JP3883471B2 - Water pressure inspection method for soft tubes - Google Patents
Water pressure inspection method for soft tubes Download PDFInfo
- Publication number
- JP3883471B2 JP3883471B2 JP2002140599A JP2002140599A JP3883471B2 JP 3883471 B2 JP3883471 B2 JP 3883471B2 JP 2002140599 A JP2002140599 A JP 2002140599A JP 2002140599 A JP2002140599 A JP 2002140599A JP 3883471 B2 JP3883471 B2 JP 3883471B2
- Authority
- JP
- Japan
- Prior art keywords
- water pressure
- water
- pressure
- pipe
- inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Examining Or Testing Airtightness (AREA)
Description
【0001】
【産業上の利用分野】
この発明は軟質管の水圧検査方法に関し、特にたとえば水道用PE管,給水用PE管やPB管等のような比較的軟質な合成樹脂管すなわち軟質管からなる管路の施工完了時等に行って管路の漏水の有無を検査する、軟質管の水圧検査方法に関する。
【0002】
【従来の技術】
管路の施工完了後には水圧試験を行い、接続不良等に基づく管路の漏水の有無が検査される。軟質管からなる管路の場合、軟質管の膨張によって生じる圧力低下が大きく、しかもその圧力低下の挙動が外的条件等によって一定でなくばらつくため、漏水の有無の判定が困難で、誤判定を生じ易かった。そこで、従来、確実に検査するために種々の検査方法が提案されているが、その一例がたとえば特許第2931337号公報[G01M3/28]に開示される。
【0003】
特許第2931337号公報では、まず、管路に最大実使用圧力の1.5〜2.5倍の一次の液体圧力を負荷して所定時間保持し、次に、管路の水圧を低下させて最大実使用圧力と同程度の二次の液体圧力を負荷して、時間経過にともなう圧力低下を検査するようにしている。この公報によれば、上記のような一次の液体圧力を負荷して合成樹脂管を膨張させておいてから、二次の液体圧力を負荷するので、二次の液体圧力を負荷したときには管径が膨張せず、管の膨張に起因する圧力低下の影響を排除でき、確実に検査できる。つまり、この公報では、一次圧力を負荷して所定時間保持することによって、二次圧力負荷後の水圧低下を起こさせないようにしている。したがって、この二次圧力負荷後に圧力低下がある場合には、接続不良に基づく漏洩があることが判明する。
【0004】
【発明が解決しようとする課題】
しかし、上記公報では、一次の液体圧力で所定時間保持する必要がある。この所定時間は実施例では2時間であり長い。さらに、その後の二次の液体圧力では、1時間保持して、圧力低下に起因する昇圧の発生等のような圧力挙動を安定させ、その後の圧力低下を検査している。また、これらの保持時間はそれぞれ30分〜数時間程度で充分であるとの記載があり、したがって、上記公報開示技術によれば、検査時間として少なくとも数時間はかかってしまい、検査時間が長くなってしまう。
【0005】
また、この従来技術では、上述のように所定時間保持するので、この間、水圧の監視や微調整等を行うための作業者が必要となってしまい、面倒であり作業性が悪い。
【0006】
それゆえに、この発明の主たる目的は、検査時間を短縮でき、しかも簡便に行える、軟質管の水圧検査方法を提供することである。
【0007】
【課題を解決するための手段】
この発明は、軟質管からなる管路の水圧検査方法であって、(a) 管路を密閉して管路内に水を供給し、(b) 管路に検査水圧よりも大きい余圧1.75MPaを負荷し、(c) その後直ちに検査水圧1.0MPaまで抜圧し、(d) 検査水圧になってから1時間後の管路の水圧である第1測定水圧を測定し、(e) 第1測定水圧が第1基準水圧0.9MPa以上であるとき、管路は漏水無しであると判定し、 (f) ステップ (e) において第1測定水圧が第1基準水圧よりも小さいとき、さらに、 (g) 検査水圧になってから24時間後の管路の水圧である第2測定水圧を測定し、 (h) 第2測定水圧が第2基準水圧0.7MPa以上であるとき、管路は漏水無しであると判定する、軟質管の水圧検査方法である。
【0008】
【作用】
この発明においては、まず、軟質管からなる管路を密閉して管路内に水を供給する。そして、この管路に検査水圧よりも大きい余圧1.75MPaを負荷する。このステップによって、管に大きな変形を予め付与することができ、その後の検査における水圧低下挙動の誤差を縮小することができる。したがって、誤判定を回避することができる。余圧の負荷後、保持時間を設けることなく直ちに、検査水圧である1.0MPaまで抜圧する。そして、その後の圧力低下挙動を測定して、管路の漏水の有無を判断する。つまり、検査水圧になってから1時間後の管路の水圧すなわち第1測定水圧を測定する。そして、この第1測定水圧が所定の第1基準水圧以上であるとき、管路は漏水無しであると判定する。この第1規準水圧は、発明者等の実験によって求められ、具体的には0.9MPaに設定される。
【0009】
また、第1基準水圧は0.95MPaに設定されてもよい。この場合には、判定の精度を上げることができる。
【0010】
また、第1測定水圧が第1基準水圧よりも小さかった場合には、さらに、圧力低下挙動の測定を続行して、管路の漏水の有無を判断する。つまり、検査水圧になってから24時間後の管路の水圧すなわち第2測定水圧を測定する。そして、この第2測定水圧が所定の第2基準水圧以上であるとき、管路は漏水無しであると判定する。この第2基準水圧もまた、発明者等の実験によって求められ、具体的には0.7MPaに設定される。このように、検査水圧負荷後1時間では管路に漏水無しと判定することができない場合であっても、その後の測定によって漏水有無の判断をすることが可能となり、判定の精度を向上できる。
【0011】
【発明の効果】
この発明によれば、余圧を負荷した後、保持時間を設けないで直ちに検査水圧まで抜圧するようにしているので、検査時間を短縮することができる。しかも検査水圧の負荷後1時間で漏水の有無を判別することができる。さらに、保持時の水圧監視や微調整等を行う作業者が不要であるので、簡便に検査できて、作業性を向上できる。
【0012】
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
【0013】
【実施例】
図1に示すこの実施例の軟質管の水圧検査方法は、たとえば水道用PE管,給水用PE管やPB管等のような軟質管からなる管路の施工完了時等に行って管路の漏水の有無を検査するものである。
【0014】
水圧検査の際には、まず、検査対象である管路の管端部にたとえば止水フランジまたはキャップ等の封止部材を装着し、管路を密閉する。1つの管端部の封止部材にはたとえば水圧ポンプ等からの給水管が接続される。この水圧ポンプによって密閉した管路内に水を供給して充填する。水圧ポンプは管路内に水を供給し、かつ、所望の水圧を負荷することができる。また、管路には圧力センサまたは圧力計等の圧力検出手段が設けられており、これにより管路内の水圧が検出・測定される。
【0015】
そして、図1のステップS1で、この管路に検査水圧よりも大きい余圧1.75MPaを負荷する。このステップによって、管路に大きな変形を予め付与することができ、その後の検査における水圧低下挙動の誤差を縮小することができる。したがって、水圧低下挙動を安定させ、誤判定を回避することが可能となる。
【0016】
余圧1.75Mpaの負荷後、すなわち、管路内の水圧が1.75MPaに達した後、ステップS3において、保持時間を設けることなく直ちに、検査水圧まで抜圧し、その後の圧力低下挙動を測定する。たとえば管路内水圧が1.75MPaになったときに水圧ポンプの圧力設定値を検査水圧値に変更すればよい。このような水圧ポンプの操作によって、管路内の水が管路外へ戻されて検査水圧まで抜圧される。検査水圧は管路を構成する軟質管の設計最大水圧であるところの1.0MPaに設定される。
【0017】
この実施例では、検査水圧まで抜圧した後、つまり、管路に検査水圧を負荷した後、管路内の水圧は、管路の漏水の有無にかかわらず低下挙動を示す。なお、従来技術で説明した特許第2931337号公報では、本件発明とは異なり、その後の圧力低下は漏水有りの場合にのみ生じるとされる。
【0018】
したがって、この実施例では、圧力低下挙動を分析して、管路の漏水の有無を判断する。後述する発明者等の実験によって、検査水圧になってから所定時間経過後の管路の水圧が一定の基準値以上であれば、管路には漏水が無いと判定できることがわかった。実験によれば、最初の漏水の判断時は、検査水圧になってから1時間後に設定され、その基準値すなわち第1基準水圧は、この実施例では0.95MPaに設定される。
【0019】
つまり、検査水圧になってから1時間後の管路の水圧すなわち第1測定水圧を測定する。そして、ステップS5で、この第1測定水圧が第1基準水圧以上であるか否かを判断する。第1測定水圧が第1基準水圧以上であるとき、管路に漏水は発生していないので、ステップS7で、管路は漏水無しであると判定する。
【0020】
一方、第1測定水圧が第1基準水圧よりも小さかった場合、すなわち、ステップS5の時点の判断では管路は漏水無しであると判定することができない場合には、さらに圧力低下挙動の測定を続行し、これを分析することによって、再び管路の漏水の判断をすることができることが実験により判明した。つまり、その後の所定時間経過後の管路の水圧が一定の基準値以上であれば、管路には漏水が無いと判定できる。実験によれば、この2度目の漏水の判断時は、検査水圧になってからたとえば24時間後に設定され、その基準値すなわち第2基準水圧は、この実施例では0.7MPaに設定される。
【0021】
つまり、測定を継続し、検査水圧になってから24時間後の管路の水圧すなわち第2測定水圧を測定する。そして、ステップS9で、この第2測定水圧が第2基準水圧以上であるか否かを判断する。
【0022】
ステップS9で、第2測定水圧が第2基準水圧以上であるとき、管路に漏水は発生していないので、ステップS7で、管路は漏水無しであると判定する。このように、検査水圧負荷後1時間では管路に漏水無しと判定することができず、漏水有りと判定される可能性のあった管路であっても、その後の測定に基づいて、漏水有無の再判断が可能となり、したがって、判定の精度をさらに向上することができる。
【0023】
一方、ステップS9で第2測定水圧が第2基準水圧よりも小さかったときは、管路には漏水が発生しているおそれがあるので、ステップS11で、管路は漏水有りであると判定する。
【0024】
この実施例によれば、余圧を負荷した後、保持時間を設けないで直ちに検査水圧まで抜圧するようにしているので、検査時間を短縮することができる。しかも、検査水圧の負荷後1時間で漏水の有無を判別することができる。さらに、保持時の水圧監視や微調整等を行う作業者が不要であるので、簡便に検査できて、作業性を向上できる。
【0025】
発明者等は実験を行い、本発明における漏水有無の判定条件を明らかにした。実験の結果を図2および図3に示す。この実験では、水道用PE管が使用され、管径、管路長および漏水量の異なる6つの管路が試料として用いられている。つまり、管径がφ100mmで管路長100mの管路であって、漏水量がそれぞれ無し,0.05%/hおよび0.12%/hに設定された3つの管路と、管径がφ150mmで管路長2mの管路であって、漏水量がそれぞれ無し,0.08%/hおよび0.15%/hに設定された3つの管路である。この漏水量は、単位時間あたりに漏れる量の内部水量に対する比で示される。これら各管路に対して、本発明に従った検査方法の各ステップを実行した。つまり、まず、管路を密閉して管路内に水を供給し、管路に余圧1.75MPaを負荷し、そして、余圧負荷後直ちに検査水圧1.0MPaまで抜圧した。そして、その後の圧力低下挙動を測定した。
【0026】
図2には検査水圧負荷後1時間までの水圧変化が示される。図2によれば、経過時間1時間の時点で、水圧0.95MPa付近において漏水判定の境界を見出し得る。具体的には、検査水圧を負荷してから1時間後における水圧について検討すると、φ100×100m漏水無し管路(実線表示)のみが水圧0.95MPa以上を示し、非常に微量ではあるが漏水の有るφ100×100m漏水量0.05%/h管路(長破線表示)は0.95MPaを下回っている。したがって、この時点において水圧が少なくとも0.95MPa程度あれば管路は漏水が無いものと判断できることがわかる。つまり、検査水圧負荷後1時間の第1基準水圧を0.95MPaに設定することができ、この基準によれば0.05%/h以上の漏水判定能力を発揮できる。なお、この判定能力は、従来の検査方法の一例であるところの単純に検査水圧1.0MPaを負荷して行う検査方法の判定能力が0.85%/h程度であったことと比べると、極めて精度の高いものといえる。
【0027】
なお、もう1つの漏水の無い管路であるφ150×2m漏水無し管路(1点鎖線表示)については、この判断時点で0.95MPaを下回っており、この基準では漏水無しと判定されない。このように同じ漏水の無い管路で判断が別れてしまうのは、配管形態の極端な相違による水圧低下挙動の違いや測定誤差等の影響が出たためであると思われる。
【0028】
図3には検査水圧負荷後24時間までの水圧変化が示される。図3によれば、漏水の有無によって水圧低下挙動に明確な差が生じることがわかり、経過時間24時間の時点では、水圧0.7MPa付近において漏水判定の境界を見出し得る。すなわち、検査水圧を負荷してから24時間後における水圧について検討すると、φ100×100m漏水無し管路(実線表示)およびφ150×2m漏水無し管路(1点鎖線表示)は水圧0.7MPa以上を示し、一方、漏水の有る管路はすべて0.7MPaよりも小さい水圧を示す。したがって、この時点において水圧が少なくとも0.7MPa程度あれば管路は漏水が無いものと判断できることがわかる。つまり、検査水圧負荷後24時間の第2基準水圧を0.7MPaに設定することができ、この基準によれば0.05%/h以上の漏水判定能力を発揮できる。また、この24時間後の判断によって、先の1時間後の判断では判定し切れなかったφ150×2m漏水無し管路(1点鎖線表示)についても、漏水無しと判定することができることとなる。
【0029】
このようにして、この実験によって第1および第2基準水圧が求められ、これらを適用した本発明に従った方法によって管路の漏水有無の判定すなわち水圧検査を確実に行うことができる。
【0030】
なお、上述の実施例では、第1基準水圧を0.95MPaに設定したが、他の実施例では、第1基準水圧を0.9MPa程度に設定し、つまり、検査水圧負荷後1時間の時点で水圧が0.9MPa以上であるときは、その管路は漏水無しであると判定するようにしてもよい。すなわち、図2によれば、経過時間1時間の時点で、φ100×2m漏水量0.15%/h管路(破線表示)だけが、他の管路の水圧低下と比べると格別に大きい水圧低下を示しているのがわかる。したがって、この0.15%/hの漏水量を、他のものと区別して、許容できない程度の漏水であるとみなすこともできる。したがって、少なくともこの漏水量0.15%/h程度の漏水状態を示す管路を漏水有りと判定すべく、第1基準水圧を0.9MPa程度に設定する。なお、この場合でも、上述した従来の単純な検査方法の漏水判定能力0.85%/hよりも極めて高い検査精度を確保している。
【0031】
また、上述の各実施例では、最初に負荷する余圧を1.75MPaに設定しているが、軟質管に耐久性があって、かつ、ポンプ能力を確保できるのであれば、1.75MPa以上の余圧を負荷するようにしてもよい。
【図面の簡単な説明】
【図1】この発明の一実施例を示すフロー図である。
【図2】検査水圧負荷後1時間までの管路の水圧の経時変化を示すグラフである。
【図3】検査水圧負荷後24時間までの管路の水圧の経時変化を示すグラフである。[0001]
[Industrial application fields]
The present invention relates to a method for inspecting the water pressure of a soft pipe, and is particularly performed when construction of a relatively soft synthetic resin pipe such as a PE pipe for water supply, a PE pipe for water supply, a PB pipe, or the like, that is, a pipe made of a soft pipe is completed. The present invention relates to a water pressure inspection method for soft pipes, which checks for the presence or absence of water leaks in pipes.
[0002]
[Prior art]
After completing the construction of the pipeline, a water pressure test is conducted to check the presence or absence of water leakage in the pipeline based on poor connection. In the case of a conduit consisting of a soft pipe, the pressure drop caused by the expansion of the soft pipe is large, and the behavior of the pressure drop is not constant depending on external conditions, etc. It was easy to occur. In view of this, various inspection methods have been proposed for reliable inspection, and an example thereof is disclosed in, for example, Japanese Patent No. 2931337 [G01M3 / 28].
[0003]
In Japanese Patent No. 2931337, first, a primary liquid pressure of 1.5 to 2.5 times the maximum actual working pressure is loaded on the pipe and held for a predetermined time, and then the water pressure in the pipe is lowered. A secondary liquid pressure equivalent to the maximum actual working pressure is applied, and a pressure drop with time is inspected. According to this publication, since the secondary liquid pressure is loaded after the synthetic resin pipe is expanded by applying the primary liquid pressure as described above, the pipe diameter is applied when the secondary liquid pressure is loaded. Does not expand, the influence of the pressure drop due to the expansion of the tube can be eliminated, and the inspection can be performed reliably. That is, in this publication, the primary pressure is loaded and held for a predetermined time so that the water pressure does not drop after the secondary pressure is loaded. Therefore, if there is a pressure drop after this secondary pressure load, it is found that there is a leak due to poor connection.
[0004]
[Problems to be solved by the invention]
However, in the above publication, it is necessary to hold at a primary liquid pressure for a predetermined time. This predetermined time is 2 hours in the embodiment and is long. Furthermore, the subsequent secondary liquid pressure is maintained for 1 hour to stabilize the pressure behavior such as generation of pressure increase due to the pressure drop, and the subsequent pressure drop is inspected. In addition, there is a description that about 30 minutes to several hours is sufficient for each of these holding times. Therefore, according to the technique disclosed in the above publication, it takes at least several hours as the inspection time, and the inspection time becomes longer. End up.
[0005]
Moreover, in this prior art, since it hold | maintains for a predetermined time as mentioned above, the operator for performing monitoring of water pressure, fine adjustment, etc. is needed during this time, and it is troublesome and workability | operativity is bad.
[0006]
Therefore, a main object of the present invention is to provide a water pressure inspection method for a soft tube, which can shorten the inspection time and can be easily performed.
[0007]
[Means for Solving the Problems]
The present invention is a water pressure inspection method for a pipe made of a soft pipe, wherein (a) the pipe is sealed and water is supplied into the pipe, and (b) a
[0008]
[Action]
In this invention, first, a conduit made of a soft tube is sealed and water is supplied into the conduit. Then, a residual pressure of 1.75 MPa, which is larger than the inspection water pressure, is applied to this pipe line. By this step, a large deformation can be preliminarily applied to the pipe, and the error of the water pressure lowering behavior in the subsequent inspection can be reduced. Therefore, erroneous determination can be avoided. Immediately after the surplus pressure is loaded, the test water pressure is released to 1.0 MPa without providing a holding time. Then, the subsequent pressure drop behavior is measured to determine the presence or absence of water leakage in the pipeline. That is, the water pressure of the pipe line, that is, the first measured water pressure one hour after the inspection water pressure is reached is measured. And when this 1st measured water pressure is more than predetermined 1st standard water pressure, it judges with a pipe line having no water leak. This first reference water pressure is obtained by experiments by the inventors, and is specifically set to 0.9 MPa.
[0009]
The first reference water pressure may be set to 0.95 MPa. In this case, the accuracy of determination can be increased.
[0010]
Further, when the first measured water pressure is smaller than the first reference water pressure, the measurement of the pressure drop behavior is further continued to determine the presence or absence of water leakage in the pipeline. That is, the water pressure of the pipe line, that is, the second measured
[0011]
【The invention's effect】
According to the present invention, after the surplus pressure is loaded, the test water pressure is immediately released without providing a holding time, so the test time can be shortened. In addition, the presence or absence of water leakage can be determined in one hour after the test water pressure is applied. Furthermore, since the operator who performs water pressure monitoring or fine adjustment at the time of holding is unnecessary, the inspection can be performed easily and the workability can be improved.
[0012]
The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
[0013]
【Example】
The water pressure inspection method for the soft pipe of this embodiment shown in FIG. 1 is performed at the completion of construction of a pipe made of a soft pipe such as a PE pipe for water supply, a PE pipe for water supply, a PB pipe, etc. Inspects for leaks.
[0014]
In the water pressure inspection, first, a sealing member such as a water stop flange or a cap is attached to the pipe end of the pipe to be inspected, and the pipe is sealed. For example, a water supply pipe from a hydraulic pump or the like is connected to the sealing member at one pipe end. Water is supplied and filled in the closed pipe line by this hydraulic pump. The water pressure pump can supply water into the pipe line and load a desired water pressure. Further, pressure detection means such as a pressure sensor or a pressure gauge is provided in the pipe line, whereby the water pressure in the pipe line is detected and measured.
[0015]
Then, in step S1 of FIG. 1, a residual pressure of 1.75 MPa, which is larger than the inspection water pressure, is applied to this pipe line. By this step, a large deformation can be preliminarily applied to the pipeline, and the error of the water pressure lowering behavior in the subsequent inspection can be reduced. Therefore, it is possible to stabilize the water pressure lowering behavior and avoid erroneous determination.
[0016]
After the surplus pressure of 1.75 Mpa is loaded, that is, after the water pressure in the pipeline reaches 1.75 MPa, in step S3, the pressure is immediately released to the inspection water pressure without providing a holding time, and the subsequent pressure drop behavior is measured. To do. For example, when the in-pipe water pressure becomes 1.75 MPa, the pressure setting value of the hydraulic pump may be changed to the inspection water pressure value. By operating such a water pressure pump, the water in the pipe is returned to the outside of the pipe and is discharged to the inspection water pressure. The inspection water pressure is set to 1.0 MPa, which is the design maximum water pressure of the soft pipe constituting the pipe.
[0017]
In this embodiment, after depressurizing to the inspection water pressure, that is, after loading the inspection water pressure on the pipe, the water pressure in the pipe shows a decrease behavior regardless of the presence or absence of water leakage in the pipe. In Japanese Patent No. 2931337 described in the prior art, unlike the present invention, the subsequent pressure drop is assumed to occur only when there is water leakage.
[0018]
Therefore, in this embodiment, the pressure drop behavior is analyzed to determine the presence or absence of water leakage in the pipeline. Through experiments by the inventors, which will be described later, it has been found that if the water pressure in the pipeline after a lapse of a predetermined time after reaching the inspection water pressure is equal to or higher than a certain reference value, it can be determined that there is no water leakage in the pipeline. According to experiments, when the first water leak is determined, it is set one hour after the inspection water pressure is reached, and the reference value, that is, the first reference water pressure is set to 0.95 MPa in this embodiment.
[0019]
That is, the water pressure of the pipe line, that is, the first measured water pressure one hour after the inspection water pressure is reached is measured. In step S5, it is determined whether or not the first measured water pressure is equal to or higher than the first reference water pressure. When the first measured water pressure is equal to or higher than the first reference water pressure, no water leak has occurred in the pipeline, so it is determined in step S7 that the pipeline has no water leak.
[0020]
On the other hand, when the first measured water pressure is smaller than the first reference water pressure, that is, when it is not possible to determine that the pipeline is free of water leakage by the determination at the time of step S5, the pressure drop behavior is further measured. Experiments have shown that by continuing and analyzing this, it is possible to again determine the leakage of the pipeline. That is, if the water pressure in the pipe after a predetermined time thereafter is equal to or higher than a certain reference value, it can be determined that there is no water leakage in the pipe. According to experiments, the second time of water leakage determination is set, for example, 24 hours after the inspection water pressure is reached, and the reference value, that is, the second reference water pressure is set to 0.7 MPa in this embodiment.
[0021]
That is, the measurement is continued, and the water pressure in the pipe line, that is, the second measured
[0022]
In step S9, when the second measured water pressure is equal to or higher than the second reference water pressure, no water leak has occurred in the pipeline, so in step S7 it is determined that the pipeline has no water leak. In this way, even in a pipeline that could not be determined as having no leakage in the pipeline one hour after the inspection water pressure load and that may have been determined to have leakage, the leakage was determined based on subsequent measurements. The presence / absence can be re-determined, and therefore the accuracy of the determination can be further improved.
[0023]
On the other hand, if the second measured water pressure is smaller than the second reference water pressure in step S9, there is a possibility that water leaks in the pipeline, so in step S11 it is determined that the pipeline is leaked. .
[0024]
According to this embodiment, after the surplus pressure is loaded, the test water pressure is immediately released without providing a holding time, so the test time can be shortened. In addition, the presence or absence of water leakage can be determined in one hour after the test water pressure is applied. Furthermore, since the operator who performs water pressure monitoring or fine adjustment at the time of holding is unnecessary, the inspection can be performed easily and the workability can be improved.
[0025]
The inventors conducted experiments and clarified the determination conditions for the presence or absence of water leakage in the present invention. The results of the experiment are shown in FIGS. In this experiment, a PE pipe for water supply is used, and six pipes having different pipe diameters, pipe lengths, and amounts of water leakage are used as samples. That is, a pipe having a pipe diameter of 100 mm and a pipe length of 100 m, and having three pipes each having a water leakage amount of 0.05% / h and 0.12% / h, and a pipe diameter of There are three pipes with a pipe length of 150 m and a pipe length of 2 m, each having a water leakage amount of 0.08% / h and 0.15% / h. This amount of water leakage is indicated by the ratio of the amount of leakage per unit time to the amount of internal water. Each step of the inspection method according to the present invention was performed on each of these pipelines. That is, first, the pipe line was sealed, water was supplied into the pipe line, a residual pressure of 1.75 MPa was applied to the pipe line, and immediately after the residual pressure was loaded, the test water pressure was released to 1.0 MPa. Then, the subsequent pressure drop behavior was measured.
[0026]
FIG. 2 shows a change in water pressure up to 1 hour after the inspection water pressure is loaded. According to FIG. 2, the boundary of the water leakage determination can be found in the vicinity of the water pressure of 0.95 MPa when the elapsed time is 1 hour. Specifically, when examining the water pressure one hour after applying the inspection water pressure, only the φ100 × 100 m no-leakage pipeline (shown by the solid line) shows a water pressure of 0.95 MPa or more, and although there is a very small amount, The existing φ100 × 100m water leakage amount 0.05% / h pipeline (shown by a long broken line) is below 0.95 MPa. Accordingly, it can be seen that if the water pressure is at least about 0.95 MPa at this time, it can be determined that the pipe has no water leakage. That is, the first reference water pressure for 1 hour after the inspection water pressure load can be set to 0.95 MPa, and according to this reference, a water leakage determination ability of 0.05% / h or more can be exhibited. In addition, this determination capability is an example of a conventional inspection method. Compared with the determination capability of an inspection method performed simply by applying an inspection water pressure of 1.0 MPa was about 0.85% / h, It can be said that it is extremely accurate.
[0027]
In addition, the φ150 × 2 m non-leakage pipeline (indicated by a one-dot chain line), which is another pipeline without water leakage, is below 0.95 MPa at the time of this judgment, and it is not determined that there is no water leakage based on this criterion. The reason why judgments are separated in the same pipeline without water leakage is thought to be due to the influence of water pressure lowering behavior and measurement error due to the extreme difference in piping form.
[0028]
FIG. 3 shows a change in water pressure up to 24 hours after the inspection water pressure is loaded. According to FIG. 3, it can be seen that there is a clear difference in the water pressure lowering behavior depending on the presence or absence of water leakage, and at the time of 24 hours elapsed, a boundary for water leakage determination can be found in the vicinity of a water pressure of 0.7 MPa. That is, when examining the
[0029]
In this way, the first and second reference water pressures are obtained by this experiment, and the presence or absence of water leakage in the pipeline, that is, the water pressure test can be reliably performed by the method according to the present invention to which these are applied.
[0030]
In the above-described embodiment, the first reference water pressure is set to 0.95 MPa. However, in other embodiments, the first reference water pressure is set to about 0.9 MPa, that is, one hour after the inspection water pressure is loaded. When the water pressure is 0.9 MPa or more, the pipe line may be determined as having no water leakage. That is, according to FIG. 2, at an elapsed time of 1 hour, only the φ100 × 2m water leakage amount of 0.15% / h pipe line (shown by a broken line) is significantly higher than the water pressure drop of other pipe lines. You can see that it shows a decline. Therefore, the amount of water leakage of 0.15% / h can be regarded as an unacceptable level of water leakage as distinguished from others. Therefore, the first reference water pressure is set to about 0.9 MPa in order to determine that at least the pipe having a water leakage state of about 0.15% / h is leaked. Even in this case, the inspection accuracy is extremely higher than the water leakage determination capability 0.85% / h of the conventional simple inspection method described above.
[0031]
Further, in each of the above-described embodiments, the initial pressure to be applied is set to 1.75 MPa. However, if the soft pipe has durability and can secure the pumping capacity, 1.75 MPa or more. The remaining pressure may be loaded.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an embodiment of the present invention.
FIG. 2 is a graph showing the change over time in the water pressure in the pipe line up to 1 hour after the test water pressure load.
FIG. 3 is a graph showing the change over time in the water pressure in the pipe line up to 24 hours after the test water pressure load.
Claims (3)
(a) 前記管路を密閉して前記管路内に水を供給し、
(b) 前記管路に検査水圧よりも大きい余圧1.75MPaを負荷し、
(c) その後直ちに検査水圧1.0MPaまで抜圧し、
(d) 前記検査水圧になってから1時間後の前記管路の水圧である第1測定水圧を測定し、
(e) 前記第1測定水圧が第1基準水圧0.9MPa以上であるとき、前記管路は漏水無しであると判定し、
(f) 前記ステップ (e) において前記第1測定水圧が前記第1基準水圧よりも小さいとき、さらに、
(g) 前記検査水圧になってから24時間後の前記管路の水圧である第2測定水圧を測定し、
(h) 前記第2測定水圧が第2基準水圧0.7MPa以上であるとき、前記管路は漏水無しであると判定する、軟質管の水圧検査方法。A method for water pressure inspection of a pipe made of a soft pipe,
(a) sealing the pipeline and supplying water into the pipeline;
(b) A residual pressure of 1.75 MPa greater than the inspection water pressure is applied to the pipe line,
(c) Immediately after that, the test water pressure is released to 1.0 MPa,
(d) Measure the first measured water pressure, which is the water pressure of the pipe one hour after the inspection water pressure is reached,
(e) When the first measured water pressure is a first reference water pressure of 0.9 MPa or more, it is determined that the pipe has no water leakage ,
(f) When the first measured water pressure is smaller than the first reference water pressure in the step (e) ,
(g) Measure the second measured water pressure, which is the water pressure of the pipe line 24 hours after the test water pressure is reached,
(h) when the second measurement pressure is the second reference pressure 0.7MPa or more, the conduit is determined to be no leakage, water pressure testing method for a soft tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002140599A JP3883471B2 (en) | 2002-05-15 | 2002-05-15 | Water pressure inspection method for soft tubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002140599A JP3883471B2 (en) | 2002-05-15 | 2002-05-15 | Water pressure inspection method for soft tubes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003329537A JP2003329537A (en) | 2003-11-19 |
JP3883471B2 true JP3883471B2 (en) | 2007-02-21 |
Family
ID=29701441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002140599A Expired - Lifetime JP3883471B2 (en) | 2002-05-15 | 2002-05-15 | Water pressure inspection method for soft tubes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3883471B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113653951A (en) * | 2021-08-11 | 2021-11-16 | 蚌埠学院 | Water supply network state monitoring method based on water pressure sampling data |
-
2002
- 2002-05-15 JP JP2002140599A patent/JP3883471B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003329537A (en) | 2003-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4684135B2 (en) | Leakage inspection method and leak inspection apparatus for piping | |
CN211423696U (en) | Sewer line defect detection device and sewer line maintenance car | |
US7461541B2 (en) | Leak detection method for a primary containment system | |
US7331217B2 (en) | Re-usable main drain testing method and apparatus | |
US20100064778A1 (en) | Testing apparatus and method for valves | |
US4553212A (en) | Leakage inspection device for brake hoses | |
JP3883471B2 (en) | Water pressure inspection method for soft tubes | |
US7216530B2 (en) | Fluid containment element leak detection apparatus and method | |
JP4312032B2 (en) | Water pressure inspection method for soft tubes | |
JP4281001B2 (en) | Gas leak inspection device | |
CN115265956A (en) | Pressure system air tightness leakage detection device and method | |
JPH08285720A (en) | Leak test method for underground service piping system | |
Kiefner et al. | Estimating Fatigue Life for Pipeline Integrity Management | |
JP3798252B2 (en) | Gas pipe leak inspection method and leak inspection apparatus | |
CA2639600A1 (en) | Testing apparatus and method for valves | |
CN110514433A (en) | A kind of automatic control test bed equipment detecting the full performance of valve | |
JPH08219961A (en) | Withstanding pressure test equipment for brake hose | |
KR890004368B1 (en) | Checking of leakage | |
JP2005226996A (en) | Pressure test method for pipeline | |
EP3785002A1 (en) | Method of testing an integrity of a structure separating a chamber from an adjacent environment, and related apparatus | |
JP3328203B2 (en) | Container leakage inspection method and apparatus using differential pressure change rate | |
JP7394435B2 (en) | Gas inspection method for hoses with eye joint fittings | |
JPH02236134A (en) | Integrity evaluation for tube or container | |
JPH04208833A (en) | Device for inspecting leakage of liquid | |
JPH11237300A (en) | Drum can leakage inspection device due to differential pressure method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050224 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050707 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061114 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3883471 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091124 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |