JP3884514B2 - Screw type decanter - Google Patents

Screw type decanter Download PDF

Info

Publication number
JP3884514B2
JP3884514B2 JP30390096A JP30390096A JP3884514B2 JP 3884514 B2 JP3884514 B2 JP 3884514B2 JP 30390096 A JP30390096 A JP 30390096A JP 30390096 A JP30390096 A JP 30390096A JP 3884514 B2 JP3884514 B2 JP 3884514B2
Authority
JP
Japan
Prior art keywords
liquid
cylinder
stock solution
screw shaft
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30390096A
Other languages
Japanese (ja)
Other versions
JPH10128155A (en
Inventor
一樹 大森
信介 羽島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP30390096A priority Critical patent/JP3884514B2/en
Publication of JPH10128155A publication Critical patent/JPH10128155A/en
Application granted granted Critical
Publication of JP3884514B2 publication Critical patent/JP3884514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Centrifugal Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スクリュー型デカンタに関し、更に詳しくはスクリュー型デカンタの原液供給管の構造に関する。
【0002】
【従来の技術】
この種のスクリュー型デカンタは、固形成分を含む原液スラリーを連続処理して固液分離するのに適しているため、従来から化学工業、食品工業、廃水処理等多くの分野で使用されている。そこで、従来のスクリュー型デカンタについて概説する。従来のスクリュー型デカンタは、図2に示すように、横置き型の筒状ケーシング1と、このケーシング1の両端面の中心に合わせて配設された左右の主軸受2、2に軸支され且つケーシング1内に収納されたシリンダー3と、このシリンダー3に内接し且つシリンダー3とは若干の差速をもって回転するスクリューコンベヤ4と、このスクリューコンベヤ4が螺旋状に巻着された中空状のスクリュー軸5と、このスクリュー軸5内にこれと同軸に挿着された原液供給管6とを備え、原液供給管6から供給された原液スラリーがシリンダー3側に供給され、シリンダー3の内周面で遠心力により液層Lを形成すると共に原液スラリー中の粒状物質等の固形成分を液体との比重差により遠心分離するように構成されている。
【0003】
上記シリンダー3は、図2に示すように、右端が大径端部31として形成され、左端が小径端部32として形成されている。大径端部31には軸支部33を囲む複数の軽液口34が周方向等間隔に穿設され、シリンダー3内で固形成分が遠心分離されて比重の小さな上澄液(以下、「軽液」と称す。)が矢印Cで示すように軽液口34から排出する。また、シリンダー3の左端部には複数の重液口35が周方向等間隔に穿設され、シリンダー3内で固形成分の沈澱物を含む比重の大きなスラリー(以下、「重液」と称す。)がスクリューコンベヤ4によってシリンダー3の傾斜部を掻き上げられて矢印Dで示すように重液口35から排出する。また、スクリュー軸5はシリンダー3内で副軸受7、7によってそれぞれ軸支され、左端のスプライン軸8を介して減速機9に連結され、シリンダー3とは若干の差速をもってスクリューコンベヤ4と一体に同方向へ回転する。
【0004】
また、原液供給管6は入口端部がホルダー10で固定され、出口端部がスクリュー軸5の略中間まで延設されている。この原液供給管6は図示しない接続管路を介して矢印A方向から流入した原液スラリーを出口端からスクリュー軸5へ供給する。スクリュー軸5内の原液スラリーは遠心力によりスクリュー軸5に穿設された複数の分配孔51から矢印Bで示すようにシリンダー3側へ噴出し、シリンダー3内では原料スラリーが上述のように軽液と重液に遠心分離される。
【0005】
【発明が解決しようとする課題】
以上概説したように、従来のスクリュー型デカンタには以下のような課題があった。即ち、シリンダー3の回転数が高く、遠心力が大きい場合には、原液供給管6の先端から流出する原液スラリーには強い遠心力が作用するため、スクリュー軸5内の原液スラリーは複数の分配孔51を速い速度で通過して飛散し、シリンダー3の内周面に形成されている液層Lと激しく衝突し、液層Lを攪乱して混合し、原液スラリーの遠心分離効率を低下させる。
【0006】
また、従来のスクリュー型デカンタを分級器として用いる場合には、シリンダー3の回転数を低くする必要があるが、この場合には、原液供給管6から流出する原液にかかる遠心力が小さいため、原液供給管6から流出した原液スラリーがスクリュー軸5内に滞留し、スクリュー軸5側から分配孔51を介してスクリューコンベヤ4側へ連続して安定的に供給されず、安定した分級を行うことができなかった。
【0007】
本発明は、上記課題を解決するためになされたもので、シリンダーの内周面で形成される液層を撹乱することなく原液をスクリュー軸内部からシリンダー内周面に形成された液層内層流を形成しながら静かに供給し、原液の分離効率を高めて効率良く遠心分離することができ、しかも、低い回転速度でも原液をスクリュー軸内部からシリンダー側へ連続的且つ安定的に供給することができるスクリュー型デカンタを提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の請求項1に記載のスクリュー型デカンタは、一端部が大径に形成され且つ他端部が小径に形成された回転シリンダーと、このシリンダーと同軸に若干の差速をもって回転し且つ外周面にスクリューコンベヤが巻着された中空状のスクリュー軸と、このスクリュー軸内に同軸に挿着された原液供給管とを備え、上記原液供給管から供給された原液スラリーを遠心分離して上記シリンダーの大径端部に穿設された軽液口から軽液を排出すると共に、上記シリンダーの小径端部に穿設された重液口から重液を排出するスクリュー型デカンタにおいて、上記原液供給管の出口端にこれと同軸に先端が閉じた給液筒を延設すると共に、上記給液筒に上記スクリュー軸の周壁を貫通し上記シリンダー側の液層内へ原液を供給する給液ノズルを設けると共に、上記スクリュー軸内で上記スクリュー軸と上記原液供給管とを固定リングを介して連結し、上記スクリュー軸と上記原液供給管とが一体的に回転することを特徴とするものである。
【0009】
【発明の実施の形態】
以下、図1に示す実施形態に基づいて本発明を説明する。尚、図1は本発明のスクリュー型デカンタの一実施形態を示す軸方向の要部縦断面図である。
【0010】
本実施形態のスクリュー型デカンタは、図1に示すように、原液供給管及びスクリュー軸の構造を異にする以外は基本的には図2に示すものに準じて構成されている。そのため、以下では、図1に示すスクリュー型デカンタと同一または相当部分には同一符号を附してそれぞれの説明を省略し、本発明の特徴を中心に説明する。
【0011】
本実施形態のスクリュー型デカンタは、図1に示すように、右端部が大径に形成された且つ左端部が小径に形成されたシリンダー3と、このシリンダー3と同軸に若干の差速をもって回転し且つ外周面にスクリューコンベヤ4が巻着された中空状のスクリュー軸5と、このスクリュー軸5内に同軸に挿着された原液供給管11とを備え、減速機(図2参照)によりスクリューコンベヤ4及びスクリュー軸5がシリンダー3とは若干の差速をもって回転し、原液供給管11からシリンダー3内に供給された原液スラリーが遠心力を受けて軽液と重液に分離され、シリンダー3の大径端部31に穿設された軽液口34から比重の小さい軽液を排出すると共に、シリンダー3の小径端部に穿設された重液口(共に図2参照)から比重の大きい重液を排出する。
【0012】
上記シリンダー3は、図1に示すように、右側に分離ゾーンとして形成された直胴部37と、直胴部37の左側に截頭円錐状の濃縮ゾーンとして形成されたコーン部36とからなり、液層L内で遠心分離された軽液は大径端部31の軽液口34から溢流し、沈澱物はスクリューコンベヤ4によって濃縮ゾーンへ移送され、ここで更に濃縮され、重液として小径端部32の重液口(図2参照)から排出される。
【0013】
上記スクリューコンベヤ4は、上記直胴部37の内周面に内接するように螺旋状に形成され、スクリュー軸5に固定されている。このスクリュー軸5内には原液供給管11が同軸に挿入され、この原液供給管11を介して直胴部37内へ原液スラリーを供給する。この原液供給管11は固定リング16を介してスクリュー軸5内に固定され、スクリュー軸5と一体的に回転する。原液供給管11の先端には給液筒12が基端部で連結され、先端が直胴部37とコーン部36の境界近傍まで伸びている。この給液筒12は、先端が閉じ、その基端にフランジ部12Aを有し、このフランジ部12Aを介してスクリュー軸5に対して固定されている。
【0014】
また、上記給液筒12には複数の給液ノズル13が取り付けられている。即ち、図1に示すように給液筒12には長手方向に2個の孔が形成され、また、2個の孔から例えば周方向へ180°偏倚した位置に2個の孔が同様に形成されている。更に、給液筒12には2個の孔の中間位置で周方向へ例えば±90°偏倚した位置に1個の孔が形成されている。また、スクリュー軸5には給液筒12の各孔に対向させた貫通孔17が形成されている。そして、給液筒12の各孔には給液ノズル13が基端で固定されて半径方向外方へ伸び、その先端がスクリュー軸5の各貫通孔17を貫通している。しかも、各給液ノズル13はシリンダー3内周面で形成される液層L内に浸漬する長さに形成されている。
【0015】
従って、スクリュー型デカンタにより原液スラリーを遠心分離している時には、給液ノズル13の先端がシリンダー3内の液層L内に確実に浸漬され、液層L内へ原液スラリーを層流で供給し、液層Lを極力撹乱せず、遠心分離を効率良く行うことができる。給液ノズル13の個数は、原液スラリーの供給量に即して流速が最適になるように設定し、また、給液ノズル13の長さは、液層Lの攪乱をより少なくなるように設定する。
【0016】
また、原液供給管11は、入口端部の外周面にシール部材14が装着され、シール押さえ部材15によって回転自在に支持されている。原液供給管11の外周面とシリンダー3の軸支部33の内周面との間には両者が回転自在になるように僅かな隙間がある。
【0017】
次に、動作について説明する。減速機が始動すると、シリンダー3が高速回転すると共にスクリューコンベヤ4及びスクリュー軸5がシリンダー3より若干遅い速度で回転する。この時、原液供給管11へ原液スラリーを図1の矢印A方向から連続的に供給すると、原液スラリーは原液供給管11から給液筒12へ到達する。給液筒12はスクリュー軸5と一体に回転してるため、給液筒12内に到達した原液スラリーは図1の矢印Bで示すように遠心力により複数箇所の給液ノズル13を経由してシリンダー3の内周面に向けて流出する。給液ノズル13内では原液スラリーは層流を作って流れ、シリンダー3の内周面へ案内される。
【0018】
シリンダー3側へ供給された原液スラリーはシリンダー3の遠心力によりその内周面で液層Lを形成すると共に原液スラリー中の固形成分は液体との比重差により液体より大きな遠心力を受けて液層L内で沈澱して重液層を作り、液層Lの表層部で比重が小さくなった軽液層を作る。そして、原液スラリーの連続供給により、シリンダー3内の液層Lの深さが徐々に深くなり、遂には液層Lが給液ノズル13に達し、給液ノズル13の先端が液層L内に浸漬される。
【0019】
給液ノズル13の先端が液層L内に浸漬されると、原液スラリーは給液ノズル13から層流で液層L内に流れ込み、従来のように液層Lを攪乱することなく静かに液層L内へ供給される。このように本実施形態の場合には原液スラリーが層流で液層L内へ静かに注がれるため、液層L内で遠心分離された軽液層と重液層の乱れが少なく、周囲への影響を最小限に抑制することができ、遠心分離効果を高めることができ、より清澄な軽液がシリンダー3の軽液口34から矢印Cで示すように溢流して排出され、より比重の高い重液がスクリューコンベヤ4により濃縮ゾーンへ移送されてより高濃度に濃縮されて重液口から排出される。ところが、従来構造のスクリュー型デカンタの場合には、原液スラリーが分配孔から液層Lの清澄な軽液層に直接流出し、広い範囲に渡って軽液層と重液層を攪乱してスラリーに戻し、このスラリーをスクリューコンベア4で重液口側へ移送すると共に懸濁した軽液を軽液口側へ移送するので遠心分離効果が低減する。
【0020】
以上説明したように本実施形態によれば、原液供給管11の出口端にこれと同軸に先端が閉じた給液筒12を延設すると共に、給液筒12にスクリュー軸5の周壁を貫通しシリンダ3側へ原液スラリーを案内する給液ノズル13を設けたため、給液ノズル13から流出する原液スラリーは液層L内へ層流で注ぎ込まれ、液層Lの乱れを極力抑制することができ、シリンダー3における遠心分離効果を高めることができる。
【0021】
また、本実施形態によれば、給液筒12の全周に給液ノズル13を分散配置したため、シリンダー3の回転速度が遅く、給液筒12内の原液スラリーに対する遠心力が小さくても、給液筒12内に原液スラリーが滞留することなく、各給液ノズル13から連続的に安定して流出し、原液スラリーを連続的且つ確実に軽液と重液とに分離することができる。
【0022】
尚、本発明は上記実施形態に何等制限されるものではなく、特に給液ノズルの個数及び長さは原液スラリーの供給流量等に即して適宜設定することができる。
【0023】
【発明の効果】
本発明の請求項1に記載の発明によれば、シリンダーの内周面で形成される液層を撹乱することなく原液をスクリュー軸内部からシリンダー内周面に形成された液層内層流を形成しながら静かに供給し、原液の分離効率を高めて効率良く遠心分離することができ、しかも、低い回転速度でも原液をスクリュー軸内部からシリンダー側へ連続的且つ安定的に供給することができるスクリュー型デカンタを提供することができる。
【図面の簡単な説明】
【図1】本発明のスクリュー型デカンタの一実施形態を示す軸方向の要部縦断面図である。
【図2】従来のスクリュー型デカンタを示す軸方向の縦断面図である。
【符号の説明】
3 シリンダー
4 スクリューコンベヤ
5 スクリュー軸
11 原液供給管
12 給液筒
13 給液ノズル
31 大径端部
32 小径端部
34 軽液口
35 重液口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a screw type decanter, and more particularly to a structure of a stock solution supply pipe of a screw type decanter.
[0002]
[Prior art]
This type of screw-type decanter is suitable for continuous treatment of a stock slurry containing solid components and solid-liquid separation, and has been used in many fields such as the chemical industry, food industry, and wastewater treatment. Therefore, the conventional screw type decanter will be outlined. As shown in FIG. 2, the conventional screw type decanter is pivotally supported by a horizontal type cylindrical casing 1 and left and right main bearings 2, 2 arranged in accordance with the centers of both end faces of the casing 1. A cylinder 3 housed in the casing 1, a screw conveyor 4 which is inscribed in the cylinder 3 and rotates with a slight differential speed from the cylinder 3, and a hollow shape in which the screw conveyor 4 is wound spirally. A screw shaft 5 and a stock solution supply pipe 6 inserted coaxially in the screw shaft 5 are provided, and a stock solution slurry supplied from the stock solution supply pipe 6 is supplied to the cylinder 3 side. A liquid layer L is formed on the surface by centrifugal force, and solid components such as particulate substances in the raw slurry are centrifuged by a specific gravity difference from the liquid.
[0003]
As shown in FIG. 2, the cylinder 3 has a right end formed as a large diameter end portion 31 and a left end formed as a small diameter end portion 32. A plurality of light liquid ports 34 surrounding the shaft support portion 33 are formed in the large diameter end portion 31 at equal intervals in the circumferential direction, and the solid component is centrifuged in the cylinder 3 to obtain a supernatant liquid (hereinafter referred to as “light liquid”). "Liquid") is discharged from the light liquid port 34 as indicated by arrow C. Further, a plurality of heavy liquid ports 35 are formed at equal intervals in the circumferential direction at the left end portion of the cylinder 3, and a slurry having a large specific gravity (hereinafter referred to as “heavy liquid”) containing a solid component precipitate in the cylinder 3. ) Is scraped up by the screw conveyor 4 and discharged from the heavy liquid port 35 as indicated by an arrow D. The screw shaft 5 is supported by auxiliary bearings 7 and 7 in the cylinder 3 and connected to a speed reducer 9 through a spline shaft 8 at the left end. The screw shaft 5 is integrated with the screw conveyor 4 with a slight differential speed. Rotate in the same direction.
[0004]
The stock solution supply pipe 6 has an inlet end fixed by a holder 10 and an outlet end extended substantially to the middle of the screw shaft 5. The stock solution supply pipe 6 supplies the stock solution slurry that has flowed in from the direction of arrow A through a connection pipe (not shown) from the outlet end to the screw shaft 5. The stock slurry in the screw shaft 5 is ejected from the plurality of distribution holes 51 formed in the screw shaft 5 to the cylinder 3 side by the centrifugal force as shown by the arrow B, and the raw material slurry is light as described above in the cylinder 3. Centrifugation into liquid and heavy liquid.
[0005]
[Problems to be solved by the invention]
As outlined above, the conventional screw type decanter has the following problems. That is, when the rotational speed of the cylinder 3 is high and the centrifugal force is large, a strong centrifugal force acts on the raw slurry flowing out from the tip of the raw solution supply pipe 6, so that the raw slurry in the screw shaft 5 is divided into a plurality of distributions. Passing through the hole 51 at a high speed, it is scattered and collides violently with the liquid layer L formed on the inner peripheral surface of the cylinder 3, disturbing and mixing the liquid layer L, and reducing the centrifugal separation efficiency of the raw slurry. .
[0006]
In addition, when using a conventional screw type decanter as a classifier, it is necessary to reduce the rotational speed of the cylinder 3, but in this case, since the centrifugal force applied to the stock solution flowing out from the stock solution supply pipe 6 is small, The stock slurry that has flowed out of the stock solution supply pipe 6 stays in the screw shaft 5 and is not stably supplied continuously from the screw shaft 5 side to the screw conveyor 4 side through the distribution holes 51, so that stable classification is performed. I could not.
[0007]
The present invention has been made to solve the above-described problem, and the stock solution is transferred from the inside of the screw shaft to the liquid layer formed on the inner peripheral surface of the cylinder without disturbing the liquid layer formed on the inner peripheral surface of the cylinder. It can be supplied gently while forming a laminar flow, can be efficiently centrifuged by increasing the separation efficiency of the stock solution, and the stock solution is continuously and stably supplied from the inside of the screw shaft to the cylinder side even at a low rotational speed. It aims at providing the screw type decanter which can be performed.
[0008]
[Means for Solving the Problems]
A screw type decanter according to a first aspect of the present invention comprises a rotating cylinder having one end portion formed in a large diameter and the other end portion formed in a small diameter, and a shaft that rotates coaxially with the cylinder and with a slight differential speed. A hollow screw shaft having a screw conveyor wound around the surface, and a stock solution supply pipe coaxially inserted into the screw shaft, and the stock solution slurry supplied from the stock solution supply tube is centrifuged to In the screw type decanter that discharges the light liquid from the light liquid port formed in the large diameter end of the cylinder and discharges the heavy liquid from the heavy liquid port formed in the small diameter end of the cylinder, the stock solution supply A liquid supply nozzle having a closed end coaxially extending at the outlet end of the pipe, and supplying the stock solution into the liquid layer on the cylinder side through the peripheral wall of the screw shaft. the provided Together, linked via a fixing ring and the screw shaft and the solution feed pipe in the screw shaft, the screw shaft and the said stock solution supply pipe is characterized in that the rotate integrally.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIG. FIG. 1 is a longitudinal sectional view of an essential part in the axial direction showing an embodiment of the screw type decanter of the present invention.
[0010]
As shown in FIG. 1, the screw type decanter of the present embodiment is basically configured according to the one shown in FIG. 2 except that the structure of the stock solution supply pipe and the screw shaft is different. Therefore, in the following, the same or corresponding parts as those of the screw type decanter shown in FIG.
[0011]
As shown in FIG. 1, the screw type decanter of this embodiment is rotated with a slight differential speed coaxially with the cylinder 3 having a right end portion formed in a large diameter and a left end portion formed in a small diameter. And a hollow screw shaft 5 around which a screw conveyor 4 is wound and an undiluted solution supply pipe 11 inserted coaxially into the screw shaft 5 and screwed by a reduction gear (see FIG. 2). The conveyor 4 and the screw shaft 5 rotate with a slight differential speed from the cylinder 3, and the stock slurry supplied into the cylinder 3 from the stock solution supply pipe 11 is separated into light and heavy liquids by centrifugal force. A light liquid having a small specific gravity is discharged from a light liquid port 34 drilled in the large-diameter end portion 31 and a specific gravity is large from a heavy liquid port drilled in the small-diameter end portion of the cylinder 3 (both see FIG. 2). Heavy liquid Out to.
[0012]
As shown in FIG. 1, the cylinder 3 includes a straight body portion 37 formed as a separation zone on the right side and a cone portion 36 formed as a frustoconical concentration zone on the left side of the straight body portion 37. The light liquid centrifuged in the liquid layer L overflows from the light liquid port 34 of the large-diameter end 31, and the precipitate is transferred to the concentration zone by the screw conveyor 4, where it is further concentrated and reduced in size as a heavy liquid. The liquid is discharged from the heavy liquid port at the end 32 (see FIG. 2).
[0013]
The screw conveyor 4 is formed in a spiral shape so as to be inscribed in the inner peripheral surface of the straight body portion 37, and is fixed to the screw shaft 5. A stock solution supply pipe 11 is coaxially inserted into the screw shaft 5, and the stock solution slurry is supplied into the straight barrel portion 37 through the stock solution supply pipe 11. The stock solution supply pipe 11 is fixed in the screw shaft 5 through a fixing ring 16 and rotates integrally with the screw shaft 5. The liquid supply cylinder 12 is connected to the distal end of the stock solution supply pipe 11 at the base end, and the distal end extends to the vicinity of the boundary between the straight body portion 37 and the cone portion 36. The liquid supply cylinder 12 is closed at the distal end, has a flange portion 12A at the proximal end, and is fixed to the screw shaft 5 via the flange portion 12A.
[0014]
The liquid supply cylinder 12 is provided with a plurality of liquid supply nozzles 13. That is, as shown in FIG. 1, two holes are formed in the liquid supply cylinder 12 in the longitudinal direction, and two holes are similarly formed at positions displaced from the two holes by, for example, 180 ° in the circumferential direction. Has been. Furthermore, one hole is formed in the liquid supply cylinder 12 at a position displaced by, for example, ± 90 ° in the circumferential direction at an intermediate position between the two holes. Further, the screw shaft 5 is formed with through holes 17 facing the holes of the liquid supply cylinder 12. A liquid supply nozzle 13 is fixed to each hole of the liquid supply cylinder 12 at the base end and extends outward in the radial direction, and a tip thereof penetrates each through hole 17 of the screw shaft 5. Moreover, each liquid supply nozzle 13 is formed to have a length that is immersed in the liquid layer L formed on the inner peripheral surface of the cylinder 3.
[0015]
Therefore, when the stock slurry is centrifuged by the screw type decanter, the tip of the liquid supply nozzle 13 is surely immersed in the liquid layer L in the cylinder 3, and the stock slurry is supplied into the liquid layer L in a laminar flow. The liquid layer L can be efficiently centrifuged without being disturbed as much as possible. The number of liquid supply nozzles 13 is set so that the flow rate is optimized in accordance with the supply amount of the raw liquid slurry, and the length of the liquid supply nozzle 13 is set so that the disturbance of the liquid layer L is reduced. To do.
[0016]
The stock solution supply pipe 11 has a seal member 14 mounted on the outer peripheral surface of the inlet end and is rotatably supported by a seal pressing member 15. There is a slight gap between the outer peripheral surface of the stock solution supply pipe 11 and the inner peripheral surface of the shaft support portion 33 of the cylinder 3 so that both are rotatable.
[0017]
Next, the operation will be described. When the speed reducer is started, the cylinder 3 rotates at a high speed and the screw conveyor 4 and the screw shaft 5 rotate at a slightly lower speed than the cylinder 3. At this time, when the stock solution slurry is continuously supplied to the stock solution supply pipe 11 from the direction of arrow A in FIG. 1, the stock solution slurry reaches the feed cylinder 12 from the stock solution supply pipe 11. Since the liquid supply cylinder 12 rotates integrally with the screw shaft 5, the stock solution slurry that has reached the liquid supply cylinder 12 passes through the liquid supply nozzles 13 at a plurality of locations by centrifugal force as shown by the arrow B in FIG. It flows out toward the inner peripheral surface of the cylinder 3. In the liquid supply nozzle 13, the stock solution slurry flows in a laminar flow and is guided to the inner peripheral surface of the cylinder 3.
[0018]
The undiluted slurry supplied to the cylinder 3 side forms a liquid layer L on its inner peripheral surface by the centrifugal force of the cylinder 3, and the solid component in the undiluted slurry is subjected to centrifugal force greater than that of the liquid due to the difference in specific gravity from the liquid. A heavy liquid layer is formed by precipitation in the layer L, and a light liquid layer having a reduced specific gravity at the surface layer portion of the liquid layer L is formed. Then, the continuous supply of the stock solution slurry gradually increases the depth of the liquid layer L in the cylinder 3, finally the liquid layer L reaches the liquid supply nozzle 13, and the tip of the liquid supply nozzle 13 enters the liquid layer L. Soaked.
[0019]
When the tip of the liquid supply nozzle 13 is immersed in the liquid layer L, the undiluted slurry flows into the liquid layer L in a laminar flow from the liquid supply nozzle 13, and the liquid layer L is gently disturbed without disturbing the liquid layer L as in the past. Supplied into layer L. Thus, in the case of this embodiment, since the undiluted slurry is gently poured into the liquid layer L in a laminar flow, there is little disturbance of the light liquid layer and the heavy liquid layer centrifuged in the liquid layer L, and the surroundings As a result, the clear liquid can overflow and be discharged from the light port 34 of the cylinder 3 as shown by the arrow C, and the specific gravity can be increased. Heavy liquid is transferred to the concentration zone by the screw conveyor 4 to be concentrated to a higher concentration and discharged from the heavy liquid port. However, in the case of a screw type decanter having a conventional structure, the raw slurry flows directly from the distribution hole to the clear light liquid layer of the liquid layer L, disturbing the light liquid layer and the heavy liquid layer over a wide range, and slurry. The slurry is transferred to the heavy liquid port side by the screw conveyor 4 and the suspended light liquid is transferred to the light liquid port side, so that the centrifugal separation effect is reduced.
[0020]
As described above, according to the present embodiment, the supply tube 12 having the tip closed coaxially with the outlet end of the stock solution supply pipe 11 is extended, and the peripheral wall of the screw shaft 5 is passed through the supply tube 12. Since the liquid supply nozzle 13 for guiding the raw liquid slurry to the cylinder 3 side is provided, the raw liquid slurry flowing out from the liquid supply nozzle 13 is poured into the liquid layer L in a laminar flow, and the disturbance of the liquid layer L is suppressed as much as possible. The centrifugal separation effect in the cylinder 3 can be enhanced.
[0021]
Further, according to the present embodiment, since the liquid supply nozzles 13 are dispersedly arranged over the entire circumference of the liquid supply cylinder 12, even if the rotational speed of the cylinder 3 is slow and the centrifugal force on the raw liquid slurry in the liquid supply cylinder 12 is small, The stock solution slurry does not stay in the feed tube 12 and flows out from each feed nozzle 13 stably and stably, and the stock solution slurry can be continuously and reliably separated into light and heavy liquids.
[0022]
The present invention is not limited to the above-described embodiment, and in particular, the number and length of the liquid supply nozzles can be appropriately set according to the supply flow rate of the stock solution slurry.
[0023]
【The invention's effect】
According to the first aspect of the present invention, laminar flow of the stock solution from the inside of the screw shaft to the liquid layer formed on the inner peripheral surface of the cylinder without disturbing the liquid layer formed on the inner peripheral surface of the cylinder . It is possible to perform the centrifugal separation efficiently by increasing the separation efficiency of the stock solution and forming the stock solution from the inside of the screw shaft to the cylinder side continuously and stably even at a low rotational speed. A screw-type decanter that can be provided can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a main part in an axial direction showing an embodiment of a screw type decanter of the present invention.
FIG. 2 is a longitudinal sectional view in the axial direction showing a conventional screw type decanter.
[Explanation of symbols]
3 Cylinder 4 Screw conveyor 5 Screw shaft 11 Stock solution supply pipe 12 Supply tube 13 Supply nozzle 31 Large diameter end 32 Small diameter end 34 Light liquid port 35 Heavy liquid port

Claims (1)

一端部が大径に形成され且つ他端部が小径に形成された回転シリンダーと、このシリンダーと同軸に若干の差速をもって回転し且つ外周面にスクリューコンベヤが巻着された中空状のスクリュー軸と、このスクリュー軸内に同軸に挿着された原液供給管とを備え、上記原液供給管から供給された原液スラリーを遠心分離して上記シリンダーの大径端部に穿設された軽液口から軽液を排出すると共に、上記シリンダーの小径端部に穿設された重液口から重液を排出するスクリュー型デカンタにおいて、上記原液供給管の出口端にこれと同軸に先端が閉じた給液筒を延設すると共に上記給液筒に上記スクリュー軸の周壁を貫通し上記シリンダー側の液層内へ原液を供給する給液ノズルを設け、更に、上記スクリュー軸内で上記スクリュー軸と上記原液供給管とを固定リングを介して連結し、上記スクリュー軸と上記原液供給管とが一体的に回転することを特徴とするスクリュー型デカンタ。A rotating cylinder with one end formed in a large diameter and the other end formed in a small diameter, and a hollow screw shaft that rotates with a slight differential speed coaxially with the cylinder and has a screw conveyor wound around the outer peripheral surface And a stock liquid supply pipe coaxially inserted in the screw shaft, and a light liquid port formed in the large diameter end of the cylinder by centrifuging the stock solution slurry supplied from the stock solution supply pipe In the screw type decanter that discharges the light liquid from the cylinder and discharges the heavy liquid from the heavy liquid port formed in the small diameter end of the cylinder, the feed end is closed at the outlet end of the stock solution supply pipe. co on SL liquid supply nozzle for supplying a stock solution to the liquid supply tube through the wall of the screw shaft on the cylinder side of the liquid layer provided when extending the liquid cylinder, further, the screw shaft in the screw shaft And above Screw decanter a liquid supply pipe is connected via the fixing ring, the screw shaft and the said stock solution supply pipe, characterized in that the rotate integrally.
JP30390096A 1996-10-29 1996-10-29 Screw type decanter Expired - Lifetime JP3884514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30390096A JP3884514B2 (en) 1996-10-29 1996-10-29 Screw type decanter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30390096A JP3884514B2 (en) 1996-10-29 1996-10-29 Screw type decanter

Publications (2)

Publication Number Publication Date
JPH10128155A JPH10128155A (en) 1998-05-19
JP3884514B2 true JP3884514B2 (en) 2007-02-21

Family

ID=17926625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30390096A Expired - Lifetime JP3884514B2 (en) 1996-10-29 1996-10-29 Screw type decanter

Country Status (1)

Country Link
JP (1) JP3884514B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2321057B1 (en) * 2008-06-06 2020-01-01 M-I L.L.C. Dual feed centrifuge
JP6473939B2 (en) * 2017-03-03 2019-02-27 俊治 角野 centrifuge

Also Published As

Publication number Publication date
JPH10128155A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
US6780147B2 (en) Centrifuge with open conveyor having an accelerating impeller and flow enhancer
EP1473087B1 (en) Conveyor for a centrifuge
EP0228097B1 (en) Rotating vortex separator for a heterogeneous liquid
US6790169B2 (en) Centrifuge with feed tube adapter
US6599422B2 (en) Separator for liquids containing impurities
BR9608031A (en) Particle separation apparatus and process
CN103842092A (en) Centrifuge and discharge port member of a centrifuge for power reduction
US20180001329A1 (en) Solid Bowl Centrifuge
CN103420556B (en) Centrifugal separating device and mud dewatering method
US5306225A (en) Decanter centrifuge having a disc-like dip weir with a hole
US5542903A (en) Centrifugal liquid separating machine using deceleration vanes
FR2478489A1 (en) METHOD AND DEVICE FOR SEPARATING PARTICLES IN A FLUID, IN PARTICULAR FOR PURIFYING PAPER SUSPENSIONS
JP3884514B2 (en) Screw type decanter
US3430850A (en) Centrifugal separator
US5792039A (en) Decanter centrifuge for separating feed suspension into fractions and method for operating same
JPH03270747A (en) Decantation-type centrifugal separator
US3423016A (en) Continuously operating solid-bowl centrifuge
KR101854877B1 (en) Centrifugal dehydrator
JPH0459065A (en) Screw centrifugal separator
JP3402419B2 (en) Centrifugal concentrator
JP7457470B2 (en) centrifugal separator
JP7421286B2 (en) centrifugal separator
CA2084974C (en) Nozzle for disc centrifuge bowl
JPH0731149U (en) Screw type decanter
JP2002011381A (en) Centrifugal separator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term