜を表面に形成したガラス又はプラスチックが用いられる。特に、本発明で得られる透明厚膜の特性を十分に活かすためには、ガラス基板を用いた表示素子、光学素子への応用が期待されることから、基体としては、表面にITO等の導電性薄膜を形成したガラス板を用いるのが好ましい。この場合、ガラス基板のガラス材質としては、石英ガラス、ソーダライムガラス、アルカリアルミノシリケートガラス、アルカリボロシリケートガラス、多成分系無アルカリガラス、低膨張結晶化ガラス等が挙げられる。
【0018】
一方、対向電極としては、アルカリや酸に侵食されにくい白金、ステンレススチール、黒鉛、チタン等が使用できる。
【0019】
印加電圧は5〜200Vの範囲が好ましく、直流もしくはパルス電圧を基体側が陽極となるように印加する。
【0020】
このような電圧印加により基体上に電着膜を形成した後は、電着液から基体を引き上げ、電着膜を均一に融解させる。即ち、基体上に電気泳動電着によって凝集積層した複合粒子を、熱、光、プラズマ、圧力、反応性ガス等の外部エネルギーを作用させることによって均一に融解させる。これにより、電着膜が無孔化され、透明厚膜が形成される。
【0021】
この融解は、特に、熱処理により行うのが好ましく、この場合、熱処理条件は、形成される透明厚膜の厚さや用いた有機無機複合粒子の種類等によっても異なるが、一般に200〜500℃で10〜20分程度である。
【0022】
このような本発明の方法によれば、可視域の光透過率が70%以上の良好な透明性を有する透明厚膜を形成することができる。また、その膜厚も、電着時の印加電圧や電着時間等の電着条件を調整することにより、3〜20μmという厚膜化が可能である。
【0023】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0024】
実施例1
フェニルトリエトキシシランを塩酸触媒の存在下、室温で10時間加水分解した(pH2.8)。ここで加水分解に用いた希塩酸は0.01wt%で、水はフェニルトリエトキシシランに対して、モル比で20倍とした。上記加水分解によって得られた透明均質ゾルを10倍量の4wt%のアンモニア水にゆっくり加え(pH12)、更に室温で10時間撹拌した。本操作によって溶液は白色に懸濁し、粒子の生成が確認できた。
【0025】
生成したフェニル基変成シリカ粒子を遠心分離によって収集し、これを真空オーブンで3時間乾燥した。乾燥操作後のフェニル基変成シリカ粒子の粒径は約0.1〜1μmであった。この粒子をメノウ乳鉢で簡単に粉砕して粒径0.1〜1μmとした後、水−エタノール=1:1体積比の混合溶媒中に1.0vol%になるように添加し、超音波照射を行うことにより、フェニル基変成シリカ粒子が均一に分散した電着浴を調製した。
【0026】
表面にITO導電性膜を形成したソーダライムガラス基板をこの電着浴中に対向電極と対峙させて浸漬し、基板が陽極となるように直流電圧40Vを5分間印加した。基板の導電性膜上には、フェニル基変成シリカ粒子が堆積した白色不透明の電着膜が形成された。この電着膜が形成された基板を、200℃で2時間オーブン加熱を行うことにより、この白色不透明の電着膜は透明厚膜となった。熱処理前後の厚膜を電子走査型顕微鏡で観察したところ、熱処理前は粒径0.1〜1μmの球状粒子が基板上に堆積している様子が観察されたが、熱処理後は、これら粒子が融解し、緻密な均質膜になっていることが確認された。熱処理後の厚膜は、膜厚約5μmであり、可視域で光透過率80%という高い光透過率を示した。
【0027】
なお、膜厚は電着条件を制御することにより、更に厚くすることが可能であった。
【0028】
実施例2
フェニルトリエトキシシラン及びテトラエトキシシランを塩酸触媒の存在下、室温で10時間加水分解した(pH2.5)。ここでフェニルトリエトキシシラン及びテトラエトキシシランのモル比は90:10とした。また加水分解に用いた希塩酸は0.01wt%で、水はフェニルトリエトキシシランとテトラエトキシシランの総量に対して、モル比で20倍とした。上記加水分解によって得られた透明均質ゾルを10倍量の4wt%のアンモニア水にゆっくり加え(pH12)、更に室温で10時間撹拌した。本操作によって溶液は白色に懸濁し、粒子の生成が確認できた。
【0029】
生成したフェニルトリエトキシシラン−テトラエトキシシラン誘導フェニル基変成シリカ粒子を遠心分離によって収集し、これを真空オーブンで3時間乾燥した。乾燥操作後のフェニルトリエトキシシラン−テトラエトキシシラン誘導フェニル基変成シリカ粒子の粒径は約0.1〜1μmであった。この粒子を用いて実施例1と同様の操作で電着浴を調製し、同様にITO透明導電性膜を形成したソーダライムガラス基板上に電気泳動電着を行った。
【0030】
電着により形成された、フェニルトリエトキシシラン−テトラエトキシシラン誘導フェニル基変成シリカ粒子が堆積した電着膜もやはり白色不透明であったが、500℃で2時間オーブン加熱を行うことにより、白色不透明の電着膜は透明厚膜となった。熱処理前後の厚膜を電子走査型顕微鏡で観察したところ熱処理前は粒径0.1〜1μmの球状粒子が基板上に堆積している様子が観察されたが、熱処理後は、これら粒子が融解し、緻密な均質膜になっていることが確認された。熱処理後の厚膜は、膜厚約5μmであり、可視域で光透過率73%という高い光透過率を示した。
【0031】
なお、膜厚は電着条件を制御することにより、更に厚くすることが可能であった。
【0032】
比較例1
メチルトリエトキシシランを塩酸触媒の存在下、室温で1時間加水分解した。ここで加水分解に用いた希塩酸は0.01wt%で、水はメチルトリエトキシシランに対して、モル比で20倍とした。上記加水分解によって得られた透明均質ゾルを10倍量の4wt%のアンモニア水にゆっくり加え、更に室温で10時間撹拌した。本操作によって溶液は白色に懸濁し、粒子の生成が確認できた。
【0033】
生成したメチル基変成シリカ粒子を遠心分離によって収集し、これを真空オーブンで3時間乾燥した。乾燥操作後のメチル基変成シリカ粒子の粒径は約0.1〜1μmであった。この粒子を用いて実施例1と同様の操作で電着浴を調製し、同様にITO透明導電性膜を形成したソーダライムガラス基板上に電気泳動電着を行った。
【0034】
電着により形成された、メチル基変成シリカ粒子が堆積した電着膜は白色不透明であった。
【0035】
この操作によって得られた厚膜の膜厚は約5μmであったが、これを200℃、400℃、600℃でそれぞれ2時間オーブン加熱をした後も厚膜は白色不透明のままで、透明厚膜を得ることはできなかった。
【0036】
比較例2
テトラエトキシシランをアンモニア触媒の存在下で、エタノール−水系溶媒中、室温で10時間加水分解した。ここで加水分解に用いたアンモニアは1wt%で、エタノール及び水は、テトラエトキシシランに対して、いずれもモル比で50倍とし、更に粒径を制御するためにドデシル硫酸ナトリウムを0.02vol%添加した。上記加水分解によって得られたシリカ粒子を遠心分離によって収集し、これを真空オーブンで3時間乾燥し、更に600℃で熱処理を行った。得られた粒子を用いて実施例1と同様の操作でシリカ粒子が1vol%となる電着浴を調製し、更にカチオン系高分子界面活性剤ポリエチレンイミンを電着浴に0.1〜1vol%添加して、ITO透明導電性膜を形成したソーダライムガラス基板が陰極となるようにしたこと以外は同様にして電気泳動電着を行った。電着により形成された、シリカ粒子−高分子界面活性剤ポリエチレンイミン系複合膜は膜厚約5μmであったが白濁しており、これを400℃、600℃でそれぞれ2時間オーブン加熱を行った後も白濁したままで、透明にはならなかった。
【0037】
【発明の効果】
以上詳述した通り、本発明によれば、電気泳動電着法により、均質性、透明性に優れた良好な透明厚膜を形成することができる。
【0038】
従って、本発明によれば、電気泳動電着法による透明厚膜付き基体を表示素子、光学素子へ応用することが可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how transparent thick film by electrophoretic deposition of organic-inorganic composite particles, in particular, the protective film of the substrate, an optical film, or useful as a substitute for the thin glass by conventional polishing method, micro-optical application of the device is about the high-quality production how transparent thick as possible.
[0002]
[Prior art]
Conventionally, various proposals have been made for a method for producing a thick film by electrophoretic electrodeposition. For example, in JP-A-5-246701, tetraethoxysilane is dissolved in isopropyl alcohol, and diluted aqueous ammonia is added thereto. Furthermore, it has been reported that a thick silica film having a thickness of about several tens of μm is formed on an anodized aluminum substrate by using a further stirred solution as an electrophoretic electrodeposition bath.
[0003]
In addition, dilute aqueous ammonia is added to an ethanol solution of tetraethoxysilane, sodium dodecyl sulfate is added for the purpose of controlling the particle size, charge and dispersibility, and a solution in which 1,4-dioxane is further added as a drying inhibitor. It has also been reported that a silica thick film having a thickness of several μm is formed on a stainless steel substrate as an electrophoretic electrodeposition bath (1994 Ceramic Society of Japan Annual Meeting Proceedings 2H08, p513).
[0004]
[Problems to be solved by the invention]
However, in the conventional method, the resulting thick film is clouded due to particle scattering, and it is difficult to obtain a transparent thick film. In addition, the conventional method has a limitation that the thickness of the thick film to be formed is limited, and when a thick film is formed, the quality of the film tends to deteriorate.
[0005]
For this reason, the thick film by the conventional method is unsuitable for application to the protective film of the substrate, the optical film, the thin glass by the conventional polishing method, and further to the micro optical element.
[0006]
The present invention solves the above-mentioned conventional problems and greatly improves the transparency of the obtained electrodeposition film in the formation of a thick film by the electrophoretic electrodeposition method, and can be formed without causing film deterioration. Transparent thick film that can increase the film thickness and can be obtained as a protective film for a substrate with a transparent thick film, an optical film, a thin glass substitute by a conventional polishing method, and a micro optical element an object of the present invention is to provide a manufacturing how.
[0007]
[Means for Solving the Problems]
In the method for producing a transparent thick film of the present invention, at least a surface of a conductive substrate is immersed in a dispersion of organic-inorganic composite particles, and a voltage is applied between the counter electrode installed in the solution and the substrate. Applying the electrophoretic electrodeposition of the organic-inorganic composite particles to the conductive surface of the substrate, and then uniformly melting the electrodeposited film formed on the substrate to obtain a transparent thickness of 3 to 20 μm. A method of forming a film, wherein the organic-inorganic composite particles have the general formula PhMR ′ x + y−1 (where Ph is a phenyl group, M is a positive ion of valence (x + y), and R ′ is hydrolytic polycondensable. A composite particle having one or more compounds represented by (a functional group) as a starting material.
[0008]
The electrodeposited film formed by the electrophoretic electrodeposition method using the organic-inorganic composite particles according to the present invention can be uniformly melted by applying external energy such as heat, light, plasma, pressure, and reactive gas. As a result, the electrodeposited film is made non-porous and becomes a very homogeneous transparent thick film without micropores.
[0009]
Further, as a method for uniformly melting the electrodeposition film, a method by heat treatment is suitable .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below.
[0011]
First, the starting material for the organic-inorganic composite particles according to the present invention will be described. In the compound represented by the general formula PhMR ′ x + y−1 used as the starting material (hereinafter sometimes simply referred to as “starting material”), Ph is a phenyl group. Examples of the functional group R ′ capable of hydrolysis and polycondensation include alkoxy groups such as ethoxy group and methoxy group, and halogens such as chloro and bromo. Examples of positive ions M include Si, Ti, Al, B, P, Ta, Zr, V, and W.
[0012]
Specific examples of the starting material include phenyltriethoxysilane, phenyltrimethoxysilane, phenyltrichlorosilane, benzyltrichlorosilane, benzyltriethoxysilane, p-aminophenyltriethoxysilane, and tolyltrichlorosilane. Of these, phenyltriethoxysilane, phenyltrimethoxysilane, phenyltrichlorosilane and the like are preferable.
[0013]
The said starting material can be used individually by 1 type or in combination of 2 or more types. In addition to the above starting materials, a compound represented by the general formula MR ′ x + y (M, R ′, x, y are the same as defined above) may be used in combination.
[0014]
The method for producing the organic-inorganic composite particles according to the present invention from the starting material is not particularly limited. For example, a method for producing the particles under basic conditions after hydrolyzing the starting material under acidic conditions. (Abstracts of the 32nd Glass and Photonics Material Discussion Meeting (1991) p139-140). Specifically, an acid such as hydrochloric acid is added to the starting material at a pH of about 2 to 3, and water is added at a molar ratio of about 4 to 10 times with respect to the starting material for hydrolysis, and ammonia or the like is added to the resulting sol. The alkali is added and the particles are grown at a pH of about 11-13.
[0015]
The particle diameter of the organic / inorganic composite particles is preferably 0.1 to 1.0 μm. Therefore, when the particle diameter is large, the organic / inorganic composite particles are appropriately pulverized.
[0016]
In preparing the electrodeposition liquid, various dispersion media for dispersing the organic-inorganic composite particles can be used depending on the purpose, and the solution used for preparing the organic-inorganic composite particles is used as it is as the electrodeposition liquid. You can also. In addition, the prepared organic-inorganic composite particles are once collected using a technique such as centrifugation, and after drying, heat treatment, pulverization, etc., if necessary, redispersed in an appropriate dispersion medium and electrodeposition. It can also be used as a liquid. In this case, as the dispersion medium, for example, a mixed solution of water and alcohols such as methanol, ethanol and propanol, ketones such as acetone and methyl ethyl ketone, ethers such as methyl ether, or methyl cellosolve is used. In particular, water: alcohol = 1: 1 to 2 (volume ratio) is preferable. In addition, it is preferable that the density | concentration of the organic inorganic composite particle in an electrodeposition liquid shall be 0.1-10 vol%. In addition, a surfactant can be added to the electrodeposition liquid for the purpose of controlling the surface charge of the organic-inorganic composite particles. In this case, examples of the surfactant include sodium dodecylbenzenesulfonate and sodium dodecylsulfate, and the addition concentration is preferably 0.01 to 0.08 wt%.
[0017]
In the present invention, as a substrate on which an electrodeposition film is formed by electrophoretic electrodeposition, a metal or alloy such as iron, steel, aluminum, copper or nickel, or a glass or plastic having a conductive thin film such as ITO formed on the surface Is used. In particular, in order to fully utilize the characteristics of the transparent thick film obtained in the present invention, it is expected to be applied to display elements and optical elements using glass substrates. It is preferable to use a glass plate on which a conductive thin film is formed. In this case, examples of the glass material of the glass substrate include quartz glass, soda lime glass, alkali aluminosilicate glass, alkali borosilicate glass, multicomponent non-alkali glass, and low expansion crystallized glass.
[0018]
On the other hand, as the counter electrode, platinum, stainless steel, graphite, titanium or the like which is not easily eroded by alkali or acid can be used.
[0019]
The applied voltage is preferably in the range of 5 to 200 V, and a direct current or pulse voltage is applied so that the substrate side becomes the anode.
[0020]
After the electrodeposition film is formed on the substrate by applying such a voltage, the substrate is pulled up from the electrodeposition solution to uniformly melt the electrodeposition film. That is, the composite particles aggregated and laminated on the substrate by electrophoretic electrodeposition are uniformly melted by applying external energy such as heat, light, plasma, pressure, and reactive gas. Thereby, the electrodeposition film is made nonporous and a transparent thick film is formed.
[0021]
This melting is particularly preferably carried out by heat treatment. In this case, the heat treatment conditions generally vary depending on the thickness of the transparent thick film to be formed, the kind of the organic-inorganic composite particles used, etc., but generally at 200 to 500 ° C. About 20 minutes.
[0022]
According to such a method of the present invention, it is possible to form a transparent thick film having good transparency with a light transmittance in the visible range of 70% or more. Further, the film thickness can be increased to 3 to 20 μm by adjusting electrodeposition conditions such as applied voltage and electrodeposition time during electrodeposition.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0024]
Example 1
Phenyltriethoxysilane was hydrolyzed at room temperature for 10 hours in the presence of a hydrochloric acid catalyst (pH 2.8). Here, the diluted hydrochloric acid used for the hydrolysis was 0.01 wt%, and water was 20 times in molar ratio with respect to phenyltriethoxysilane. The transparent homogeneous sol obtained by the above hydrolysis was slowly added to 10 times amount of 4 wt% ammonia water (pH 12), and further stirred at room temperature for 10 hours. By this operation, the solution was suspended in white, and formation of particles was confirmed.
[0025]
The resulting phenyl-modified silica particles were collected by centrifugation and dried in a vacuum oven for 3 hours. The particle size of the phenyl group-modified silica particles after the drying operation was about 0.1 to 1 μm. The particles were easily pulverized in an agate mortar to a particle size of 0.1 to 1 μm, then added to a mixed solvent of water-ethanol = 1: 1 volume ratio so as to be 1.0 vol%, and subjected to ultrasonic irradiation The electrodeposition bath in which the phenyl group-modified silica particles are uniformly dispersed was prepared.
[0026]
A soda lime glass substrate having an ITO conductive film formed on the surface was immersed in this electrodeposition bath facing the counter electrode, and a DC voltage of 40 V was applied for 5 minutes so that the substrate would be an anode. On the conductive film of the substrate, a white opaque electrodeposition film in which phenyl group-modified silica particles were deposited was formed. The substrate on which the electrodeposition film was formed was oven-heated at 200 ° C. for 2 hours, whereby the white opaque electrodeposition film became a transparent thick film. When the thick film before and after the heat treatment was observed with an electronic scanning microscope, it was observed that spherical particles having a particle size of 0.1 to 1 μm were deposited on the substrate before the heat treatment. It was confirmed that the film was melted to form a dense homogeneous film. The thick film after the heat treatment had a film thickness of about 5 μm, and showed a high light transmittance of 80% in the visible region.
[0027]
The film thickness could be further increased by controlling the electrodeposition conditions.
[0028]
Example 2
Phenyltriethoxysilane and tetraethoxysilane were hydrolyzed at room temperature for 10 hours in the presence of hydrochloric acid catalyst (pH 2.5). Here, the molar ratio of phenyltriethoxysilane and tetraethoxysilane was 90:10. The dilute hydrochloric acid used for the hydrolysis was 0.01 wt%, and water was 20 times in molar ratio with respect to the total amount of phenyltriethoxysilane and tetraethoxysilane. The transparent homogeneous sol obtained by the above hydrolysis was slowly added to 10 times amount of 4 wt% ammonia water (pH 12), and further stirred at room temperature for 10 hours. By this operation, the solution was suspended in white, and formation of particles was confirmed.
[0029]
The resulting phenyltriethoxysilane-tetraethoxysilane derived phenyl group modified silica particles were collected by centrifugation and dried in a vacuum oven for 3 hours. The particle size of the phenyltriethoxysilane-tetraethoxysilane-derived phenyl group-modified silica particles after the drying operation was about 0.1 to 1 μm. Using these particles, an electrodeposition bath was prepared in the same manner as in Example 1, and electrophoretic electrodeposition was performed on a soda lime glass substrate on which an ITO transparent conductive film was similarly formed.
[0030]
The electrodeposition film formed by electrodeposition on which phenyltriethoxysilane-tetraethoxysilane-derived phenyl group-modified silica particles were deposited was also white opaque, but it became white opaque by performing oven heating at 500 ° C. for 2 hours. The electrodeposition film became a transparent thick film. When the thick film before and after the heat treatment was observed with an electronic scanning microscope, it was observed that spherical particles having a particle diameter of 0.1 to 1 μm were deposited on the substrate before the heat treatment, but these particles were melted after the heat treatment. It was confirmed that the film was a dense homogeneous film. The thick film after the heat treatment had a film thickness of about 5 μm, and showed a high light transmittance of 73% in the visible region.
[0031]
The film thickness could be further increased by controlling the electrodeposition conditions.
[0032]
Comparative Example 1
Methyltriethoxysilane was hydrolyzed for 1 hour at room temperature in the presence of hydrochloric acid catalyst. Here, dilute hydrochloric acid used for hydrolysis was 0.01 wt%, and water was 20 times in molar ratio with respect to methyltriethoxysilane. The transparent homogeneous sol obtained by the above hydrolysis was slowly added to 10 times amount of 4 wt% ammonia water, and further stirred at room temperature for 10 hours. By this operation, the solution was suspended in white, and formation of particles was confirmed.
[0033]
The resulting methyl group-modified silica particles were collected by centrifugation and dried in a vacuum oven for 3 hours. The particle size of the methyl group-modified silica particles after the drying operation was about 0.1 to 1 μm. Using these particles, an electrodeposition bath was prepared in the same manner as in Example 1, and electrophoretic electrodeposition was performed on a soda lime glass substrate on which an ITO transparent conductive film was similarly formed.
[0034]
The electrodeposition film formed by electrodeposition and deposited with methyl group-modified silica particles was white and opaque.
[0035]
Although the thickness of the thick film obtained by this operation was about 5 μm, the thick film remained white and opaque even after being heated at 200 ° C., 400 ° C., and 600 ° C. for 2 hours. A film could not be obtained.
[0036]
Comparative Example 2
Tetraethoxysilane was hydrolyzed in an ethanol-water solvent at room temperature for 10 hours in the presence of an ammonia catalyst. Here, ammonia used for hydrolysis was 1 wt%, ethanol and water were both 50 times in molar ratio with respect to tetraethoxysilane, and 0.02 vol% sodium dodecyl sulfate was used to control the particle size. Added. Silica particles obtained by the above hydrolysis were collected by centrifugation, dried in a vacuum oven for 3 hours, and further heat-treated at 600 ° C. Using the obtained particles, an electrodeposition bath in which the silica particles are 1 vol% is prepared in the same manner as in Example 1, and further, a cationic polymer surfactant polyethyleneimine is added to the electrodeposition bath in an amount of 0.1 to 1 vol%. Electrophoretic electrodeposition was performed in the same manner except that the soda lime glass substrate on which the ITO transparent conductive film was added became a cathode. The silica particle-polymer surfactant polyethyleneimine composite film formed by electrodeposition had a film thickness of about 5 μm, but was cloudy, and this was oven-heated at 400 ° C. and 600 ° C. for 2 hours, respectively. It remained cloudy afterwards and did not become transparent.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, a good transparent thick film excellent in homogeneity and transparency can be formed by the electrophoretic electrodeposition method.
[0038]
Therefore, according to the present invention, a substrate with a transparent thick film by electrophoretic electrodeposition can be applied to a display element and an optical element.

Claims (1)

有機無機複合粒子の分散液中に、少なくとも表面が導電性の基体を浸漬し、該液中に設置された対向電極と該基体との間に電圧を印加して該基体の導電性表面に、前記有機無機複合粒子を電気泳動電着させ、次いで、該基体上に形成された電着膜を均一に融解させて、厚さ3〜20μmの透明厚膜を形成する方法であって、
前記有機無機複合粒子が、一般式PhMR’x+y−1(ただし、Phはフェニル基、Mは価数(x+y)の陽性イオン、R’は加水分解重縮合可能な官能基)で表される化合物の1種又は2種以上を出発原料とする複合粒子であることを特徴とする透明厚膜の製造方法。
In the dispersion liquid of organic-inorganic composite particles, at least the surface of the conductive substrate is immersed, and a voltage is applied between the counter electrode and the substrate placed in the liquid to form the conductive surface of the substrate. A method of electrophoretic electrodeposition of the organic-inorganic composite particles, and then uniformly melting the electrodeposition film formed on the substrate to form a transparent thick film having a thickness of 3 to 20 μm,
The organic-inorganic composite particle is a compound represented by the general formula PhMR ′ x + y−1 (where Ph is a phenyl group, M is a positive ion of valence (x + y), and R ′ is a functional group capable of hydrolysis polycondensation). A method for producing a transparent thick film, which is a composite particle using one or more of the above as starting materials.
JP01582098A 1998-01-28 1998-01-28 Production method of transparent thick film Expired - Fee Related JP3887926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01582098A JP3887926B2 (en) 1998-01-28 1998-01-28 Production method of transparent thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01582098A JP3887926B2 (en) 1998-01-28 1998-01-28 Production method of transparent thick film

Publications (2)

Publication Number Publication Date
JPH11209896A JPH11209896A (en) 1999-08-03
JP3887926B2 true JP3887926B2 (en) 2007-02-28

Family

ID=11899500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01582098A Expired - Fee Related JP3887926B2 (en) 1998-01-28 1998-01-28 Production method of transparent thick film

Country Status (1)

Country Link
JP (1) JP3887926B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239498A (en) * 2004-02-27 2005-09-08 Central Glass Co Ltd Organic-inorganic hybrid glassy material and its production method
CN114522543A (en) * 2022-01-19 2022-05-24 华南理工大学 Ultrathin two-dimensional Cu-TCPP film and preparation method thereof

Also Published As

Publication number Publication date
JPH11209896A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
TWI302559B (en)
JP4883383B2 (en) Dispersion containing hollow SiO2, coating composition, and substrate with antireflection coating
CN103771721B (en) The preparation method of ultra-hydrophilic transparent earth silicon/titanic oxide anti-fog thin film
Sakka Preparation and properties of sol-gel coating films: Code: E1
JPWO2009148097A1 (en) Core-shell particle manufacturing method, core-shell particle, hollow particle manufacturing method, coating composition and article
JP3887926B2 (en) Production method of transparent thick film
US20030047111A1 (en) Coating solution for forming transparent silica coating film and method for producing transparent silica coating film
CN101838112B (en) Three-order nonlinear optical telluro-composite film and preparation method thereof
CN107382092A (en) TiO with Nanoparticles Embedded structure2 /WO3Compound electrochromic membrane and preparation method thereof
CN103553361B (en) A kind of Al 2o 3-SiO 2-TiO 2the preparation method of inorganic anti-reflection film
JP2005145795A (en) Film-like organic and inorganic hybrid glassy material and method for manufacturing the same
CN107140684B (en) A kind of preparation method and products thereof of titanium dioxide macro nanometer piece
CN100590895C (en) Method for preparing semiconductor nanometer composite membrane
JPH11310898A (en) Formation of crystalline titanium oxide film
JPH054839A (en) Method for preparing thin film by sol-gel method
JP3435887B2 (en) Method for producing colloidal silica electrodeposition film and substrate with colloidal silica electrodeposition film
CN109647366A (en) A kind of method that sol-gel method prepares photoelectrocatalysioxidization oxidization Ti electrode
JP2003277041A (en) Method for manufacturing silica thin film on substrate surface having optional surface characteristic and surface form, and composite structural body
KR100378019B1 (en) A composition for a protective layer of a transparent conductive layer and a method for preparing conductive layer from the composition
CN108585043B (en) CuCrO2Method for producing thin film
JPH08170193A (en) Production of substrate provided with metal oxide film
CN101544475A (en) Preparation method for low excitation photochromism MoO3 censphere film
WO2003078320A1 (en) Thin silica film and silica-titania composite film, and method for preparing them
JP3614900B2 (en) Method for producing spherical particles with insulating film
JP2005519423A (en) Composition comprising silver metal particles and a silane derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees