JP2004284924A - Method of processing diamond base surface and semiconductor device - Google Patents

Method of processing diamond base surface and semiconductor device Download PDF

Info

Publication number
JP2004284924A
JP2004284924A JP2003082332A JP2003082332A JP2004284924A JP 2004284924 A JP2004284924 A JP 2004284924A JP 2003082332 A JP2003082332 A JP 2003082332A JP 2003082332 A JP2003082332 A JP 2003082332A JP 2004284924 A JP2004284924 A JP 2004284924A
Authority
JP
Japan
Prior art keywords
diamond
semiconductor device
diamond base
mixed gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082332A
Other languages
Japanese (ja)
Other versions
JP3886922B2 (en
Inventor
Takeshi Kobayashi
猛 小林
Takeshi Ota
剛 太田
Kim Sunfuun
キム スンフーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003082332A priority Critical patent/JP3886922B2/en
Publication of JP2004284924A publication Critical patent/JP2004284924A/en
Application granted granted Critical
Publication of JP3886922B2 publication Critical patent/JP3886922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of processing a diamond base surface capable of enlarging the range of application by enhancing the positive hole areal density of the diamond surface, and to provide a semiconductor device. <P>SOLUTION: In the method of processing the diamond base surface, by exposing the surface of the diamond base to a plasma comprised of a mixed gas of hydrogen and fluorine sulfide (SF<SB>6</SB>), the surface conductivity hole areal density of the diamond base is enhanced to 8×10<SP>13</SP>/cm<SP>2</SP>or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ダイヤモンド基板表面の処理方法及びそれによって得られる半導体装置に係り、特に、エネルギーギャップの大きなワイドバンドギャップ半導体の製造分野、半導体表面処理技術分野、半導体デバイス分野に関している。そこでは高温用・高電力用パワーデバイスが扱われると共に、放射線に強い耐環境・宇宙用デバイスなども対象としている。近年、バイオ電気化学の台頭に伴い薄膜表面の電気化学触媒機構を利用した環境応用に期待が高まっているが、表面電気伝導・表面電界が効果的に利用できる本発明はその分野にも深く関わるものである。
【0002】
【従来の技術】
半導体の表面に自然に電気伝導キャリアが蓄積する例は殆どない。しかし、ダイヤモンドは例外的に表面電気伝導を呈する。ダイヤモンドの表面が水素によって終端している場合、大気中のカーボネートなどの分子吸着が作用して電気化学反応が進行し、表面に正孔(ホール)がキャリアとして発生する。
【0003】
本来、ダイヤモンドは絶縁状態であるにも関わらず、その表面近傍に限り電気伝導が生じていることは利用上、大変興味深いものであった。例えば、高速トランジスタに応用する場合など、浮遊キャパシタンスを激減させているために極めて効果が高かった。また、イオンセンサーに使う場合にも電極絶縁・素子分離に有利であるなどの特徴を示していた。
【0004】
かかるダイヤモンド表面を用いる半導体デバイスにかかる技術としては、以下に開示するようなものがある。
【0005】
【特許文献1】
特許第3313696号公報 (第2−3頁 図1)
【非特許文献1】
小川雄史 他4名 ダイヤモンドシンポジウム講演要旨集,13th,206−207,1999
【非特許文献2】
北谷謙一 他2名 ダイヤモンドシンポジウム講演要旨集,12th,82−83 1999
【非特許文献3】
H.Kawarada,et,al.,Phys.Status Solidi A185(2001)79
【非特許文献4】
T.Sakai,et,al.,Jpn,J.Appl.Phys.41(2002)2595−2597
【0006】
【発明が解決しようとする課題】
自然に発生するダイヤモンド表面の正孔面密度を高めて応用の幅を広げようという試みがこれまでに繰り返し行なわれてきたが、従来は、概ね1−2×1013/cmという上限値があった。この正孔面密度の上限値を高めてダイヤモンド表面を電気的に更にアクティブにできれば、半導体としての応用が拡大されるのみならず、電気化学を基盤にした環境デバイスへの応用の新しい展開が期待される。
【0007】
本発明は、上記状況に鑑み、ダイヤモンド表面の正孔面密度を高めて応用の範囲を拡大することができるダイヤモンド基板表面の処理方法及び半導体装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕ダイヤモンド基板表面の処理方法において、ダイヤモンドの表面を水素(H)と硫化フッ素(SF)の混合ガスでなるプラズマに曝して、ダイヤモンドの表面伝導ホール(正孔)面密度を8×1013/cm以上に高めることを特徴とする。
【0009】
〔2〕半導体装置であって、上記〔1〕記載の基板表面の処理方法により得られるダイヤモンドの表面を用いることを特徴とする。
【0010】
〔3〕上記〔2〕記載の半導体装置において、前記ダイヤモンドの表面を高速トランジスタに用いることを特徴とする。
【0011】
〔4〕上記〔2〕記載の半導体装置において、前記ダイヤモンドの表面をイオンセンサーに用いることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
【0013】
本発明は、ダイヤモンドの表面を水素(H)と硫化フッ素(SF)の混合ガスでなるプラズマに曝して、ダイヤモンドの表面伝導ホール(正孔)面密度の上限を8×1013/cm以上に高めるようにする。
【0014】
(実施例)
図1は本発明の実施例を示す基板の反応装置の構成図である。
【0015】
この図において、1は反応炉、2は水素(H)と硫化フッ素(SF)の混合ガス、3はヒーター加熱部、4は基板載置台、5はその基板載置台4にセットされるダイヤモンド基板、6は短波長のマイクロ波(2.45GHz)電源、7は導波管、8はプラズマ、9排気、10は水冷を示している。
【0016】
(1)まず、反応炉1内に水素(H)と硫化フッ素(SF)の混合ガス2を供給する。その2種類のガスの混合比は、自由に設定できるが、ここでは、SF/Hの比が100ppm以上の範囲で行った。反応炉1に混合ガス2を導入し、その圧力を20Torrとした。その混合ガス2に短波長のマイクロ波(2.45GHz)電源6からのマイクロ波を照射する。ここでは、マイクロ波は2.45GHzとしたが、周波数の選択は特に問題ではない。マイクロ波の導入電力を調整することにより、反応炉1の中の混合ガス2がプラズマ8の状態になるようにした。この時、導入したマイクロ波電力は400Wである。
【0017】
(2)かかる反応炉1の中に生成したマイクロ波プラズマ8にダイヤモンド基板5の表面を曝し、時間と共に表面化学反応を進行させて表面処理した。このとき、本発明で使う(H+SF)混合ガス2は極めて大きな効果を呈することが判明した。すなわち、ダイヤモンド基板5の表面に大量のキャリア正孔を発生させることである。これにより、キャリア正孔面密度が1×1014/cm以上の表面密度を実現することが可能になった。
【0018】
図2に本発明の実施例のダイヤモンド薄膜表面を(H+SF)混合ガスのプラズマに曝したときに生じる電気抵抗変化の処理時間依存性を示している。
【0019】
この図において、横軸は処理時間(分)、縦軸は試料電気抵抗(MΩ)である。この時の、処理条件はマイクロ波パワー400W、ガス全圧力30Torr、基板温度600℃であった。
【0020】
この図から分かるように、ガス混合比(SF/H)が600ppm(●で表示)のとき、処理時間4分において表面電気抵抗が初期の400分の1まで低下していた。これは表面キャリア正孔面密度の上昇とキャリアの移動度μの上昇によるものである。なお、□はガス混合比(SF/H)が300ppmの場合の特性を示している。
【0021】
さて、キャリア正孔面密度が上昇する様子は図3で見ることができる。
【0022】
図3において、横軸は処理時間(分)、縦軸は表面ホール面密度(1014/cm)を示しており、測定はホール効果実験による。
【0023】
図3から明らかなように、表面ホール面密度は処理時間が3分程度になると、8×1013/cmとなり、この値以上になると、表面ホール面密度は十分に高いと言え、応用の範囲を拡大することができる。
【0024】
すなわち、ガス混合比(SF/H)が600ppmの場合に、ダイヤモンド表面を、(H+SF)混合ガスのマイクロ波プラズマに曝すことにより、確実に正孔面密度を上昇させることが実証された。特に、4分処理の時点で1×1014/cmの壁を突破していることが分かる。
【0025】
また、上記したようにして得られたダイヤモンド基板の表面に半導体装置(デバイス)を構成することができる。例えば、エネルギーギャップの大きなワイドバンドギャップ半導体デバイス、さらには、表面触媒作用、表面免疫作用等のバイオ関連デバイスへの利用が期待できる。
【0026】
すなわち、ダイヤモンド表面に超高電界を発生させ、その値は、1×10/cmに達する高い値とする。この電界をダイヤモンド表面から外に一部リークさせると、この電界は表面の電気化学作用に強く関わることから、表面触媒作用、表面免疫作用等のバイオ関連デバイスへの利用が期待できるのである。
【0027】
また、シュタルク効果、つまり気体、液体および固体中において、近傍の電子やイオンによる電場や、または外部から加えた電場がスペクトル線に及ぼす効果を内蔵した商用デバイスの実現に途ができる。
【0028】
なお、上記実施例では、ダイヤモンド基板の表面処理としたが、ダイヤモンド基板上に薄いダイヤモイド半導体膜が介在するような場合にも、適用可能である。
【0029】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。
【0030】
【発明の効果】
以上、詳細に説明したように、本発明によれば、次のような効果を奏する。
【0031】
(A)ダイヤモンド基板表面に1×1014/cm以上の正孔面密度を実現することができる。
【0032】
(B)ダイヤモンド基板の表面処理により表面電気抵抗を2桁以上に及んで低減させることが可能になった。この効果を利用すれば、ダイヤモンド半導体デバイスの電力応用には極めて好都合であり、損失を低減した大電力動作型の半導体デバイスが実現できる。
【0033】
(C)表面触媒作用、表面免疫作用等のバイオ関連デバイスへの利用が期待できる。
【図面の簡単な説明】
【図1】本発明の実施例を示す半導体装置の反応装置の構成図である。
【図2】本発明の実施例のダイヤモンド薄膜表面を(H+SF)混合ガスのプラズマに曝したときに生じる電気抵抗変化の処理時間依存性を示す図である。
【図3】本発明のダイヤモンド表面のキャリア正孔面密度が上昇する様子を示す図である。
【符号の説明】
1 反応炉
2 水素(H)と硫化フッ素(SF)の混合ガス
3 ヒーター加熱部
4 基板載置台
5 ダイヤモンド基板
6 短波長のマイクロ波(2.45GHz)電源
7 導波管
8 プラズマ
9 排気
10 水冷
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating the surface of a diamond substrate and a semiconductor device obtained by the method, and more particularly, to the field of manufacturing a wide band gap semiconductor having a large energy gap, the field of semiconductor surface treatment, and the field of semiconductor devices. It deals with high-temperature and high-power power devices, as well as radiation-resistant environment and space devices. In recent years, with the rise of bioelectrochemistry, expectations for environmental applications using the electrochemical catalyst mechanism on thin film surfaces are increasing. However, the present invention, which can effectively utilize surface electric conduction and surface electric field, is deeply involved in this field. Things.
[0002]
[Prior art]
There are almost no examples in which electrically conductive carriers naturally accumulate on the surface of a semiconductor. However, diamond exceptionally exhibits surface electrical conduction. When the surface of diamond is terminated by hydrogen, the adsorption of molecules such as carbonate in the air acts to cause an electrochemical reaction to proceed, and holes are generated as carriers on the surface.
[0003]
Originally, it was very interesting in practical use that although diamond is in an insulating state, electrical conduction occurs only near its surface. For example, when applied to a high-speed transistor, the effect was extremely high because the stray capacitance was drastically reduced. In addition, they also show features such as being advantageous for electrode insulation and element separation when used for ion sensors.
[0004]
As a technique related to a semiconductor device using such a diamond surface, there is a technique disclosed below.
[0005]
[Patent Document 1]
Japanese Patent No. 3313369 (page 2-3, FIG. 1)
[Non-patent document 1]
Yuji Ogawa and 4 others Symposium on Diamonds, 13th, 206-207, 1999
[Non-patent document 2]
Ken-ichi Chatan et al. Abstracts of Diamond Symposium, 12th, 82-83 1999
[Non-Patent Document 3]
H. Kawarada, et. Al. Phys. Status Solidi A185 (2001) 79
[Non-patent document 4]
T. Sakai, et. Al. Jpn, J .; Appl. Phys. 41 (2002) 2595-2597
[0006]
[Problems to be solved by the invention]
Attempts have been made repeatedly to increase the surface area density of the naturally occurring diamond surface to broaden the range of applications, but conventionally, the upper limit value is generally about 1-2 × 10 13 / cm 2. there were. If the diamond surface can be made more active electrically by raising the upper limit of the hole areal density, not only will its application as a semiconductor be expanded, but also new developments in electrochemically based environmental devices will be expected. Is done.
[0007]
The present invention has been made in view of the above circumstances, and has as its object to provide a method of treating a diamond substrate surface and a semiconductor device capable of increasing the hole surface density of the diamond surface and expanding the range of application.
[0008]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
[1] In the method for treating the surface of a diamond substrate, the surface of the diamond is exposed to a plasma comprising a mixed gas of hydrogen (H 2 ) and fluorine sulfide (SF 6 ) to reduce the surface conduction hole (hole) area density of the diamond to 8%. It is characterized by being increased to × 10 13 / cm 2 or more.
[0009]
[2] A semiconductor device characterized by using a diamond surface obtained by the substrate surface treatment method described in [1].
[0010]
[3] The semiconductor device according to the above [2], wherein the surface of the diamond is used for a high-speed transistor.
[0011]
[4] The semiconductor device according to the above [2], wherein the surface of the diamond is used for an ion sensor.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
In the present invention, the surface of diamond is exposed to a plasma composed of a mixed gas of hydrogen (H 2 ) and fluorine sulfide (SF 6 ), and the upper limit of the surface conduction hole (hole) surface density of diamond is set to 8 × 10 13 / cm. Try to increase to two or more.
[0014]
(Example)
FIG. 1 is a configuration diagram of a substrate reaction apparatus showing an embodiment of the present invention.
[0015]
In this figure, 1 is a reaction furnace, 2 is a mixed gas of hydrogen (H 2 ) and fluorine sulfide (SF 6 ), 3 is a heater heating unit, 4 is a substrate mounting table, and 5 is set on the substrate mounting table 4. Reference numeral 6 denotes a diamond substrate, 6 denotes a short-wavelength microwave (2.45 GHz) power supply, 7 denotes a waveguide, 8 denotes plasma, 9 exhaust, and 10 denotes water cooling.
[0016]
(1) First, a mixed gas 2 of hydrogen (H 2 ) and fluorine sulfide (SF 6 ) is supplied into the reaction furnace 1. The mixing ratio of the two gases can be freely set, but here, the ratio of SF 6 / H 2 was set in a range of 100 ppm or more. The mixed gas 2 was introduced into the reaction furnace 1, and the pressure was set to 20 Torr. The mixed gas 2 is irradiated with microwaves from a short wavelength microwave (2.45 GHz) power supply 6. Here, the microwave is 2.45 GHz, but the selection of the frequency is not particularly problematic. The mixed gas 2 in the reaction furnace 1 was brought into the state of plasma 8 by adjusting the introduced power of the microwave. At this time, the introduced microwave power is 400 W.
[0017]
(2) The surface of the diamond substrate 5 was exposed to the microwave plasma 8 generated in the reaction furnace 1, and a surface chemical reaction was progressed with time to perform a surface treatment. At this time, it was found that the (H 2 + SF 6 ) mixed gas 2 used in the present invention exhibited an extremely large effect. That is, a large amount of carrier holes is generated on the surface of the diamond substrate 5. As a result, it has become possible to realize a surface density of a carrier hole area density of 1 × 10 14 / cm 2 or more.
[0018]
FIG. 2 shows the processing time dependence of the electrical resistance change that occurs when the surface of the diamond thin film of the example of the present invention is exposed to the plasma of the (H 2 + SF 6 ) mixed gas.
[0019]
In this figure, the horizontal axis represents the processing time (minutes), and the vertical axis represents the sample electrical resistance (MΩ). The processing conditions at this time were a microwave power of 400 W, a total gas pressure of 30 Torr, and a substrate temperature of 600 ° C.
[0020]
As can be seen from this figure, when the gas mixture ratio (SF 6 / H 2 ) was 600 ppm (indicated by ●), the surface electrical resistance was reduced to 1/400 of the initial value in 4 minutes of the processing time. This is due to an increase in surface carrier hole areal density and an increase in carrier mobility μ. In addition, □ shows the characteristics when the gas mixture ratio (SF 6 / H 2 ) is 300 ppm.
[0021]
The manner in which the carrier hole area density increases can be seen in FIG.
[0022]
In FIG. 3, the horizontal axis represents the processing time (minutes), and the vertical axis represents the surface hole area density (10 14 / cm 2 ). The measurement is based on the Hall effect experiment.
[0023]
As is clear from FIG. 3, the surface hole area density becomes 8 × 10 13 / cm 2 when the processing time is about 3 minutes, and when it exceeds this value, it can be said that the surface hole area density is sufficiently high. The range can be expanded.
[0024]
That is, when the gas mixture ratio (SF 6 / H 2 ) is 600 ppm, by exposing the diamond surface to the microwave plasma of the (H 2 + SF 6 ) mixed gas, the hole surface density can be surely increased. Proven. In particular, it can be seen that the wall of 1 × 10 14 / cm 2 was broken at the time of the 4-minute treatment.
[0025]
In addition, a semiconductor device can be formed on the surface of the diamond substrate obtained as described above. For example, it can be expected to be used for a wide band gap semiconductor device having a large energy gap, and also for a bio-related device such as a surface catalysis and a surface immunity.
[0026]
That is, an ultra-high electric field is generated on the diamond surface, and the value is set to a high value of 1 × 10 7 / cm 2 . If this electric field is partially leaked from the diamond surface to the outside, this electric field is strongly involved in the electrochemical action of the surface, so that its application to bio-related devices such as surface catalysis and surface immunity can be expected.
[0027]
Further, the Stark effect, that is, a commercial device incorporating a built-in effect of an electric field due to nearby electrons or ions in a gas, a liquid, or a solid, or an effect of an externally applied electric field on spectral lines can be used.
[0028]
In the above embodiment, the surface treatment is performed on the diamond substrate. However, the present invention can be applied to a case where a thin diamond semiconductor film is interposed on the diamond substrate.
[0029]
It should be noted that the present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
[0030]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0031]
(A) A hole surface density of 1 × 10 14 / cm 2 or more can be realized on the diamond substrate surface.
[0032]
(B) By the surface treatment of the diamond substrate, the surface electric resistance can be reduced by two digits or more. If this effect is utilized, it is extremely convenient for power application of the diamond semiconductor device, and a high-power operation type semiconductor device with reduced loss can be realized.
[0033]
(C) Use in bio-related devices such as surface catalysis and surface immunity can be expected.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a reaction device of a semiconductor device according to an embodiment of the present invention.
FIG. 2 is a diagram showing the processing time dependency of a change in electrical resistance that occurs when a diamond thin film surface according to an example of the present invention is exposed to a plasma of a (H 2 + SF 6 ) mixed gas.
FIG. 3 is a diagram showing how the carrier hole area density on the diamond surface of the present invention increases.
[Explanation of symbols]
Reference Signs List 1 reaction furnace 2 mixed gas of hydrogen (H 2 ) and fluorine sulfide (SF 6 ) 3 heater heating unit 4 substrate mounting table 5 diamond substrate 6 short-wavelength microwave (2.45 GHz) power supply 7 waveguide 8 plasma 9 exhaust 10 Water cooling

Claims (4)

ダイヤモンドの表面を水素と硫化フッ素の混合ガスでなるプラズマに曝して、ダイヤモンドの表面伝導ホール(正孔)面密度を8×1013/cm以上に高めることを特徴とするダイヤモンド基板表面の処理方法。Exposing the surface of diamond to plasma comprising a mixed gas of hydrogen and fluorine sulfide, thereby increasing the surface conduction hole (hole) surface density of diamond to 8 × 10 13 / cm 2 or more. Method. 請求項1記載のダイヤモンド基板表面の処理方法により得られるダイヤモンドの表面を基板とすることを特徴とする半導体装置。A semiconductor device comprising a diamond surface obtained by the method of claim 1 as a substrate. 請求項2記載の半導体装置において、前記ダイヤモンドの表面を高速トランジスタに用いることを特徴とする半導体装置。3. The semiconductor device according to claim 2, wherein the surface of the diamond is used for a high-speed transistor. 請求項2記載の半導体装置において、前記ダイヤモンドの表面をセンサーに用いることを特徴とする半導体装置。3. The semiconductor device according to claim 2, wherein the surface of the diamond is used as a sensor.
JP2003082332A 2003-03-25 2003-03-25 Diamond substrate surface treatment method Expired - Fee Related JP3886922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082332A JP3886922B2 (en) 2003-03-25 2003-03-25 Diamond substrate surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082332A JP3886922B2 (en) 2003-03-25 2003-03-25 Diamond substrate surface treatment method

Publications (2)

Publication Number Publication Date
JP2004284924A true JP2004284924A (en) 2004-10-14
JP3886922B2 JP3886922B2 (en) 2007-02-28

Family

ID=33295656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082332A Expired - Fee Related JP3886922B2 (en) 2003-03-25 2003-03-25 Diamond substrate surface treatment method

Country Status (1)

Country Link
JP (1) JP3886922B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063443A (en) 2013-08-26 2015-04-09 横河電機株式会社 Surface treatment method of diamond thin film, manufacturing method of field effect transistor, and sensor element

Also Published As

Publication number Publication date
JP3886922B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
Velez-Fort et al. Epitaxial graphene on 4H-SiC (0001) grown under nitrogen flux: Evidence of low nitrogen doping and high charge transfer
JP4754995B2 (en) Thermally conductive material and method for producing the same
Xiao et al. Chemical reaction between Ag nanoparticles and TCNQ microparticles in aqueous solution
TW200703468A (en) Semiconductor device and method for manufacturing the same
US20170356084A1 (en) Processing method of silicon nitride film and forming method of silicon nitride film
KR20120120400A (en) Plasma etching method, method for producing semiconductor device, and plasma etching device
EP1361606A4 (en) Method of producing electronic device material
JP2007158250A5 (en)
JP2007242744A (en) Method of manufacturing silicon carbide semiconductor device, and silicon carbide semiconductor device
US7700459B2 (en) Method for producing electronic device and electronic device
JPH02239623A (en) Stabilizing layer and its manufacture
Ahmed et al. Multilayer MoTe2 field‐effect transistor at high temperatures
KR20130135262A (en) Method of depositing dielectric films using microwave plasma
Liu et al. High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
KR20140135115A (en) Method for forming an interfacial layer on a semiconductor using hydrogen plasma
TWI619169B (en) Method of stripping organic mask with reduced damage to low-k film
TWI268546B (en) Manufacturing method of electronic device material capable of forming a substrate having a film with excellent electric insulation characteristics
JP3886922B2 (en) Diamond substrate surface treatment method
Kurra et al. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns
JP5565729B2 (en) Aluminum nitride-based particle manufacturing method and aluminum nitride-based particle manufacturing apparatus
Zhang et al. Large‐scale plasma grafts voltage stabilizer on hexagonal boron nitride for improving electrical insulation and thermal conductivity of epoxy composite
Liu et al. Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
TW200419672A (en) Substrate processing method
Kim et al. Tuning doping and strain in graphene by microwave-induced annealing
KR101950046B1 (en) Mitigation of silicide formation on wafer bevel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees