JP3885507B2 - Method and apparatus for drying total heat exchanger as a laminated structure and total heat exchanger - Google Patents

Method and apparatus for drying total heat exchanger as a laminated structure and total heat exchanger Download PDF

Info

Publication number
JP3885507B2
JP3885507B2 JP2001089364A JP2001089364A JP3885507B2 JP 3885507 B2 JP3885507 B2 JP 3885507B2 JP 2001089364 A JP2001089364 A JP 2001089364A JP 2001089364 A JP2001089364 A JP 2001089364A JP 3885507 B2 JP3885507 B2 JP 3885507B2
Authority
JP
Japan
Prior art keywords
drying
heat exchanger
total heat
laminated structure
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001089364A
Other languages
Japanese (ja)
Other versions
JP2002286363A (en
Inventor
昌孝 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001089364A priority Critical patent/JP3885507B2/en
Publication of JP2002286363A publication Critical patent/JP2002286363A/en
Application granted granted Critical
Publication of JP3885507B2 publication Critical patent/JP3885507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、顕熱及び潜熱を熱交換し、物質交換については選択透過機能により行う積層構造体である全熱交換器を製造する際の乾燥方法及び乾燥装置並びに全熱交換器に関するものである。
【0002】
【従来の技術】
冷暖房効果の向上のための断熱化や気密化が進むにつれて居住空間の換気の重要性はますます高いものとなってきている。冷暖房効果を損なわずに換気を行なう方法としては、給気と排気との間で熱交換を行なわせる方法が有効であり、温度(顕熱)とともに湿度(潜熱)の交換も同時に行うことができれば効果は著しいものとなる。こうした要求に対して応えるものとして、従来から例えば、特公昭47ー19990号公報や特公昭54ー1054号公報等に開示された静止式の全熱交換器がある。
【0003】
従来の静止式の全熱交換器は、図4によって示すように平らな仕切板20と波形をした間隔板21とを交互に積層し接着剤で固定した構造で、積層する際に間隔板21の方向を一段おきに直交させることにより、給気のための二次通路22と排気のための一次通路23が形成されている。なお、図4における矢印(イ)は給気の方向を、矢印(ロ)は排気の方向をそれぞれ示している。
【0004】
全熱交換器においては仕切板20を隔てて熱交換及び物質交換(気体移動)が行われる。そのため、例えばCOやHCHOあるいはNH等の物質移動も伴うことになるため、仕切板20については気体の選択透過性を有する特殊透過膜で加工した多孔質材のプレートで構成されてきた。さらに湿度移行(水分移行)を効果的に行わせるために、吸湿性化学剤及び難燃性効果を得るための化学剤の処理を行っている。こうした全熱交換器の製造にあたっては、気体の選択透過機能を特殊な化学剤(選択透過性を有する水溶性高分子等)処理によって持たせた伝熱性のある多孔質材のプレートを、一次通路23と二次通路22が交互に層状にできるように間隔板21により間隔を保持して液状の接着剤により接着して構成した全体が濡れた状態にある積層構造体の一次通路23と二次通路22に熱風を通して乾燥させている。
【0005】
【発明が解決しようとする課題】
上記のような選択透過機能を持たせた仕切板20で作られた従来の全熱交換器においては、気体の選択透過性能が低く、高い湿度(潜熱)交換が得られない。また難燃性を持たせるための化学剤の効果も得られない。その原因は、仕切板20の薬剤分布が均一性を欠いているものと考えられる。しかしながら、製造段階での仕切板20の薬剤処理時には薬剤分布は均一性が保たれている。従って、積層体の乾燥工程において薬剤分布が乱れるものと思われる。
【0006】
乾燥時に一次通路23と二次通路22とに通す熱風の温度や風速を種々変えてみると、強風で迅速な乾燥を図るよりも弱い風を通しゆっくりと時間をかけて乾燥させる方が全熱交換器の気体の選択透過性能は幾分高まることが確認できた。しかし、薬剤分布に乱れを起こさずに乾燥するには時間と手間がかかりすぎ、全熱交換器のコストの高騰を招いている。さらには、目標とする化学剤の効果が得られないことになる。
【0007】
本発明はかかる問題点を解決するために、誘電加熱方式では誘電体自身が迅速に加熱することに着目してなされたものであり、その課題とするところは、低コストで薬剤分布の均一性を保持できる誘電加熱方式による積層構造体である全熱交換器の乾燥方法を開発することであり、その乾燥方法を実現できる乾燥装置を開発することであり、気体の選択透過性能の優れた低コストの全熱交換器を提供することである。
【0008】
【課題を解決するための手段】
上記課題を達成するために請求項1の発明は、物質の選択透過機能を薬剤処理によって持たせた伝熱性のある多孔質材のプレートを、二系統の気流の通路が交互に層状にできるように間隔を間隔板で保持して液状の接着剤により接着し、全体が濡れた状態にある積層構造体を乾燥するにあたり、濡れた積層構造体の二系統の通路に個別かつ連続的に送風しながら積層構造体に誘電加熱装置によってマイクロ波を浴びせ、プレートの薬剤分布の均一性を保持して乾燥させる手段を採用する。
【0009】
上記課題を達成するために請求項2の発明は、請求項1に係る前記手段における二系統の通路に送風する気流は、通路を通過する前誘電加熱装置を冷却した温風とする手段を採用する。
【0010】
上記課題を達成するために請求項3の発明は、請求項1又は請求項2のいずれかに係る前記手段における乾燥時の前に、薬剤処理物質と反応して発色する指示薬を含ませる手段を採用する。
【0011】
上記課題を達成するために請求項4の発明は、物質の選択透過機能を薬剤処理によって持たせた伝熱性のある多孔質材のプレートを、二系統の気流の通路が交互に層状にできるように間隔を間隔板で保持して液状の接着剤により接着し、全体が濡れた状態にある積層構造体である全熱交換器を乾燥する乾燥装置について、箱体内に濡れた積層構造体を保持する保持部を設け、保持部に保持した積層構造体の二系統の通路に個別かつ連続的に送風し箱体外へ排気する送風手段を備え、箱体内には保持した積層構造体にマイクロ波を浴びせる誘電加熱装置を備え、プレートの薬剤分布の均一性を保持して乾燥させる手段を採用する。
【0012】
上記課題を達成するために請求項5の発明は、請求項1〜請求項3までのいずれかに係る前記手段を採用して全熱交換器を得る。
【0013】
【発明の実施の形態】
図1〜図3によって示す全熱交換器1は、投影平面形状が方形の仕切板2を、投影平面形状が方形の間隔板3を挟んで所定の間隔をおいて複数層に重ね合わせた積層構造で、全体としては図1に示すように六面体形状となっている。仕切板2は、基材となる伝熱性と透湿性のある多孔質材の薄肉のプレートに、物質の選択透過機能を薬剤処理によって持たせた構造で、プレートの平面全体に選択透過機能を果たす非水溶性の親水性選択透過層がむらなく均一に形成された透湿のプレート(これを所定の大きさに切断したものが仕切板2であり、以降、同一符号を用いることとする)である。
【0014】
仕切板2の基材であるプレート自体は紙系の三次元多孔質物であり、湿度(潜熱)交換を高めるため、吸湿性化学剤及び難燃性化学剤等により処理されている。また、非水溶性の親水性選択透過層は、オキシエチレン基を含むポリウレタン系樹脂、オキシエチレン基を含むポリエステル系樹脂等からなる化学剤の塗工処理により形成されている。
【0015】
この全熱交換器は1、上述したような仕切板2を紙系の薄板を波板状に加工した間隔を保持する間隔板3と液状接着剤を使って貼り合わせ、間隔板3の波の方向が一段おきに直交するように複数層に積層した積層構造体(これを所定の大きさに切断し細分したものが全熱交換器1であり、以降、同一符号を用いることとする)を乾燥処理し、所要の寸法に裁断することによって得られるものであり、排気流を流す一次通路4と給気流を流す二次通路5とを隔てる仕切板2が伝熱機能と高透湿機能と選択的気体遮蔽機能を果たし、換気装置に組込むことによりエネルギーロスの少ない快適な空調環境の形成に寄与できるものである。即ち、顕熱及び潜熱(HO)の移動については許容するが、COやHCHOあるいはNH等といった物質移動についてはこれを阻止する優れた選択透過性能を発揮する。
【0016】
仕切板2の選択透過性は、プレート2の組成ではなく化学剤による親水性選択透過層の属性に拠るものであるが、全熱交換器1として優れた選択透過性能を発揮するのは、仕切板2の全面にむらなく均一に選択透過性をもつ化学剤が分布し定着していることに拠るものであり、化学剤を塗工し液状接着剤で接着した積層構造体1の乾燥過程により維持されているものである。また、難燃性についても難燃性化学剤が積層構造体1の乾燥過程により維持されていることにより備わるものである。
【0017】
プレート2に化学剤の処理を行い間隔板3と液状接着剤で接着して得られた積層構造体1は、所謂びしょ濡れの状態にあり、乾燥させなければならない。この乾燥の仕方が選択透過性能を大きく左右することになる。即ち、乾燥過程における水分の挙動に選択透過性を持つ化学剤や難燃性化学剤が随伴して動くのである。積層構造体1の一次通路4と二次通路5に熱風を通して乾燥させる方法では、風速や温度、時間といった条件をいくら仔細に制御しても毛細管現象等による水の挙動を制することはできず、乾燥過程において水は積層構造体1の端面に向い端面から外部に逃げ出していくことになり、この水の動きに引き摺られるように化学剤が移動していく。こうして乾燥させた積層構造体1は図2に示すように端縁部に化学剤6が凝縮し、中央部分は化学剤6が無い形骸形態となり、これを、全熱交換器1として構成しても選択透過性は極一部分で働くものの全体としては働かず選択透過性能はごく低いものとなる。そして、積層構造体1の中央部の裁断で得られたものでは、選択透過性や難燃性の欠落した全熱交換器1となってしまう。
【0018】
この全熱交換器1は、水分の動きを制して乾燥させた積層構造体1から作られたものである。即ち、誘電体である濡れた積層構造体1を誘電加熱により自身を加熱させて乾燥させたもので、積層構造体1は誘電加熱により中央部から極めて速やかに乾燥し、乾燥過程でプレート2における化学剤の移動は伴わない。従って、選択透過性を持つ化学剤や難燃性の化学剤はプレート2に均一に分布したまま乾燥定着されることになる。
【0019】
この誘電加熱による積層構造体1の乾燥方法は、マイクロ波を発生するマグネトロンと導波管による誘電加熱装置7を備えた箱体8に送風設備9を設た図3に示すような乾燥装置によって手軽に実施することができる。乾燥装置の箱体8内には濡れた積層構造体1を係脱可能に保持する保持部10が設けられ、この保持部10に保持した積層構造体1の一次通路4と二次通路5とに個別かつ連続的に一方向から送風し箱体8外へ排気する送風設備9が備えられている。そして、箱体8内には保持した積層構造体1にマイクロ波を浴びせる誘電加熱装置7が設けられている。送風設備9は積層構造体1の内部で発生する水蒸気を迅速に外部に搬出し乾燥を促進するものであり、送風を熱風化する必要はない。
【0020】
誘電加熱装置7のマグネトロンは、発熱を伴うので積層構造体1の一次通路4又は二次通路5を通過する前の送風設備9の気流で冷却するように配置されている。この構成により積層構造体1の一次通路4又は二次通路5に温風を通すことができ、積層構造体1の乾燥にマグネトロンの発熱を関与させることができる。誘導加熱と送風による乾燥はいたって迅速に進むが、送風は誘電加熱装置7の停止後、五分程度継続させ、冷却することが望ましい。プレート2の化学剤の処理時にフェノールフタレインやそれに類する発色指示薬を混入しておけば、乾燥後の化学剤の濃度分布が色で一見して解るため、品質管理が容易になり品質維持ができる。例えば、塩酸グアジニンや塩化リチウムはフェノールフタレインの指示薬により薄ピンク色に反応する。即ち、この積層構造体1の乾燥方法及び乾燥装置によれば、気体の選択透過性能の優れた全熱交換器1が低コストで得られる。
【0021】
【発明の効果】
請求項1の発明によれば、低コストで薬剤分布の均一性を保持できる誘電加熱方式による積層構造である全熱交換器の乾燥方法が得られる。
【0022】
請求項2の発明によれば、請求項1に係る前記効果とともに誘電加熱装置の発熱を乾燥に関与させることができる。
【0023】
請求項3の発明によれば、請求項1又は請求項2に係る前記効果とともに化学剤の濃度分布が色で一見して解るため、品質管理が容易になる。
【0024】
請求項4の発明によれば、気体の選択透過性能の優れた低コストの積層構造体である全熱交換器が得られる乾燥装置となる
【0025】
請求項5の発明によれば、気体の選択透過性能の優れた低コストの全熱交換器が得られる
【図面の簡単な説明】
【図1】 実施の形態の全熱交換器(積層構造体)を示す斜視図である。
【図2】 熱風通風の乾燥による化学剤の乾燥後の分布を示す積層構造体の平面図である。
【図3】 実施の形態の乾燥装置の構成図である。
【図4】 従来の全熱交換器を示す斜視図である。
【符号の説明】
1 全熱交換器(積層構造体)、 2 仕切板(プレート)、 3 間隔板、4 一次通路、 5 二次通路、 6 化学剤、 7 誘電加熱装置、 8 箱体、 9 送風設備、 10 保持部。
[0001]
[Industrial application fields]
The present invention, the sensible heat and latent heat exchange, to dry燥方method及beauty Drying apparatus and total heat exchanger in the production of the total heat exchanger is a layered structure which performs the selective transmission function for mass transfer Is.
[0002]
[Prior art]
The importance of ventilation in living spaces is becoming more and more important as heat insulation and airtightness improve for improving the air conditioning effect. As a method of ventilation without impairing the air conditioning effect, a method of exchanging heat between supply air and exhaust is effective, and if humidity (latent heat) can be exchanged simultaneously with temperature (sensible heat) The effect is significant. Conventionally, there are static total heat exchangers disclosed in, for example, Japanese Patent Publication No. 47-19990 and Japanese Patent Publication No. 54-1054.
[0003]
The conventional static total heat exchanger has a structure in which flat partition plates 20 and corrugated spacing plates 21 are alternately laminated and fixed with an adhesive as shown in FIG. Are made perpendicular to each other to form a secondary passage 22 for supplying air and a primary passage 23 for exhaust. In FIG. 4, an arrow (A) indicates the direction of supply air, and an arrow (B) indicates the direction of exhaust.
[0004]
In the total heat exchanger, heat exchange and mass exchange (gas transfer) are performed across the partition plate 20. For this reason, for example, mass transfer of CO 2 , HCHO, NH 3, etc. is also accompanied, so that the partition plate 20 has been constituted by a porous material plate processed with a special permeable membrane having gas selective permeability. Furthermore, in order to effectively perform humidity transfer (moisture transfer), a hygroscopic chemical agent and a chemical agent for obtaining a flame retardant effect are processed. In the production of such a total heat exchanger, a plate made of a porous material having heat transfer property, which has a gas selective permeation function by processing a special chemical agent (such as a water-soluble polymer having selective permeability), is used as a primary passage. The primary passages 23 and the secondary passages of the laminated structure in which the entire structure is formed in a state in which the gaps 23 and the secondary passages 22 are alternately formed in layers by holding the gaps with the spacing plates 21 and bonding them with a liquid adhesive. The passage 22 is dried by passing hot air.
[0005]
[Problems to be solved by the invention]
In the conventional total heat exchanger made of the partition plate 20 having the selective permeation function as described above, the selective permeation performance of gas is low and high humidity (latent heat) exchange cannot be obtained. Moreover, the effect of a chemical agent for imparting flame retardancy cannot be obtained. The cause is considered that the medicine distribution of the partition plate 20 lacks uniformity. However, the drug distribution is kept uniform when the partition plate 20 is processed in the manufacturing stage. Therefore, it is considered that the drug distribution is disturbed in the drying process of the laminate.
[0006]
When the temperature and wind speed of the hot air passing through the primary passage 23 and the secondary passage 22 during the drying are variously changed, it is preferable to dry slowly over time by passing a weak wind rather than trying to dry quickly with a strong wind. It was confirmed that the selective permeation performance of the gas in the exchanger increased somewhat. However, it takes too much time and labor to dry without disturbing the drug distribution, leading to an increase in the cost of the total heat exchanger. Furthermore, the effect of the target chemical agent cannot be obtained.
[0007]
In order to solve such problems, the present invention has been made by paying attention to the fact that the dielectric itself heats up quickly in the dielectric heating method, and the problem is that the uniformity of drug distribution at low cost Is to develop a drying method for a total heat exchanger, which is a laminated structure using a dielectric heating method that can hold the heat , and to develop a drying device that can realize the drying method. The cost is to provide a total heat exchanger.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 is configured so that a plate of a heat conductive porous material having a selective permeation function of a substance by a chemical treatment can be alternately layered with two air flow paths. holding the interval spacing plate bonded with a liquid adhesive, upon drying the laminated structure in which a whole is wet, feed individually and continuously to the passage of two systems of the laminated structure in which wet showered microwave by dielectric heating device in the stacked structure with the wind, to employ a means for Ru dried retains the uniformity of drug distribution plate.
[0009]
The invention of claim 2 in order to achieve the above object, the air flow blown into the passage of the two systems in the means according to claim 1, the means for the hot air and the dielectric heating apparatus is cooled before passing through the passages adopt.
[0010]
In order to achieve the above object, the invention according to claim 3 includes means for including an indicator that develops color by reacting with the drug treating substance before drying in the means according to either claim 1 or claim 2. adopt.
[0011]
In order to achieve the above object, the invention according to claim 4 is configured so that a plate of a heat conductive porous material having a selective permeation function of a substance by a chemical treatment can be alternately layered with two air flow paths. holding the interval spacing plate bonded with the liquid adhesive to, for drying device for drying the total heat exchanger is a stacked structure in which a whole is wet, the laminated structure wet the box body a holding portion for holding is provided, and aeolian individually and continuously to the passage of two systems of holding the laminated structure to the holding portion, provided with a blowing means for exhausting into the box outside, the laminated structure was kept in the box body in comprising a dielectric heating apparatus hurl microwave, employing a means for Ru dried retains the uniformity of drug distribution plate.
[0012]
In order to achieve the above object, the invention according to claim 5 employs the means according to any one of claims 1 to 3 to obtain a total heat exchanger.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The total heat exchanger 1 shown in FIG. 1 to FIG. 3 is a laminate in which a partition plate 2 having a rectangular projection plane shape is superimposed on a plurality of layers with a predetermined interval sandwiching a spacing plate 3 having a square projection plane shape. As a whole, the structure has a hexahedral shape as shown in FIG. The partition plate 2 has a structure in which a thin plate of heat-transmitting and moisture-permeable porous material serving as a base material has a selective permeation function of a substance by chemical treatment, and performs a permselective function over the entire plane of the plate. Moisture permeable plate in which a water-insoluble hydrophilic selective permeation layer is uniformly formed (the partition plate 2 is cut into a predetermined size, and the same reference numeral is used hereinafter) is there.
[0014]
The plate itself that is the base material of the partition plate 2 is a paper-based three-dimensional porous material, and is treated with a hygroscopic chemical agent, a flame retardant chemical agent, or the like in order to enhance humidity (latent heat) exchange. The water-insoluble hydrophilic permselective layer is formed by applying a chemical agent made of a polyurethane resin containing an oxyethylene group, a polyester resin containing an oxyethylene group, or the like.
[0015]
In this total heat exchanger, the partition plate 2 as described above is bonded using a liquid adhesive and a spacing plate 3 that holds a spacing obtained by processing a paper-based thin plate into a corrugated plate shape. A laminated structure in which a plurality of layers are laminated so that the directions are perpendicular to each other (the total heat exchanger 1 is obtained by cutting and subdividing this into a predetermined size, and the same reference numerals will be used hereinafter). The partition plate 2 that separates the primary passage 4 through which the exhaust stream flows and the secondary passage 5 through which the supply airflow flows has a heat transfer function and a high moisture permeability function. It fulfills a selective gas shielding function and can contribute to the formation of a comfortable air-conditioning environment with little energy loss by being incorporated in a ventilation device. That is, although the transfer of sensible heat and latent heat (H 2 O) is allowed, it exhibits excellent selective permeation performance that prevents the transfer of substances such as CO 2 , HCHO, NH 3, and the like.
[0016]
The selective permeability of the partition plate 2 depends not on the composition of the plate 2 but on the attribute of the hydrophilic selective permeation layer based on the chemical agent. This is based on the fact that the chemical agent having selective permeability is uniformly distributed and fixed on the entire surface of the plate 2, and is obtained by the drying process of the laminated structure 1 coated with the chemical agent and bonded with the liquid adhesive. It is maintained. Further, the flame retardancy is provided by the fact that the flame retardant chemical agent is maintained by the drying process of the laminated structure 1.
[0017]
The laminated structure 1 obtained by treating the plate 2 with a chemical agent and adhering it to the spacing plate 3 with a liquid adhesive is in a so-called soaked state and must be dried. This drying method greatly affects the selective transmission performance. That is, a chemical agent having selective permeability and a flame retardant chemical agent move accompanying the behavior of moisture in the drying process. In the method of drying hot air through the primary passage 4 and the secondary passage 5 in the laminated structure 1, the water behavior due to the capillary phenomenon cannot be controlled no matter how finely the conditions such as wind speed, temperature, and time are controlled. In the drying process, water is directed to the end surface of the laminated structure 1 and escapes from the end surface to the outside, and the chemical agent moves so as to be dragged by the movement of the water. In the laminated structure 1 thus dried, the chemical agent 6 is condensed at the edge portion as shown in FIG. 2, and the central part is in the form of a body without the chemical agent 6, which is configured as a total heat exchanger 1. However, the permselectivity works at a very small part, but does not work as a whole, and the permselective performance is very low. And what was obtained by the cutting | disconnection of the center part of the laminated structure 1 will be the total heat exchanger 1 which lacked selective permeability and flame retardance.
[0018]
The total heat exchanger 1 is made of a laminated structure 1 that is dried by controlling the movement of moisture. That is, the wet laminated structure 1 which is a dielectric is heated by dielectric heating and dried, and the laminated structure 1 is dried very quickly from the center by dielectric heating. There is no transfer of chemical agents. Therefore, the chemical agent having selective permeability and the flame retardant chemical agent are dried and fixed while being uniformly distributed on the plate 2.
[0019]
The laminated structure 1 is dried by dielectric heating using a drying apparatus as shown in FIG. 3 in which a blower 9 is provided in a box 8 provided with a dielectric heating device 7 using a magnetron and a waveguide for generating microwaves. It can be implemented easily. A holding unit 10 is provided in the box 8 of the drying device so as to detachably hold the wet laminated structure 1, and the primary passage 4 and the secondary passage 5 of the laminated structure 1 held by the holding unit 10 are provided. A blower facility 9 for blowing air from one direction individually and continuously and exhausting it out of the box body 8 is provided. And in the box 8, the dielectric heating apparatus 7 which bathes the held laminated structure 1 with a microwave is provided. The blower equipment 9 is for rapidly transporting water vapor generated inside the laminated structure 1 to the outside to promote drying, and it is not necessary to heat the blown air.
[0020]
Since the magnetron of the dielectric heating device 7 is accompanied by heat generation, the magnetron is disposed so as to be cooled by the airflow of the blower facility 9 before passing through the primary passage 4 or the secondary passage 5 of the laminated structure 1. With this configuration, warm air can be passed through the primary passage 4 or the secondary passage 5 of the laminated structure 1, and the heat generation of the magnetron can be involved in the drying of the laminated structure 1. Although induction heating and drying by air flow proceed quickly, it is desirable that air flow be continued for about 5 minutes after the dielectric heating device 7 is stopped and cooled. If phenolphthalein or a similar color indicator is mixed during processing of the chemical agent on the plate 2, the concentration distribution of the chemical agent after drying can be understood at a glance, so that quality control is easy and quality can be maintained. . For example, guanidine hydrochloride and lithium chloride react lightly with a phenolphthalein indicator. That is, according to the drying method and drying apparatus for the laminated structure 1, the total heat exchanger 1 having excellent gas selective permeation performance can be obtained at low cost.
[0021]
【The invention's effect】
According to the first aspect of the present invention, there is obtained a drying method for a total heat exchanger which is a laminated structure by a dielectric heating method capable of maintaining uniformity of drug distribution at low cost.
[0022]
According to the invention of claim 2, the heat generated by the dielectric heating device can be involved in the drying together with the effect according to claim 1.
[0023]
According to the invention of claim 3, since the concentration distribution of the chemical agent is understood at a glance with the effect according to claim 1 or 2, the quality control is facilitated.
[0024]
According to invention of Claim 4, it becomes a drying apparatus from which the total heat exchanger which is the low-cost laminated structure excellent in the selective permeation | transmission performance of gas is obtained.
[0025]
According to the invention of claim 5, a low-cost total heat exchanger having excellent gas selective permeation performance can be obtained .
[Brief description of the drawings]
FIG. 1 is a perspective view showing a total heat exchanger (laminated structure) according to an embodiment.
FIG. 2 is a plan view of a laminated structure showing a distribution of a chemical agent after drying by drying hot air.
FIG. 3 is a configuration diagram of a drying apparatus according to the embodiment.
FIG. 4 is a perspective view showing a conventional total heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Total heat exchanger (laminated structure), 2 Partition plate (plate), 3 Spacer plate, 4 Primary passage, 5 Secondary passage, 6 Chemical agent, 7 Dielectric heating device, 8 Box body, 9 Blower equipment, 10 Holding Department.

Claims (5)

物質の選択透過機能を薬剤処理によって持たせた伝熱性のある多孔質材のプレートを、二系統の気流の通路が交互に層状にできるように間隔を間隔板で保持して液状の接着剤により接着し、全体が濡れた状態にある積層構造体を乾燥するにあたり、その濡れた積層構造体の前記二系統の通路に個別かつ連続的に送風しながら同積層構造体に誘電加熱装置によってマイクロ波を浴びせ、前記プレートの薬剤分布の均一性を保持して乾燥させる積層構造体である全熱交換器の乾燥方法。A plate of heat-conductive porous material that has a selective permeation function of the substance by chemical treatment is held by a liquid adhesive by holding the interval with an interval plate so that the two air flow paths can be alternately layered. adhered, upon drying the laminated structure in which a whole is wet, by dielectric heating device in the stacked structure with aeolian individually and continuously to the passage of the two systems of the wet laminated structure showered microwave drying method of a total heat exchanger is a stacked structure Ru dried retains the uniformity of drug distribution in the plate. 請求項1に記載の積層構造体である全熱交換器の乾燥方法であって、前記二系統の通路に送風する気流は、その通路を通過する前誘電加熱装置を冷却した温風である積層構造体である全熱交換器の乾燥方法。A drying method of a total heat exchanger is a stacked structure according to claim 1, airflow blown to the passage of the two systems is in hot air dielectric heating apparatus is cooled before passing through the passage of that A drying method of a total heat exchanger which is a certain laminated structure. 請求項1又は請求項2のいずれかに記載の積層構造体である全熱交換器の乾燥方法であって、乾燥する前に薬剤処理物質と反応して発色する指示薬を前記薬剤処理物質に含ませる積層構造体である全熱交換器の乾燥方法。A method for drying a total heat exchanger which is a laminated structure according to claim 1 or 2, wherein an indicator that develops color by reacting with the drug treatment substance before drying is included in the drug treatment substance. Of drying a total heat exchanger, which is a laminated structure. 物質の選択透過機能を薬剤処理によって持たせた伝熱性のある多孔質材のプレートを、二系統の気流の通路が交互に層状にできるように間隔を間隔板で保持して液状の接着剤により接着し、全体が濡れた状態にある積層構造体である全熱交換器を乾燥する乾燥装置であって、箱体内に濡れた前記積層構造体を保持する保持部を設け、この保持部に保持した積層構造体の前記二系統の通路に個別かつ連続的に送風し前記箱体外へ排気する送風手段を備え、箱体内には保持した前記積層構造体にマイクロ波を浴びせる誘電加熱装置を備え、前記プレートの薬剤分布の均一性を保持して乾燥させる乾燥装置。A plate of heat-conductive porous material that has a selective permeation function of the substance by chemical treatment is held by a liquid adhesive by holding the interval with an interval plate so that the two air flow paths can be alternately layered. bonded to a drying device for drying the total heat exchanger is a stacked structure in which a whole is wet, provided a holding portion for holding the laminate structure wet the box body, the holding portion and aeolian individually and continuously to the passage of the two systems of holding the laminated structure, comprising a blower means for evacuating to the box outside, dielectric heating pour microwaves to the laminated structure was kept in the box body A drying apparatus comprising an apparatus for drying while maintaining uniformity of drug distribution on the plate . 請求項1〜請求項3までのいずれかに記載の積層構造体である全熱交換器の乾燥方法によって得られた全熱交換器The total heat exchanger obtained by the drying method of the total heat exchanger which is the laminated structure in any one of Claims 1-3 .
JP2001089364A 2001-03-27 2001-03-27 Method and apparatus for drying total heat exchanger as a laminated structure and total heat exchanger Expired - Fee Related JP3885507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001089364A JP3885507B2 (en) 2001-03-27 2001-03-27 Method and apparatus for drying total heat exchanger as a laminated structure and total heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089364A JP3885507B2 (en) 2001-03-27 2001-03-27 Method and apparatus for drying total heat exchanger as a laminated structure and total heat exchanger

Publications (2)

Publication Number Publication Date
JP2002286363A JP2002286363A (en) 2002-10-03
JP3885507B2 true JP3885507B2 (en) 2007-02-21

Family

ID=18944301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089364A Expired - Fee Related JP3885507B2 (en) 2001-03-27 2001-03-27 Method and apparatus for drying total heat exchanger as a laminated structure and total heat exchanger

Country Status (1)

Country Link
JP (1) JP3885507B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833220B2 (en) * 2003-03-07 2006-10-11 株式会社竹中工務店 Cross-flow type total heat exchanger element
JP6172068B2 (en) * 2014-06-30 2017-08-02 三菱電機株式会社 Heat exchange ventilator

Also Published As

Publication number Publication date
JP2002286363A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JPH1054691A (en) Shim of heat exchanger, and member for heat exchanger, and heat exchanger, and its manufacture
US8696805B2 (en) Heat exchanger for dehumidifier using liquid desiccant and dehumidifier using liquid desiccant having the same
US8550151B2 (en) Heat exchanger
US20110209858A1 (en) Indirect Evaporative Cooling Apparatus
JPH06194093A (en) Total enthalpy heat exchanger
TW200900649A (en) Heat exchange element, method of producing the heat exchange element, heat exchanger, and heat exchange and ventilation device
AU2015316185A1 (en) Compact indirect evaporative cooler
JP2006329499A (en) Heat exchanger
JP3885507B2 (en) Method and apparatus for drying total heat exchanger as a laminated structure and total heat exchanger
JPS6235596B2 (en)
JP2015169401A (en) heat exchange element and heat exchanger
JP5610777B2 (en) Total heat exchange element
JP2013015286A (en) Total heat exchanger, and method for manufacturing partition plate used therefor
JP2738284B2 (en) Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
JP6078602B1 (en) Indirect vaporization air conditioner and indirect vaporization air conditioning method
JP6078668B1 (en) Indirect vaporization air conditioner
JP2008070070A (en) Total heat exchanger
JP2009210236A (en) Heat exchanger and manufacturing method of heat exchanger
JP2000205599A (en) Desiccant air-conditioning system
JPS6123477B2 (en)
JPH0933065A (en) Air conditioning method and air conditioner
JP2006097958A (en) Heat exchanger
JP6078609B1 (en) Indirect vaporization air conditioner and indirect vaporization air conditioning method
JP7089178B2 (en) Total heat exchange element and its manufacturing method
JP2017015369A (en) Heat exchanging element and humidity adjuster element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R151 Written notification of patent or utility model registration

Ref document number: 3885507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees