JP3886922B2 - Diamond substrate surface treatment method - Google Patents

Diamond substrate surface treatment method Download PDF

Info

Publication number
JP3886922B2
JP3886922B2 JP2003082332A JP2003082332A JP3886922B2 JP 3886922 B2 JP3886922 B2 JP 3886922B2 JP 2003082332 A JP2003082332 A JP 2003082332A JP 2003082332 A JP2003082332 A JP 2003082332A JP 3886922 B2 JP3886922 B2 JP 3886922B2
Authority
JP
Japan
Prior art keywords
diamond
diamond substrate
hole
mixed gas
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003082332A
Other languages
Japanese (ja)
Other versions
JP2004284924A (en
Inventor
猛 小林
剛 太田
キム スンフーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003082332A priority Critical patent/JP3886922B2/en
Publication of JP2004284924A publication Critical patent/JP2004284924A/en
Application granted granted Critical
Publication of JP3886922B2 publication Critical patent/JP3886922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダイヤモンド基板表面の処理方法及びそれによって得られる半導体装置に係り、特に、エネルギーギャップの大きなワイドバンドギャップ半導体の製造分野、半導体表面処理技術分野、半導体デバイス分野に関している。そこでは高温用・高電力用パワーデバイスが扱われると共に、放射線に強い耐環境・宇宙用デバイスなども対象としている。近年、バイオ電気化学の台頭に伴い薄膜表面の電気化学触媒機構を利用した環境応用に期待が高まっているが、表面電気伝導・表面電界が効果的に利用できる本発明はその分野にも深く関わるものである。
【0002】
【従来の技術】
半導体の表面に自然に電気伝導キャリアが蓄積する例は殆どない。しかし、ダイヤモンドは例外的に表面電気伝導を呈する。ダイヤモンドの表面が水素によって終端している場合、大気中のカーボネートなどの分子吸着が作用して電気化学反応が進行し、表面に正孔(ホール)がキャリアとして発生する。
【0003】
本来、ダイヤモンドは絶縁状態であるにも関わらず、その表面近傍に限り電気伝導が生じていることは利用上、大変興味深いものであった。例えば、高速トランジスタに応用する場合など、浮遊キャパシタンスを激減させているために極めて効果が高かった。また、イオンセンサーに使う場合にも電極絶縁・素子分離に有利であるなどの特徴を示していた。
【0004】
かかるダイヤモンド表面を用いる半導体デバイスにかかる技術としては、以下に開示するようなものがある。
【0005】
【特許文献1】
特許第3313696号公報 (第2−3頁 図1)
【0006】
【非特許文献1】
小川雄史 他4名 ダイヤモンドシンポジウム講演要旨集,13th,206−207,1999
【0007】
【非特許文献2】
北谷謙一 他2名 ダイヤモンドシンポジウム講演要旨集,12th,82−83 1999
【0008】
【非特許文献3】
H.Kawarada,et,al.,Phys.Status Solidi A185(2001)79
【0009】
【非特許文献4】
T.Sakai,et,al.,Jpn,J.Appl.Phys.41(2002)2595−2597
【0010】
【発明が解決しようとする課題】
自然に発生するダイヤモンド表面の正孔面密度を高めて応用の幅を広げようという試みがこれまでに繰り返し行なわれてきたが、従来は、概ね1−2×1013/cm2 という上限値があった。この正孔面密度の上限値を高めてダイヤモンド表面を電気的に更にアクティブにできれば、半導体としての応用が拡大されるのみならず、電気化学を基盤にした環境デバイスへの応用の新しい展開が期待される。
【0011】
本発明は、上記状況に鑑み、ダイヤモンド表面の正孔面密度を高めて応用の範囲を拡大することができるダイヤモンド基板表面の処理方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕ダイヤモンド基板表面の処理方法において、ダイヤモンドの表面を水素(H2 )と硫化フッ素(SF6 )の混合ガスでなるプラズマに曝して、ダイヤモンドの表面伝導ホール(正孔)面密度を8×1013/cm2 以上に高めることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
【0014】
本発明は、ダイヤモンドの表面を水素(H2 )と硫化フッ素(SF6 )の混合ガスでなるプラズマに曝して、ダイヤモンドの表面伝導ホール(正孔)面密度の上限を8×1013/cm2 以上に高めるようにする。
【0015】
(実施例)
図1は本発明の実施例を示す基板の反応装置の構成図である。
【0016】
この図において、1は反応炉、2は水素(H2 )と硫化フッ素(SF6 )の混合ガス、3はヒーター加熱部、4は基板載置台、5はその基板載置台4にセットされるダイヤモンド基板、6は短波長のマイクロ波(2.45GHz)電源、7は導波管、8はプラズマ、9排気、10は水冷を示している。
【0017】
(1)まず、反応炉1内に水素(H2 )と硫化フッ素(SF6 )の混合ガス2を供給する。その2種類のガスの混合比は、自由に設定できるが、ここでは、SF6 /H2 の比が100ppm以上の範囲で行った。反応炉1に混合ガス2を導入し、その圧力を20Torrとした。その混合ガス2に短波長のマイクロ波(2.45GHz)電源6からのマイクロ波を照射する。ここでは、マイクロ波は2.45GHzとしたが、周波数の選択は特に問題ではない。マイクロ波の導入電力を調整することにより、反応炉1の中の混合ガス2がプラズマ8の状態になるようにした。この時、導入したマイクロ波電力は400Wである。
【0018】
(2)かかる反応炉1の中に生成したマイクロ波プラズマ8にダイヤモンド基板5の表面を曝し、時間と共に表面化学反応を進行させて表面処理した。このとき、本発明で使う(H2 +SF6 )混合ガス2は極めて大きな効果を呈することが判明した。すなわち、ダイヤモンド基板5の表面に大量のキャリア正孔を発生させることである。これにより、キャリア正孔面密度が1×1014/cm2 以上の表面密度を実現することが可能になった。
【0019】
図2に本発明の実施例のダイヤモンド薄膜表面を(H2 +SF6 )混合ガスのプラズマに曝したときに生じる電気抵抗変化の処理時間依存性を示している。
【0020】
この図において、横軸は処理時間(分)、縦軸は試料電気抵抗(MΩ)である。この時の、処理条件はマイクロ波パワー400W、ガス全圧力30Torr、基板温度600℃であった。
【0021】
この図から分かるように、ガス混合比(SF6 /H2 )が600ppm(●で表示)のとき、処理時間4分において表面電気抵抗が初期の400分の1まで低下していた。これは表面キャリア正孔面密度の上昇とキャリアの移動度μの上昇によるものである。なお、□はガス混合比(SF6 /H2 )が300ppmの場合の特性を示している。
【0022】
さて、キャリア正孔面密度が上昇する様子は図3で見ることができる。
【0023】
図3において、横軸は処理時間(分)、縦軸は表面ホール面密度(1014/cm2 )を示しており、測定はホール効果実験による。
【0024】
図3から明らかなように、表面ホール面密度は処理時間が3分程度になると、8×1013/cm2 となり、この値以上になると、表面ホール面密度は十分に高いと言え、応用の範囲を拡大することができる。
【0025】
すなわち、ガス混合比(SF6 /H2 )が600ppmの場合に、ダイヤモンド表面を、(H2 +SF6 )混合ガスのマイクロ波プラズマに曝すことにより、確実に正孔面密度を上昇させることが実証された。特に、4分処理の時点で1×1014/cm2 の壁を突破していることが分かる。
【0026】
また、上記したようにして得られたダイヤモンド基板の表面に半導体装置(デバイス)を構成することができる。例えば、エネルギーギャップの大きなワイドバンドギャップ半導体デバイス、さらには、表面触媒作用、表面免疫作用等のバイオ関連デバイスへの利用が期待できる。
【0027】
すなわち、ダイヤモンド表面に超高電界を発生させ、その値は、1×107 /cm2 に達する高い値とする。この電界をダイヤモンド表面から外に一部リークさせると、この電界は表面の電気化学作用に強く関わることから、表面触媒作用、表面免疫作用等のバイオ関連デバイスへの利用が期待できるのである。
【0028】
また、シュタルク効果、つまり気体、液体および固体中において、近傍の電子やイオンによる電場や、または外部から加えた電場がスペクトル線に及ぼす効果を内蔵した商用デバイスの実現に途ができる。
【0029】
なお、上記実施例では、ダイヤモンド基板の表面処理としたが、ダイヤモンド基板上に薄いダイヤモイド半導体膜が介在するような場合にも、適用可能である。
【0030】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。
【0031】
【発明の効果】
以上、詳細に説明したように、本発明によれば、次のような効果を奏する。
【0032】
(A)ダイヤモンド基板表面に1×1014/cm2 以上の正孔面密度を実現することができる。
【0033】
(B)ダイヤモンド基板の表面処理により表面電気抵抗を2桁以上に及んで低減させることが可能になった。この効果を利用すれば、ダイヤモンド半導体デバイスの電力応用には極めて好都合であり、損失を低減した大電力動作型の半導体デバイスが実現できる。
【0034】
(C)表面触媒作用、表面免疫作用等のバイオ関連デバイスへの利用が期待できる。
【図面の簡単な説明】
【図1】 本発明の実施例を示す半導体装置の反応装置の構成図である。
【図2】 本発明の実施例のダイヤモンド薄膜表面を(H2 +SF6 )混合ガスのプラズマに曝したときに生じる電気抵抗変化の処理時間依存性を示す図である。
【図3】 本発明のダイヤモンド表面のキャリア正孔面密度が上昇する様子を示す図である。
【符号の説明】
1 反応炉
2 水素(H2 )と硫化フッ素(SF6 )の混合ガス
3 ヒーター加熱部
4 基板載置台
5 ダイヤモンド基板
6 短波長のマイクロ波(2.45GHz)電源
7 導波管
8 プラズマ
9 排気
10 水冷
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating a surface of a diamond substrate and a semiconductor device obtained by the method, and more particularly to the field of manufacturing a wide bandgap semiconductor having a large energy gap, the field of semiconductor surface treatment technology, and the field of semiconductor devices. It deals with high-temperature and high-power power devices, as well as radiation-resistant environmental and space devices. In recent years, with the rise of bioelectrochemistry, expectations for environmental applications using the electrochemical catalyst mechanism on the surface of thin films have increased, but the present invention that can effectively use surface electrical conduction and surface electric field is also deeply related to the field. Is.
[0002]
[Prior art]
There are almost no examples where electrical conductive carriers naturally accumulate on the surface of a semiconductor. However, diamond exhibits exceptional surface electrical conduction. When the surface of diamond is terminated with hydrogen, molecular adsorption of carbonate or the like in the air acts to cause an electrochemical reaction, and holes are generated on the surface as carriers.
[0003]
Originally, although diamond is in an insulating state, the fact that electrical conduction occurs only in the vicinity of the surface was very interesting for use. For example, when applied to a high-speed transistor, the stray capacitance is drastically reduced, so that the effect is extremely high. In addition, when used in an ion sensor, it also showed features such as being advantageous for electrode insulation and element separation.
[0004]
As a technique related to a semiconductor device using such a diamond surface, there are those disclosed below.
[0005]
[Patent Document 1]
Japanese Patent No. 3313696 (page 2-3, Fig. 1)
[0006]
[Non-Patent Document 1]
Yuji Ogawa and 4 others Diamond Symposium Abstracts, 13th, 206-207, 1999
[0007]
[Non-Patent Document 2]
Kenichi Chatan and 2 other Diamond Symposium Abstracts, 12th, 82-83 1999
[0008]
[Non-Patent Document 3]
H. Kawarada, et, al. Phys. Status Solidi A185 (2001) 79
[0009]
[Non-Patent Document 4]
T.A. Sakai, et, al. Jpn, J .; Appl. Phys. 41 (2002) 2595-2597
[0010]
[Problems to be solved by the invention]
Attempts have been made so far to increase the hole surface density of the naturally occurring diamond surface to broaden the range of applications, but conventionally, an upper limit of approximately 1-2 × 10 13 / cm 2 has been hitherto. there were. If the upper limit of the hole area density can be increased to make the diamond surface more active electrically, it will not only expand its application as a semiconductor, but it is also expected to develop new applications for environmental devices based on electrochemistry. Is done.
[0011]
In view of the above circumstances, and an object thereof is to provide a process how a diamond substrate surface capable of expanding the range of applications to enhance the hole surface density of the diamond surface.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] In the diamond substrate surface treatment method, the surface of diamond is exposed to plasma composed of a mixed gas of hydrogen (H 2 ) and fluorine sulfide (SF 6 ), and the surface conduction hole (hole) surface density of diamond is 8 It is characterized by being increased to × 10 13 / cm 2 or more.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
In the present invention, the surface of diamond is exposed to plasma composed of a mixed gas of hydrogen (H 2 ) and fluorine sulfide (SF 6 ), and the upper limit of the surface conductive hole (hole) surface density of diamond is 8 × 10 13 / cm 3. Increase to 2 or more.
[0015]
(Example)
FIG. 1 is a configuration diagram of a substrate reaction apparatus showing an embodiment of the present invention.
[0016]
In this figure, 1 is a reaction furnace, 2 is a mixed gas of hydrogen (H 2 ) and fluorine sulfide (SF 6 ), 3 is a heater heating unit, 4 is a substrate mounting table, and 5 is set on the substrate mounting table 4. A diamond substrate, 6 is a short-wavelength microwave (2.45 GHz) power source, 7 is a waveguide, 8 is plasma, 9 is exhausted, and 10 is water-cooled.
[0017]
(1) First, a mixed gas 2 of hydrogen (H 2 ) and fluorine sulfide (SF 6 ) is supplied into the reaction furnace 1. The mixing ratio of the two kinds of gases can be set freely, but here, the ratio of SF 6 / H 2 was set in the range of 100 ppm or more. The mixed gas 2 was introduced into the reaction furnace 1 and the pressure was set to 20 Torr. The mixed gas 2 is irradiated with microwaves from a short wavelength microwave (2.45 GHz) power source 6. Here, the microwave is 2.45 GHz, but the selection of the frequency is not particularly problematic. The mixed gas 2 in the reaction furnace 1 was changed to a plasma 8 state by adjusting the power introduced by the microwave. At this time, the introduced microwave power is 400 W.
[0018]
(2) The surface of the diamond substrate 5 was exposed to the microwave plasma 8 generated in the reaction furnace 1, and the surface chemical reaction was advanced with time to perform surface treatment. At this time, it was found that the (H 2 + SF 6 ) mixed gas 2 used in the present invention exhibits a very large effect. That is, a large amount of carrier holes are generated on the surface of the diamond substrate 5. This makes it possible to realize a surface density with a carrier hole surface density of 1 × 10 14 / cm 2 or more.
[0019]
FIG. 2 shows the treatment time dependence of the electrical resistance change that occurs when the diamond thin film surface of the embodiment of the present invention is exposed to the plasma of the (H 2 + SF 6 ) mixed gas.
[0020]
In this figure, the horizontal axis represents the processing time (minutes), and the vertical axis represents the sample electrical resistance (MΩ). The processing conditions at this time were a microwave power of 400 W, a gas total pressure of 30 Torr, and a substrate temperature of 600 ° C.
[0021]
As can be seen from this figure, when the gas mixture ratio (SF 6 / H 2 ) was 600 ppm (indicated by ●), the surface electrical resistance decreased to 1/4 of the initial value in the treatment time of 4 minutes. This is due to an increase in surface carrier hole area density and an increase in carrier mobility μ. Incidentally, □ the gas mixing ratio (SF 6 / H 2) shows the characteristic in the case of 300 ppm.
[0022]
Now, how the carrier hole surface density increases can be seen in FIG.
[0023]
In FIG. 3, the horizontal axis indicates the processing time (minutes), the vertical axis indicates the surface hole area density (10 14 / cm 2 ), and the measurement is based on the Hall effect experiment.
[0024]
As is clear from FIG. 3, the surface hole surface density is 8 × 10 13 / cm 2 when the processing time is about 3 minutes, and if it exceeds this value, the surface hole surface density is sufficiently high. The range can be expanded.
[0025]
That is, when the gas mixing ratio (SF 6 / H 2 ) is 600 ppm, the hole surface density can be reliably increased by exposing the diamond surface to microwave plasma of (H 2 + SF 6 ) mixed gas. Proven. In particular, it can be seen that the wall of 1 × 10 14 / cm 2 has been broken through at the time of the 4-minute treatment.
[0026]
In addition, a semiconductor device (device) can be formed on the surface of the diamond substrate obtained as described above. For example, it can be expected to be used for a wide band gap semiconductor device having a large energy gap, as well as bio-related devices such as surface catalysis and surface immunity.
[0027]
That is, an ultrahigh electric field is generated on the diamond surface, and the value thereof is set to a high value reaching 1 × 10 7 / cm 2 . If this electric field is partially leaked from the diamond surface, this electric field is strongly related to the electrochemical action of the surface, so that it can be expected to be applied to bio-related devices such as surface catalysis and surface immunity.
[0028]
Further, it is possible to realize a Stark effect, that is, a commercial device having a built-in effect of an electric field caused by nearby electrons or ions or an externally applied electric field on a spectral line in a gas, a liquid, and a solid.
[0029]
In the above embodiment, the surface treatment of the diamond substrate is used, but the present invention can also be applied to the case where a thin diamondoid semiconductor film is interposed on the diamond substrate.
[0030]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and they are not excluded from the scope of the present invention.
[0031]
【The invention's effect】
As described above in detail, the present invention has the following effects.
[0032]
(A) A hole surface density of 1 × 10 14 / cm 2 or more can be realized on the surface of the diamond substrate.
[0033]
(B) Surface electrical resistance can be reduced by more than two digits by surface treatment of the diamond substrate. If this effect is utilized, it is very convenient for the power application of a diamond semiconductor device, and a high power operation type semiconductor device with reduced loss can be realized.
[0034]
(C) Use in bio-related devices such as surface catalysis and surface immunity can be expected.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a reaction apparatus of a semiconductor device showing an embodiment of the present invention.
FIG. 2 is a graph showing the treatment time dependence of the electrical resistance change that occurs when the surface of the diamond thin film of the example of the present invention is exposed to plasma of a (H 2 + SF 6 ) mixed gas.
FIG. 3 is a diagram showing how the carrier hole area density on the diamond surface of the present invention increases.
[Explanation of symbols]
1 reactor 2 hydrogen (H 2) mixed gas 3 heater heating part 4 substrate mounting table 5 diamond substrate 6 short wavelength microwave (2.45 GHz) power supply 7 waveguide 8 plasma 9 exhaust fluorine sulfide (SF 6) 10 Water cooling

Claims (1)

ダイヤモンドの表面を水素と硫化フッ素の混合ガスでなるプラズマに曝して、ダイヤモンドの表面伝導ホール(正孔)面密度を8×1013/cm2 以上に高めることを特徴とするダイヤモンド基板表面の処理方法。The diamond substrate surface is characterized by exposing the surface of diamond to plasma composed of a mixed gas of hydrogen and fluorine sulfide to increase the surface conduction hole (hole) surface density of the diamond to 8 × 10 13 / cm 2 or more. Method.
JP2003082332A 2003-03-25 2003-03-25 Diamond substrate surface treatment method Expired - Fee Related JP3886922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082332A JP3886922B2 (en) 2003-03-25 2003-03-25 Diamond substrate surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082332A JP3886922B2 (en) 2003-03-25 2003-03-25 Diamond substrate surface treatment method

Publications (2)

Publication Number Publication Date
JP2004284924A JP2004284924A (en) 2004-10-14
JP3886922B2 true JP3886922B2 (en) 2007-02-28

Family

ID=33295656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082332A Expired - Fee Related JP3886922B2 (en) 2003-03-25 2003-03-25 Diamond substrate surface treatment method

Country Status (1)

Country Link
JP (1) JP3886922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843080A1 (en) 2013-08-26 2015-03-04 Yokogawa Electric Corporation Method for treating surface of diamond thin film, method for forming transistor, and sensor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843080A1 (en) 2013-08-26 2015-03-04 Yokogawa Electric Corporation Method for treating surface of diamond thin film, method for forming transistor, and sensor device
US9373506B2 (en) 2013-08-26 2016-06-21 Yokogawa Electric Corporation Method for treating surface of diamond thin film, method for forming transistor, and sensor device

Also Published As

Publication number Publication date
JP2004284924A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
TWI478224B (en) Substrate processing apparatus and method of manufacturing semiconductor device
US10017853B2 (en) Processing method of silicon nitride film and forming method of silicon nitride film
CN102160141B (en) Device and method for producing dielectric layers in microwave plasma
KR100887330B1 (en) Method for modifying insulation film and method for manufacturing semiconductor device
Ueno et al. Low-temperature and low-activation-energy process for the gate oxidation of Si substrates
CN100561687C (en) The manufacture method of Method of processing a substrate and semiconductor device
JP2014060413A (en) Plasma etching method and plasma etching apparatus
Zhang et al. Low temperature photo-oxidation of silicon using a xenon excimer lamp
US9343291B2 (en) Method for forming an interfacial layer on a semiconductor using hydrogen plasma
Liu et al. High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Casady et al. Etching of 6H‐SiC and 4H‐SiC using NF 3 in a Reactive Ion Etching System
JP3886922B2 (en) Diamond substrate surface treatment method
US8697573B2 (en) Process to remove Ni and Pt residues for NiPtSi applications using aqua regia with microwave assisted heating
US20080187747A1 (en) Dielectric Film and Method of Forming the Same
Zhang et al. Large‐scale plasma grafts voltage stabilizer on hexagonal boron nitride for improving electrical insulation and thermal conductivity of epoxy composite
TW200419672A (en) Substrate processing method
JP4164575B2 (en) Manufacturing method of semiconductor device
CN107331602A (en) Method for improving surface hole concentration of diamond material
KR101241951B1 (en) Plasma generating apparatus and method of plasma processing of substrate
US7776751B2 (en) Process for producing silicon compound
CN109326714B (en) Preparation method and preparation device of carbon nanotube field effect transistor and electronic device
JP2004158563A (en) Plasma processing apparatus
Shimizu et al. High-Efficient Hydrogen Generation Study by a Reverse Tailing Pulsed-Plasma Water Dissociation Applying Wet Electrode Method
Murakawa et al. SPA plasma for sub-100nm.(Deposition).
Sharangpani et al. Steam-based RTP for advanced processes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees