JP3883075B2 - モバイルアドホックネットワークにおけるファジー論理を利用した予測的ルーティング - Google Patents

モバイルアドホックネットワークにおけるファジー論理を利用した予測的ルーティング Download PDF

Info

Publication number
JP3883075B2
JP3883075B2 JP2004134739A JP2004134739A JP3883075B2 JP 3883075 B2 JP3883075 B2 JP 3883075B2 JP 2004134739 A JP2004134739 A JP 2004134739A JP 2004134739 A JP2004134739 A JP 2004134739A JP 3883075 B2 JP3883075 B2 JP 3883075B2
Authority
JP
Japan
Prior art keywords
route
network
node
future
nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004134739A
Other languages
English (en)
Other versions
JP2004336768A (ja
Inventor
エイ ケネディー ロバート
ビブ ケイン ジョーゼフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Corp
Original Assignee
Harris Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Corp filed Critical Harris Corp
Publication of JP2004336768A publication Critical patent/JP2004336768A/ja
Application granted granted Critical
Publication of JP3883075B2 publication Critical patent/JP3883075B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/14Routing performance; Theoretical aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/06Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on characteristics of available antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/08Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/10Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on available power or energy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/18Communication route or path selection, e.g. power-based or shortest path routing based on predicted events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/248Connectivity information update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/28Connectivity information management, e.g. connectivity discovery or connectivity update for reactive routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/30Connectivity information management, e.g. connectivity discovery or connectivity update for proactive routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、モバイルアドホックネットワークに関し、特に、モバイルアドホックネットワークにおいてファジー論理を利用してルートを予測する方法およびネットワークに関する。
近年、ワイヤレスネットワークが発達している。特に発達が著しい分野は、アドホックネットワークである。モバイルアドホックネットワークは、物理的には、多数の地理的に分散した潜在的にモバイルノードが、一またはそれ以上のラジオ周波数によって無線接続されているものである。セルラーネットワークやサテライトネットワーク等の他のネットワークと比較して、モバイルアドホックネットワークの最も顕著な特徴は、固定的なインフラストラクチャーを持たないことである。ネットワークはモバイルノードのみで構成され、他のノードに送信したり他のノードから受信したりするときに、ネットワークが構成される。ネットワークは特定のノードに依存しない。ノードが加わったり抜けたりしても、ネットワークはダイナミックに調整される。
戦場や、地震・ハリケーンなどの自然災害の現場など、固定的な通信インフラストラクチャの信頼性が低いとき、あるいは無いとき、アドホックネットワークは迅速に展開でき、必要とされる通信を提供することができる。モバイルアドホックネットワークは、主に軍事目的に開発されているが、民生分野や商業分野においても新たに利用されつつある。アドホックネットワークによれば、屋外や教室において、いかなるネットワークのインフラストラクチャも用いないで、コンピュータやPDAのスイッチを入れるだけでネットワークを構成し、データをやり取りすることができる。
無線通信が日常的に使われるようになり、モバイルアドホックネットワークの新しいアプリケーションが現れ、通信体系の重要な一部となるであろう。モバイルアドホックネットワークは設計者にとっては、厳しい挑戦課題である。インフラストラクチャーが無いので、各ノードは、移動やネットワークへの加入・脱退に応じて、自己組織化および再構成しなければならない。すべてのノードは機能的に同一であり、ネットワーク内に階層構造や中心的コントローラは存在しない。ネットワークを制御する多くの機能はノードに分散されている。ノードはバッテリー駆動である場合が多く、通信能力や計算能力は限定されている。システムの帯域幅も普通は限定されている。ノード間の距離はラジオ送信の範囲を越えることも頻繁にあり、送信データは目的のノードに届くまでに、他のノードによって中継されることとなる。そのため、ネットワークのトポロジーはマルチホップトポロジーとなり、ノードが移動するにつれこのトポロジーも変化する。
IETF(インターネットエンジニアリングタスクフォース)のMANET(モバイルアドホックネットワーク)ワーキンググループは、マルチキャストを含むルーティングプロトコルを活発に推定、標準化している。ノードが移動するにつれてネットワークのトポロジーが変化するので、情報は陳腐化することとなる。時間、空間両面において、異なるノードはネットワークを異なった見方で見ることとなる。例えば、ある情報は、あるノードでは古くて使えないものであるが、別のノードでは古くない場合がある。また、ノードは自分から遠くない近傍のネットワークトポロジーのみを把握しているかも知れない。
ルーティングプロトコルは頻繁に起こるトポロジーの変化と不正確な情報に対応しなければならない。このような独特な要請のため、アドホックネットワークにおけるルーティングは他のネットワークと比較して大きく異なる。ネットワーク全体について新しい情報を集めることは、しばしばコストがかかり現実的ではない。多くのルーティングプロトコルはリアクティブ(オンデマンド)プロトコルである。すなわち、必要な場合に、ルーティングする必要がある送信先へのルーティング情報のみを収集し、ある時間が経過すると使用しないルートは維持しない。このようにして、すべての送信先へのルートを常時維持するプロアクティブプロトコルと比較して、ルーティングのオーバーヘッドを大きく削減することができる。プロトコルに適応性があることが重要である。アドホック・オンデマンドディスタンスベクトル(AODV)、ダイナミックソースルーティング(DSR)、およびテンポラリオーダード・ルーティングアルゴリズム(TORA)は、MANETワーキンググループにおいて提示されたオンデマンドルーティングプロトコルの代表的なものである。
その他のルーティングプロトコルとしては、デスティネーションシーケンスド・ディスタンスベクトル(DSDV)(特許文献1参照)、ゾーンルーティングプロトコル(ZRP)(特許文献2参照)等がある。ゾーンルーティングプロトコルは、ソースノードからの距離に基づいてプロアクティブなアプローチとリアクティブなアプローチを両方とも使用するハイブリッドプロトコルである。
米国特許公報第5,412,654号 米国特許公報第6,304,556号
これらの従来からあるルーティングプロトコルは、ベストエフォートアプローチによりソースノードからデスティネーションノードへのルートを選択する。典型的には、ホップの回数がベストエフォートアプローチにおける主な基準(計量)である。換言すると、ホップ回数が最も少ないルートが送信ルートとして選択される。
ネットワークが関係するアプリケーションは時間的制限が厳しく、オンデマンドによるルート探索アプローチに要する時間遅れを許容できないものであるかも知れない。ネットワークのノード数が多過ぎたり、ソースノードが十分頻繁にネットワークトポロジーを更新するには消費電力の制限が強すぎるかも知れない。このため、プロアクティブなMANETルーティングアプローチは取ることができない。したがって、リアクティブ(オンデマンド)ルーティングプロトコルが、唯一使用し得る従来のルーティングプロトコルであるため、設計者はリアクティブルーティングプロトコルを採用する。しかし、ルート探索に許容されている時間は非常にきびしいので、オンデマンドで探索されたルートは、探索できた時点ではすでに使えないかも知れない。
本発明は上記に鑑みてなされたものであり、モバイルアドホックネットワークにおいてルートを予測して探索することを目的とする。
本発明による上記およびその他の目的、特徴、長所は、モバイルアドホックネットワークにおいてルートの探索と維持を管理するネットワークおよび方法により提供される。前記モバイルアドホックネットワークは、複数のワイヤレスモバイルノードと、前記ノードを接続する複数のワイヤレス通信リンクとを含む。前記方法は、ファジー論理を利用してネットワークにおいて未来において必要となるルートを予測することを含む。部分ルートと完全ルートが予測された未来において必要となるルートに沿って探索され、ルーと探索プロセスがネットワークの部分ノードと完全ノードを記憶するルートテーブルが各モバイルノードで作成され更新される。
ネットワークの物理的特性および動作的特性の少なくとも一方を含むネットワークの記述的情報は、記憶され、サンプリングされ、更新される。ファジー論理の使用は、ファジーif−thenルールに基づく知識の使用を含み、未来において必要となるルートの予測は、Holt−Wintersフォーキャストの実行のような統計的数値的フォーキャスティングを含んでもよい。
添付した図面を参照しながら、本発明をより詳しく説明する。図面には好ましい実施の形態が示されている。しかし、本発明は他の多くの形態で実施することができ、ここに説明する実施の形態に限定して解釈するべきではない。むしろ、これらの実施の形態により本発明の開示を完全なものにし、本発明の技術的範囲を当業者に十分に伝えるためのものである。
本発明は方法、データ処理システム、およびコンピュータプログラム命令として実施できることが、当業者には分かるであろう。したがって、本発明は、ハードウェア、ソフトウェア、あるいはハードウェアとソフトウェアが結合した形態を取ることができる。さらに、本発明は、コンピュータ読み取り可能な記憶媒体に記憶されたコンピュータプログラム命令でもよい。コンピュータ読み取り可能な記憶媒体とは、例えば、スタティックRAM、ダイナミックRAM、ハードディスク、光ディスク、光磁気ディスク、その他の磁気記憶装置、その他の光記憶装置である。
本発明の実施形態による方法、システム、およびコンピュータプログラム命令を示したフローチャートを参照して、本発明を説明する。図に示したブロックやその組み合わせは、コンピュータプログラム命令として実現できることが分かる。このプログラムは、汎用コンピュータ、特殊用途コンピュータ、その他プログラマブルデータ処理装置のプロセッサに供給し、そのブロックやブロックの組み合わせで特定される機能をこのプロセッサに実現させることができる。
コンピュータプログラム命令は、コンピュータ読み取り可能なメモリに記憶されたコンピュータプログラム命令が、フローチャートのブロックやブロックの組み合わせで特定される機能を実現する命令を含む物品になるように、コンピュータその他プログラマブルデータ処理装置に機能させることができるコンピュータ読み取り可能なメモリに記憶させることもできる。コンピュータプログラム命令は、コンピュータまたはその他プログラマブルデータ処理装置により実行される一連の動作ステップにコンピュータまたはたのプログラマブル装置に実装されたプロセスを生成させるために、そのコンピュータまたはその他プログラマブルデータ処理装置にロードされる。コンピュータまたは他のプログラマブル装置上で実行される命令が、フローチャートのブロックで特定される機能を実装するためのステップを供給する。
本発明においては、モバイルアドホックネットワークにおけるテンポラル・トランジション・ネットワーク・プロトコル(TTNP)を使用してもよく、テンポラル・トランジショニング・プロセスおよびイベントにより、ルート探索とそれに付随するプロセスを効率的に管理・制御できる。このことは、本出願人が2002年4月29日に出願した米国特許出願No. 10/134,856に記載されている。さらに、本発明においては、インテリジェント・コミュニケーションノードオブジェクト・ビーコン・フレームワーク(ICBF)を使用してもよく、存在する通信ノードオブジェクトによるインテリジェントな適応通知および/またはビーコンを送信している他のノードオブジェクトまたはノードオブジェクトのネットワークによる対応する探索(近傍探索)を実現することができる。このことは、本出願人が2002年9月4日に出願した米国特許出願No. 10/235,242に記載されている。
予測的ルーティング、またはプサイアクティブルーティング(ΨRt)は、ルートの探索および維持において、現在必要ないが未来において追加のルートを確立し維持する必要性をネットワークが検知し予測するものである。基本的には、ΨRtは、複数のネットワーク層から未来において必要とされるルートとそれに付随するルート維持動作を高い信頼性で予測するのに必要な情報を取り出す。プサイアクティブルーティング(ΨRt)の各コンポーネントについて、そのアーキテクチャについて説明し、コンポーネントの主要な能力・機能の簡潔なアルゴリズムについて適宜説明し、他のΨRtコンポーネントやハイブリッドアドホックネットワークなどのより大きなネットワークアーキテクチャとの外部インターフェイスについて説明し、ΨRtコンポーネントにより使用されるネットワークステートプロファイルについて説明し、コンポーネントにより使用されるΨRt専用プロトコルおよび汎用プロトコルについて説明する。
ΨRtはアドホックネットワークルーティングの一種であり、現在のルーティングシナリオを取り扱うプロアクティブな方法またはリアクティブ(オンデマンド)な方法を予測するために使用する。その予測は、低速から高速までネットワークダイナミクスの全域に適時に対応するように、アドホックネットワークルーティングの能力を大幅に向上させるために、ネットワーク(またはその一部)の未来における状態を予測する予測技術を使用する。ΨRtのコンテクストにおいては、「フォーキャスト」とは中間段階の予測ステップであり、「予測」とは最終結果にいたるまでのすべてのステップの結果である。ΨRtは、階層的であるかフラットであるかに係らず、いかなるネットワークアーキテクチャにおいても正しく動作する。ΨRtはそれ自身で正しく動作するのみならず、テンポラル・トランジション・ネットワーク・プロトコル(TTNP)やゾーン・ルーティング・プロトコル(ZRP) のようなハイブリッドなルーティング組織においても正しく動作する。ΨRtは環境に適応可能である。
アドホックネットワークルーティングに対する現状の考え方に反して、プロアクティブな方法もリアクティブな方法も、数多くの重要なアプリケーションにおいて支配的な問題ともなるネットワークルーティング(ルート探索、ルート維持、ルート障害、およびトポロジー探索を含む)がかかえる多様な問題を適切に解決することはできない。プロアクティブな方法もリアクティブな方法も、現在のルーティングシナリオを解決できるだけであり、それでもネットワークトポロジーのダイナミクスを緩和するだけである。その割合は、ネットワーク内のノード数と、通信リンクのバンド幅と、ソース・デスティネーションのペアの数と、リンクの品質とに係る。
図1は、モバイルノード12が構成するネットワーク100のスナップショットであり、ノードを接続するワイヤレスリンク14を示す。このネットワークが関連するアプリケーションには時間的制約があり、オンデマンドルート探索アプローチによる時間遅れは許容できない。このネットワークには多数のノードがあり、消費電力の制限もあるため、ソースノードSnは、ネットワークトポロジーを頻繁に更新することができない。したがって、プロアクティブなMANETルーティングアプローチはとることができない。ネットワークの設計者は、リアクティブ(オンデマンド)ルーティング方法が従来の基本的ルーティング方法のうち唯一の取りうる方法であるとして、リアクティブ(オンデマンド)方法を使用するであろう。
ある時点において、ソースノードSnはデスティネーションノードDnに情報を送るよう要求される。ソースノードSnは、情報を送るルートがルートキャッシュに無いので、リアクティブルート探索プロセスを起動し、ルート1(R1)とルート2(R2)とを見つける。しかし、ルートを探索するのに許容される時間は厳しく制限されているので、発見したルート1とルート2とはすでに使用できない。このルーティング上の問題は、プサイアクティブルーティングΨRtを使用することにより解決することができる。ΨRtは、ルートが必要とされる前に、ルートやルートセグメント(すなわち、ノードY1およびY2、およびそれらの間のリンク)を形成することができる。この新しいルーティング方法は、一般的特性として、ルートがいつどこまで必要か予測するためアプリケーション情報を使用し、ルートの構成と強さを向上するため動的に予測したリンク/ノード/パスを使用し、ルートまたは部分ルート(ルートセグメント)であって実際に必要とされるときに安定しているであろうもの(実際に必要とされる前にソースノードSnのルートテーブル(キャッシュ)に格納される)を事前に構成し、潜在的に少ないオーバーヘッドでリアルタイムの応答能力(スーパーリアルタイム応答)を向上し、ΨRtを従来からあるルーティングアルゴリズムと組み合わせて使用する。基本的な技術的アプローチは、3つの相互に関連した部分に分けられる。アプリケーションが必要とする時点で安定なルートを予測する部分と、適切なときにこれらのルートを活性化する部分と、およびこれらのルートが必要となるまで所定時間の間ルートを維持する部分とである。
図2および図3を参照して、モバイルアドホックネットワーク10を動作させる方法、すなわち、ソースノードからデスティネーションノードへのルートを探索する方法を次に説明する。ネットワーク10は、ソースノードS、デスティネーションノードD、およびそれらの間の中間ノードを含む複数のモバイルノードを含む。当業者には分かるように、ノード12は、例えばノートブックコンピュータ、パーソナルデジタルアシスタント(PDA)、携帯電話等であり、ワイヤレス通信リンク14により接続されている。
一実施形態による方法によると(図3のブロック80で始まる)、ネットワーク10において未来において必要とされるルートを予測する。ここでルートとは、ソースSからデスティネーションDまでの、一組のワイヤレス通信リンク14とモバイルノード12よりなる。未来において必要となるルートを予測することは、複数のモバイルノードのうち少なくとも2つの間の未来における通信を予測することを含んでもよく、その予測はファジー論理に基づくものでもよい。必要性は典型的には現在および過去のトラフィックデータ等に基づく。未来におけるネットワークのダイナミクスおよび/またはトポロジーを予測する(ブロック82)。そして、部分ルートと完全ルートとを含むルートを、予測された未来におけるネットワークのダイナミクスおよび/またはトポロジーに基づき、ネットワーク内の予測された未来において必要となるルートに沿って探索する(ブロック84)。また、当該方法において、ブロック88で終了する前に、未来において使用するために、予測したルートをルートキャッシュまたはルートテーブルに記憶する(ブロック86)。また、当該方法は、予測された未来において必要とされるルートに沿うリンク14およびノード12(リンクとノードの安定性情報を予測し、他のノードに送信する各ノードを含む(ブロック83))の未来における安定性を予測することを含んでも良い。
当該方法において、未来におけるネットワークダイナミクスを予測するに際し、現在のネットワークダイナミクスを監視してもよいし、ルートを探索するに際し、プロキシソースノードからプロキシデスティネーションノードまでのルートを探索してもよい。プロキシソースノードとプロキシデスティネーションノードは、好ましくは、予測された未来において必要とされるルートに沿ったリンク14およびノード12の未来における安定性に基づき選択される。典型的には、ソースノードSがプロキシソースノードに要求を送信し、プロキシソースノードからプロキシデスティネーションノードへの部分ルートを確立する。
リンクとノードの安定性情報は、ルート要求への応答として他のノード12に送信されてもよい。そして、未来において必要となるルートは、ミッションプラン、スケジュール、計画したトラフィックパターン、およびネットワークマネージメントデータのうち、少なくとも一つに基づき、予測される。さらに、以下に詳しく説明するように、未来におけるネットワークダイナミクスの予測は(ブロック82)、好ましくは、未来におけるルート障害の予測および/または未来におけるルート維持の予測を含む。
さらに具体的には、ルート障害の予測は、各ルートのリンク障害計量およびノード障害計量を含むルート障害計量の生成を含んでもよい。ルート障害計量の生成は、ノードの移動性および/または電波伝搬特性の推定を含んでもよい。ルート障害計量は、ネットワーク内の他のノードにブロードキャストしてもよい。ルート障害の予測は、ルート障害計量に基づきソースからデスティネーションまでのルートの平均障害時間(MTF)を決める事を含んでもよい。
予測的なルート維持は代替ルートの探索を含んでもよく、代替ルートの探索は、障害が発生すると予測されるルートを代替する代替ルートの未来における実現性を予測し、ルート障害を減らすためリンクの送信出力を上げ、ルート障害を減らすためリンクに追加的経路を割り当て、障害が発生すると予測されたルートを代替するためにルートテーブル/キャッシュに代替ルートを記憶したかを判定することにより行われる。
ΨRtは多数のネットワークパラメータを有しているので、ターゲットであるデータの適切なサンプリングおよび適時の処理を予測することができる。例えば、パラメータ予測カテゴリーとしては、ノードおよびリンクダイナミクスがある。より多くの安定なリンクとノードを経由するより長いルートと、より少ない不安定なリンクとノードを経由するより短いルートには、トレードオフの関係がある。このことは、パイロットが近道をして雷雨の真ん中を突っ切り、結局目的地に到達できない危険をおかすよりも、激しい雷雨を避けて長い道のりを安全に飛行して目的地に到達することと似ている。
ノードおよびリンクダイナミクスの予測は、リアクティブルーティングアプローチ、プロアクティブルーティングアプローチ、ハイブリッドルーティングアプローチ、階層的ルーティングアプローチ、および構造的フラットルーティングアプローチにも使用することができる。階層的リアクティブルーティング(HRR)等の構造的ネットワークにおいて使用すると、予測されたノードおよびリンクダイナミクスはクラスター形成を最適化できる。図1と図2を参照して説明したとおり、ΨRtはルートの一部が不安定である部分ルート(ルートセグメント)を予測し、頻繁にルート変更をするか、もしくは不安定な部分を避ける。一方、ルート内の他のルートセグメントは未来において必要なときに使用できるくらい安定であると予測される。
これらの予測は、例えば最適リンクステートルーティング(OLSR)などのプロアクティブプロトコルにおいて、アドホックルーティングプロトコルのために必要とされるルーティング情報の更新を最適化するのに使用でき、予測されたリンクおよびノードダイナミクスに基づき、各ノードがルーティング情報をブロードキャストする期間を適応的に制御する。これによりネットワーク内のオーバーヘッド情報をかなり削減することができ、非オーバーヘッド情報により多くのネットワークのバンド幅を使用することができる。同様に、ハイブリッドネットワーク(例えばTTNP)や階層的ネットワーク(例えばHRR)においても、ルーティング情報のブロードキャストを最適化することができる。予測したリンクおよびノードダイナミクスは、マルチパスルーティングにおいても使用することができる。マルチパスルーティングにおいて、これらの予測により必要なパスの数と、バックアップルートの選定と、およびネットワークタイムコーディングのためのコーディングオーバーヘッドとを決定することができる。
具体的には、このトラフィックの予測は、トラフィック付加、トラフィックソース、トラフィックシンクを含む。例えば、ミッションプランは、あるノードがいつ情報を交換する必要があるかを示している。もし、ΨRtがAODVなどのリアクティブプロトコルを使用すれば、AODVはルートが実際に必要とされる前にルート探索を行うであろう。これによりAODVは、よりプロアクティブルーティング方法らしく振舞うようになる。もし、ΨRtにOLSR等のプロアクティブなプロトコルが使用されれば、ネットワークまたはその一部のトポロジー更新期間は、ネットワークの予測されたルーティングの必要性により調整することができる。ΨRtの予測能力を利用した全ネットワークまたはその一部のネットワークトポロジー更新期間を調整する能力については以下に説明する。
ΨRtネットワークを構成する多様な実態について説明する。それらは図1およびず3に示してある。リンク14はΨRtネットワークにおいて最も基本的な接続であり、いずれか2つのノード12の間の物理的リンクである。ノード12はリンク14の端点である。ノード12を記述する情報は、ID(例えば、IPアドレス、ATMアドレス)および、もしあれば位置情報を含む。ルートセグメントRSは、グループ化された一組のリンクとノードであり、潜在的には1つ以上のルートにおいて再使用可能な実態を形成する。これらのリンクは空間的に連続的なものである必要はなく、ノードはルートセグメントRS内の少なくとも1つの他のノードに隣接(1ホップ以内で)している必要もない。例えば、図1において、セグメント1のリンクは連続的であるが、セグメント1のノードはすべてがルートセグメントRS内の少なくとも1つの他のノードから1ホップ以内であるわけではない。セグメントリンクセット(SLS)は、ルートセグメントRSからノードを引いたものである。セグメントノードセット(SNS)は、ルートセグメントRSからリンクを引いたものである。ルートは、結合するとソースSからデスティネーションDへの連続的なパスを形成する、1組のルートセグメントである。ルートリンクセット(RLS)は、ルートからノードを引いたものである。ルートノードセット(RNS)は、ルートからリンクを引いたものである。プロキシソースノード(pSn)は、ルート内の中間ノードであって、ルートセグメントの始点となるノードである。この定義から、実際のソースノードSnはプロキシソースノードpSnにはなりえず、逆にプロキシソースノードpSnはソースノードSnにはならない。プロキシソースノードpSnは、所定の状況においてソースノードSnを代替する機能を有することから名づけられたものである。プロキシデスティネーションノード(pDn)は、ルート内の中間ノードであって、ルートのルートセグメントRSの終点となるものである。この定義から、実際のデスティネーションノードDnはプロキシデスティネーションノードpDnにはなりえず、逆にプロキシデスティネーションノードpDnはデスティネーションノードDnにはならない。プロキシデスティネーションノードpDnは、所定の状況において、デスティネーションノードDnを代替する機能を有することから名づけられたものである。ソースデスティネーションサブセット(SDS)は、指定されたソースノードSnから到達可能なデスティネーションノードDnの許容されたサブセットである。ネットワーク全体が上限となる。特殊な場合として、フォーマルサブネットがある。
ルートセグメントRSが生成されると、以下の情報を含むルートセグメントプロファイルも生成される。このセグメントのセグメントリンクサブセット(SLS)を整列したセグメントリンクセットプロファイル(SLSP)。この整列順序は整列パラメータと同様に、時間と共に変化してもよい。このセグメントのセグメントノードサブセット(SNS)を整列したセグメントノードセットプロファイル(SNSP)。この整列順序は整列パラメータと同様に、時間と共に変化してもよい。ルートセグメントが時間の経過と共に変化する仕方を追跡しフォーキャストする集積されたノードおよびリンクステータス/ステート情報と結びついた、数学的関数(決定論的、統計的、ファジー)や帰納的なルールの集合のようないかなるタイプのディスクリプターでもよい時間依存セグメント安定性プロファイル(TSSP)。例えば、最も簡単なディスクリプターの1つは、ルートセグメントのリンクの品質とノードのダイナミクスにより特徴づけられた1次関数である。このディスクリプターと関連している各リンクとノードは、同じ安定性プロファイル関数を有するが、異なる悪化率と回復率を表す異なる傾きを有する。リンクとノードの入手容易性(アベイラビリティ)データは、このセグメントのリンクとノードについて様々な時に収集され、ディスクリプターにより処理される。これは、非常に不安定なセグメントから準永久的に安定なセグメントまで、いかなるタイプの安定性を有するルートセグメントを表現するのに、非常に効果的な概念的メカニズムである。
ルートが生成されると、以下の情報を含むルートプロファイルも生成される。ルートセグメントRSのリンクの集合をつくる、順序づけされたルートセグメントRSの集合を含むルートセグメントセットプロファイル(RSSP)。順序パラメータと同じく、この順序も時間とともに変化しうる。どのルートセグメントがルートに接続/切断されるかに関して、ルートが時間の経過と共に変化する仕方を追跡しフォーキャストする、数学的関数(決定論的、統計的、ファジー)や帰納的なルールの集合のようないかなるタイプのディスクリプターでもよい時間依存ルート安定性プロファイル(TRSP)。例えば、最も単純なデスクリプターの1つは、ルートセグメントのリンクの品質とノードのダイナミクスにより特徴づけられる1次関数である。このディスクリプターと関連づけられた各セグメントは、同じ安定性プロファイルファンクションを有するが、異なる悪化率と異なる回復率を表す傾きは異なる。ルート内のセグメントについて様々な時にセグメントアベイラビリティデータとセグメント間相互作用データが収集され、ディスクリプターにより処理される。時間依存ルート安定性プロファイル(TRSP)は、すべてのルートセグメントに関してルートの安定性を表現する非常に効果的な概念的メカニズムである。TRSPは、個別のリンクやノードの調査が表すよりも高次の安定性を示す。
図4と図5を参照して、本発明のシステムとしての側面を説明する。前述の通り、モバイルアドホックネットワーク10は、複数のワイヤレスモバイルノード12と、ノードを接続する複数のワイヤレス通信リンク14とを有する。各モバイルノード12は、ワイヤレス通信リンク14を経由して、他のノードとワイヤレス通信する通信デバイス22を有するルータ20を含む。ルータ20は、通信デバイス22を経由して通信をルーティングするコントローラ24を含む。メモリ26もコントローラ24の一部として、またはコントローラ24に関連して含まれてもよい。
コントローラ24はネットワーク10内の部分ルートや完全ルートを表すルートテーブル36を含む。前述の通り、ルートはソースからデスティネーションまでの一組のリンク14とノード12である。コントローラ24は、複数のモバイルノードのうち少なくとも2つの間の未来における通信の必要性を予測するルート必要性予測手段32と、未来におけるネットワークトポロジーおよび/またはネットワークダイナミクスを予測するトポロジー/ダイナミクス予測手段も含む。コントローラ24は、未来における通信の必要性と未来におけるネットワークトポロジーに基づいて、部分ルートと完全ルートを含むルートを探索するルート探索手段30も含む。ルート探索手段30は、ルート探索プロセスによりルートテーブルを更新する。
ルート必要性予測手段32は、後に詳述するように、ファジー論理の「if−then」ルールと統計的計量的フォーキャストに基づき、未来における通信の必要性を予測することができる。ルート必要性予測手段32は、サンプリングされ更新されるネットワークの物理的特徴および動作的特徴のうち少なくとも一方を含む、ネットワークの記述的情報を記憶することができる。ここで、ルート必要性予測手段32は、好ましくは、ファジーif−thenルールの知識ベースを含む。
トポロジー/ダイナミクス予測手段34は、好ましくは、ルートテーブル/キャッシュ36で定義されたルートの障害を予測するルート障害予測手段を含む。ルート障害予測手段は、リンク障害計量とノード障害計量とを含むルート交渉計量を生成し、ルート障害計量を生成するためにノードモビリティおよび/またはRF伝播特性を推定することもできる。ルート障害予測手段は、後に詳述するように、ルート障害計量に基づき、ソースからデスティネーションまでのルートについて平均障害時間(MTF)を決定する。
ルート維持手段40は、予測されたルート障害に基づきネットワークのルート維持を行う。例えば、ルート維持手段40は、障害が発生すると予測されたルートを代替するための代替ルートの探索をルート探索手段30に指示する。替わりに、あるいは併せて、ルート維持手段40は、ルート障害を減少させるため、リンクの送信パワーを上げ、リンクに追加チャネルを割り当て、および/または障害が発生すると予測されたルートを代替するために代替ルートがルートテーブル/キャッシュ36で定義されているか判断してもよい。
ΨRtの一般的なアーキテクチャ(ΨAr)は、コンポーネントやその外部ΨRtパラメータが特定のアプリケーションや一般的なプロトコルスタックに依存しないように、ΨRtのコンポーネントを特定し定義することを前提としている。外部ΨRtインターフェイスパラメータのこの定義された一般的な組は、ΨRtインターフェイスの仕様に合致するようにアプリケーションシステムデザインにおいて選択される。そのように合致させるため、カスタムパラメータ変換により特定のアプリケーションシステムがこれらのパラメータを生成する必要があった。各主要コンポーネントのアーキテクチャは、この依存性をさらに保存するため、ΨArとは切り離されている。
図6は、ΨRtの一般的なアーキテクチャ(ΨAr)を示す。図6には、ΨRtを形成する6つの主要な機能的コンポーネントと、左側に一例として示したプロトコルスタック間のインターフェイス(IF)が示されている。他のプロトコルスタックの設計は異なるかもしれないが、インターフェイス(IF)によりパラメトリック形式の情報をΨRtに与えなければならない。広い範囲のプロトコルスタックについて一般的なインターフェイスIFがテンプレートやデフォルトとして入手可能であるが、インターフェイスIFは一般に特定のスタックとアプリケーションにカスタマイズされる。
図6に示したとおり、Ψ制御(ΨCn)、Ψルート予測(ΨRp)、Ψルート探索(ΨRd)、Ψトポロジー探索(ΨTd)、Ψルート障害予測(ΨRf)、Ψ予測ルート維持(ΨRm)が6つの主要なコンポーネントである。図を見やすくするため、ΨCnの他のコンポーネントとの接続は明示的には示されていないが、実際にはΨCnとΨRtの他のすべてのコンポーネントの間には、双方向の接続/矢印がある。
ΨCnはΨRtの全般的な制御を行う。ΨRpは未来における新しいルートとルートセグメントを予測する。ΨRfはルートの障害を予測する。ΨRmは、ルート障害が発生すると仮定して、実際に発生したときに対処方法を見つけるまでの時間を減らすように、予測された未来におけるルート障害への対処方法を予測する。ΨRdは、新しいルートやルートセグメントを探索するためにΨRpとΨRmが使用するルート探索機能である。ΨTdは、ΨRtのトポロジー探索機能である。
ΨRtは、この6種類のコンポーネントをどのノードやノードの部分集合に物理的にマッピングするかを規定するものではない。ΨRtの基本的な考え方として、物理的なマッピングは、具体的なアプリケーションやネットワークの設計者に委ねている。しかし、もし各ノードにすべてのコンポーネントをサポートする物理的資源があり、各ノードにそれほど多くの機能を持たせることでセキュリティー等の問題がないなら、各ノードがすべてのコンポーネントを有してもよい。ネットワークの要求項目、ストラテジー、アーキテクチャの候補、機能をどのくらいネットワーク内に分散させるかなどは、ネットワークの設計者が決定すればよい。概念的にはΨRtはマッピングからは独立である。しかし、スループット、セキュリティ、消費電力制限等の理由により、場合によっては、分散的なアーキテクチャの方が好ましいであろう。
図6に示したとおり、左側のネットワーク通信の5つの層と、ΨRtのΨ制御以外の5つのコンポーネントとの間は、1対1のマッピングではないが、直接接続されている。ΨCnは、他の5つのコンポーネントが整合的かつ調和的に動作するように制御する。外部インターフェイスについては、ΨCnのセクションで説明する。各コンポーネントの詳細は以下の通りである。
アプリケーション層からのデータはΨRp、ΨRm、ΨRfに分配される。このデータには、ミッションプラン、スケジュール、計画されたトラフィックパターン、ネットワークマネージメントデータ、および明示的に規定された未来におけるルート等の情報が含まれている。物理層からの情報はΨRpとΨRfとに分配される。物理層からのデータには、ノード移動度制限、ノードパワー仕様、アンテナ指向特性などの情報が含まれている。リンク計量、ノード計量、スナップショットトポロジー更新などのデータリンク層からの情報は、ΨRp、ΨRd、ΨRm、ΨRf,およびΨTdに分配される。しかし、データリンク層の情報が各ΨRtコンポーネントに送られるわけではない。輻輳統計、フロー情報、一般のトラフィック管理情報などのトランスポート層からの情報は、ΨRfとΨRmとに分配される。
ネットワーク層は、情報をΨRdとΨTdに送るメカニズムとして機能する。ΨRtはこれらの層から情報を明示的には抽出しないが、これらのパラメータを抽出するために典型的にはアプリケーションごとに記述されるインターフェイスに依存する。デフォルトでは、テンプレートとして一組の一般的なネットワークスタックインターフェイスを使用する。ΨRtの特徴の一つは、ネットワーク通信にクラシカルな層構造からの情報を利用する能力を有しており、この情報の一部が入手できなくても、最適ではないモードで機能することである。ミッションプランニング等のアプリケーションはネットワークが無くても機能するであろう、しかしネットワークはルートの予測を向上するために、もしあればミッションプランニング情報を使用するであろう。
多数のモバイルノードを含むΨRtネットワークの実行フローの例を説明する。この例では、従来のルーティングコンポーネントとしてAODV(ΨRt/AODV)を使用している。AODV(アドホック・オンデマンド・ディスタンス・ベクトル)はリアクティブなルーティング方法である。ダイナミックソースルーティング等のその他のリアクティブな方法は、システム上の要請からAODVに置き換えられる。同様にΨRt/OLSR(最適リンク状態ルーティング)を使用してもよいし、その他のプロアクティブな方法を使用してもよい。
1 ネットワークの初期化においてΨCnが起動され、従来のルーティングコンポーネント(AODV)も含めてΨRtの起動を制御する。
2 AODVによりアドホックネットワークルーティングが初期化される。
3 ルート要求が生成され、ノードのルートキャッシュ(テーブル)が作られる。
4 ΨCnは、以下の一つまたはそれ以上の条件が満たされたとき、AODVから制御を引き継ぐΨRpを起動する。
・指定されたネットワークの安定化条件が(1)所定のレベルに達し、または(2)ネットワークのエリア・オブ・インタレスト(AOI)内の変化の所定パターンになる。
・ネットワークの指定されたエリア内のノードが、現在探索しているルートの
一部とするには高速で動き過ぎている。
・ノードがネットワークのある部分から、不確定な(しかし必ずしも不安定では
ない)条件のエリアに動き、信頼性のレベルが最低限予測可能なAODVを使用
できなくなる。
・現在ではないが未来におけるいつかの時点でネットワークノード同士が通信を
行う必要があるとの命令を、ΨCnがアプリケーションから受け取る。
ΨRtに対しネットワークは以下の通り反応する。
5 ΨCnが影響を受けたエリアにある関連するノードにメッセージをマルチキャストする。
6 メッセージは、ΨRp、ΨRm、またはΨRfコンポーネントに宛てて送られる。ΨRd
とΨTdは、ΨRtの他のコンポーネントに対してスレーブである。
7 メッセージは、指定されたAOIの一つまたはそれ以上のルートを予測し、障害が
発生する前にAOI内の障害を予測し、障害に対するルート維持方法を予測する
ものである。
8 メッセージがネットワーク全体または指定されたネットワークの一部に送信される。
9 この時点からネットワークが停止するまで、ΨRtの予測的なコンポーネント
および従来からある非予測的コンポーネント(この場合、AODV)が
ルートテーブル(キャッシュ)を変更する。
10 ΨRtの実行によって、変更されたデータが付随するTRSPおよびTSSPに
記録される。
11 各ネットワークコンポーネント(ノード、リンク、セグメント、ルート)の安定性
および状態をトラックするため、付随するTRSPとTSSPの情報ベースが生成
され、更新される。
12 情報ベースに集積されたすべてのデータがルートキャッシュ分析から得られたもの
ではない。このデータおよびそれに関係したデータが、もし別のQoSおよびトラ
フィック管理情報ベースがそのようなデータを集積している場合は、それらから
集めることができる。このデータは、リンクおよびノード状態を送信しているノー
ドから直接集めることもできる。
上述の通り、ΨRtは基本的には、ネットワーク内の一つのノードあるいは特定のノード群にコントロールをマッピングするように命令するわけではない。したがって、ΨCnは、設計者の要求や性能に応じて、ネットワーク内の全ノードに分配してもよいし、一つまたは少数の選ばれたノードに分配してもよい。ΨRtの他のコンポーネントは、ΨCnと同じノードにある必要はない。ΨRtが存在するネットワークにおいて、ΨCnは、外部情報によりΨRtの他のコンポーネントを起動する。一つのやり方としては、ネットワークの条件に応じて決まる期間で、周期的にΨRtを起動すればよい。ΨRtを定期的に起動する条件は、ある時点におけるノードの展開パターンと、ネットワーク内のノードの通常の急激な増加・減少と、ある期間ノード間のリンクを効果的にオンしたりオフしたりする指向性アンテナの予測可能な変化と、によって変化すると期待される。他のやり方は、ΨRpモジュールによって変換されるミッションプランの出力に応じてΨRtを起動することである。ハイブリッドなネットワークにおいて、スイッチング論理により、ΨRtを使うか否かを、必ずしも起動しなくても制御することができる。例えば、テンポラル・トランジション・ネットワーク・プロトコル(TTNP)を使用したネットワークは、いつどこでプロアクティブなルーティングプロトコルからリアクティブなルーティングプロトコルにスイッチしたり、その逆にスイッチしたりするかを決定するため、様々な安定性条件を使用する。TTNPの一般的なバージョンは、プロアクティブおよびリアクティブなプロトコルに限定されてはいない。TTNPはΨRtをハイブリッドの一部として含んでもよい。したがって、TTNPネットワーク内でΨRtを起動することは、ネットワークの安定性条件によって制御することができる。
一方、ΨRt、特にΨCnは、ハイブリッドなアドホックネットワークにおいて常に起動されているわけではなく、それゆえ起動されていないときはコントロールを使用することはできない。アクティブなときは、「ブラックアウト」中にネットワークで何が起こったか、ΨRtは知ることが必要である。ハイブリッドネットワークコントローラは、ΨRtに適当なメッセージを送り、ΨRtが知っていることおよびデータベースをネットワークの現状と合わせておく必要がある。
また、図6に示されているように、ΨCnは、アプリケーション層と物理層とに直接のΨRt−外部インターフェイスを有する。以下に、インターフェイスを経由してアプリケーション層および物理層とΨCnとでやり取りされる情報のリストを示す。ΨCnは、典型的にはシステムがブートされるときに起動される。
1 ネットワーク内の目的のノードまたは一組のノードのΨRt機能コンポーネントのコンフィギュレーションを知らせる、ΨCnを含むノードに対するメッセージ。機能コンポーネントのコンフィギュレーションとは、目的のノードまたは一組のノードが(ΨRp、ΨRf、ΨRm、ΨTd、ΨRd)のどの機能で構成されているかを示す。このインターフェイスメッセージは、ネットワークにあるどのサービス広報/探索方法でも一般に使用することができる。
2 ΨRtの他のコンポーネントを目覚めさせる(起動する)ためのΨCnへのメッセージまたは信号。
3 ΨRtの他のコンポーネントを停止する(ディアクティベイトする)ためのΨCnへのメッセージまたは信号。
4 他のΨRtコンポーネントをいつ起動/停止するかを知るためタイマー(物理層の情報)を監視するためのΨCnへのメッセージ。
5 ΨRp、ΨRf、ΨRm(これらのコンポーネントは最初に起動されている)を実行するスケジューリングのためのタクティクスを含むアプリケーション層からのメッセージ。
6 タイマー値を取得する。
7 タイマー値を設定する。
以下の説明において、「入力」とは、ΨRtの他のコンポーネントの一つからΨCnに送られる情報を意味し、「出力」とは、ΨCnからΨRtのコンポーネントの一つに送られる情報を意味する。ΨCnとΨRtの他の主要な機能コンポーネントに共通な情報(リクエスト、ステータスレスポンス等)について、それぞれメッセージが定義される。現在定義されているメッセージについては以下に説明する。ΨCnと他のΨRtコンポーネント間の他のインターフェイスについても、以下に説明する。本明細書において、「アレイ」、「リスト」、「コンポーネント」、その他の言葉が使用されているが、特定の構成を前提とするものではない。それゆえ、ソフトウェアの設計者が「アレイ」を、正式に定義されたアレイ、リンクされたリスト、2進木その他のコンピュータ科学上の構成に実装するかについては、本明細書において特定するものではない。その決定は、本出願の教示を実装する者が決めればよい。
アクティブなΨRtコンポーネント(Tn、、要求者ID、Ack、コンポーネントリスト)メッセージは、起動すべきコンポーネントを含むターゲットノードのネットワークID(IPアドレス、ATMアドレス等)であるTnを含む。要求者IDは、その起動要求をしているΨCnを含む要求元ノードのID(IPアドレス、ATMアドレス等)である。Ackは、もしTRUEに設定されていれば、要求されたコンポーネントごとの起動が成功したかどうかの明示的な通知をターゲットノードに要求する。FALSEに設定されていれば、ターゲットノードはそのような通知は送らない。コンポーネントリストは、起動すべきターゲットノードのコンポーネントのリストである。
ΨRtコンポーネント起動(Tn、コンポーネントリスト)メッセージは、ターゲットノードの現在起動されているΨRtコンポーネントを意味する。このメッセージはネットワーク内のいずれの認容されたノードに送ってもよい。Tnは起動されたΨRtコンポーネントを含むターゲットノードのネットワークID(IPアドレス、ATMアドレス等)である。コンポーネントリストはターゲットノード上で現在起動されているコンポーネントのリストである。ディアクティベイトΨRtコンポーネント(Tn、、要求元ID、Ack、コンポーネントリスト)メッセージは、ディアクティベイトされるコンポーネントを含むターゲットノードのネットワークID(IPアドレス、ATMアドレス等)としてTnを含む。要求元IDは、このディアクティベイト要求をしているΨCn機能を含む要求元ノードのID(IPアドレス、ATMアドレス等)である。Ackは、もしTRUEに設定されていれば、要求されたコンポーネントごとにディアクティベイトが成功したかターゲットノードから明示的の通知を要求する。もしFALSEに設定されている場合は、ターゲットノードはそのような通知は送らない。コンポーネントリストは、ターゲットノード上でディアクティベイトされたコンポーネントのリストである。
ΨRtコンポーネントディアクティベイトメッセージ(Tn、コンポーネントリスト)は、ターゲットノード上で現在ディアクティベイトされているΨRtコンポーネントである。このメッセージは、ネットワーク内のどの認容されたノードに送られてもよい。Tnは起動されたΨRtコンポーネントを含むターゲットノードのネットワークID(IPアドレス、ATMアドレス等)である。コンポーネントリストは、ターゲットノード上で現在起動されているコンポーネントのリストである。ディアクティベーション要求をしているノードは、ターゲットノード上でどのΨRtコンポーネントが起動されているか知っているものと仮定する。それゆえ、このノードやその起動について同じ知識を有しているその他のノードは、ターゲットノード上のすべてのΨRtコンポーネントが適当にディアクティベイトされたかチェックすることができる。
ΨRpに対するΨCnのインターフェイスにより、予測ルート(Tn、、要求元ID、SDS Set)メッセージは、実際の予測を監視するターゲットノードのネットワークID(IPアドレス、ATMアドレス等)であるTnを含む。要求元IDは、この予測要求をしているΨCn機能を含む要求元ノードのID(IPアドレス、ATMアドレス等)を含む。SDS Setは、ルートの予測要求がされている一組のソースデスティネーションサブセット(SDS)である。
ΨRfに対するΨCnのインターフェイスとして、ルート障害予測メッセージ(Pn、、コンポーネントリスト)は、一つまたはそれ以上のルート障害ノードのネットワークID(IPアドレス、ATMアドレス等)であるPnを含むメッセージである。自動的にΨRmに予測されたルート障害の解決法を予測するよう要求するためのΨCnからの命令をPnが受けなければ、Pnは、予測されたルート障害をどうするかを決定するためΨCnから指示を受けなければならない。ΨCnは、そのような状況においてアプリケーションのデマンドを含めネットワークに関してより広い視野を有しているので、ΨCnにこの状況を制御させるためである。
オートリペア予測ルート障害メッセージAltRt(Pn、)は、予測されたルートおよび予測されていないルート両方に影響するネットワークノード・リンク条件をモニターし、ルート障害を予測し、ΨRmに適当なルート維持法を予測させ適当な場所にこの方法を記憶するノードのネットワークID(IPアドレス、ATMアドレス等)であるPnを含む。もし当該方法が代替ルート(障害が発生するルートへの簡単な変更も含む)の使用であるとの予測である場合、予測された代替ルートは、適当なルートテーブルまたはキャッシュに追加されるが、実際に必要とされるまで起動されない。もし当該方法が、既存のルートの簡単な変更を含め、代替ルートの探索や使用でない場合は、PnはΨRmを用いてルートを自動的には修復しない。これらの場合、ΨCnは、ケースバイケースでルート修復の許可を直接管理し、これらの修復を取り扱うリソースを有するいずれかのノードに修復を指示する。適当な維持方策としては、例えば、送信パワーを上げたり、または正しいタイミングで受信ノードの感度を上げたりすることがある。この種の変更の制御を自動的にΨRmのようなスレーブプロセスに任せるのは好ましくないかもしれない。それゆえ、そのような場合、ΨCnは、Pnにはこの種のルート維持を自動的に実行させず、未来のある時点で障害が発生すると予測されるリンクに直接接続されているノードに、送信パワーを上げるか受信感度を上げるかして維持するであろう。これらはすべて未来における適当な時に行わねばならず、さもないとバッテリーを使い切ったり他の通信と干渉したりする好ましくない副作用が生じるおそれがある。
ΨTdに対するΨCnのインターフェイスとして、エクセキュートグローバルトポロジー更新(Tn、要求元ID、期間、Ack)メッセージがあり、このトポロジーの更新を実行するように指示されたターゲットノードのネットワークID(IPアドレス、ATMアドレス等)であるTnを含む。要求元IDは、このグローバルトポロジー要求をしているΨCn機能を含む要求元ノードのID(IPアドレス、ATMアドレス等)である。期間は、Tnがグローバルトポロジー更新を実行するネットワークシステムベーシッククロックの整数倍である。もし期間が0であれば、Tnはグローバルトポロジー更新を一度だけ実行し、別のメッセージを明示的に受け取らなければ再度実行することはない。Ackは、TRUEに設定されている場合、更新が一度きりのイベントとして実行されたとき、または周期的なイベントとして実行されたときに、グローバルトポロジー更新が成功したことをターゲットノードが明示的に通知することを要求する。FALSEに設定されている場合、ターゲットノードは通知を行わない。
グローバル・トポロジー更新完了(Tn)メッセージは、ターゲットノード上の現在ディアクティベイトされたΨRtコンポーネントを指す。このメッセージは、ネットワーク内の権限を与えられたノードに送られる。TnはアクティベイトされたΨRtコンポーネントを有するターゲットノードのネットワークID(IPアドレス、ATMアドレス)である。グローバル・トポロジー更新停止 (Tn, , RequestorID, Ack)メッセージは、グローバルトポロジー更新の実行を停止するよう指示されたターゲットノードのネットワークID(IPアドレス、ATMアドレス等)であるTnを含む。RequestorIDはグローバルトポロジー要求を出しているΨCn機能を有する要求元ノードのID(IPアドレス、ATMアドレス等)である。Ackは、TRUEに設定されている場合、グローバルトポロジー更新を停止したターゲットノードから明示的な承諾を要求する。FALSEに設定されている場合、ターゲットノードは承諾を送らない。トポロジー・マイクロバースト実行 (Tn, RequestorID, NumBursts, Period, ACk, RSSP_List)メッセージは、トポロジーマイクロバーストを実行するように指示されたターゲットノードのネットワークID(IPアドレス、ATMアドレス等)としてTnを含む。RequestorIDはトポロジーマイクロバーストを要求しているΨCn機能を有する要求元ノードのID(IPアドレス、ATMアドレス等)である。NumBurstはネットワークの同一の限定されたエリアからのトポロジーのサンプル数である。PeriodはTnがトポロジー更新を実行するネットワークシステム基本クロックサイクルの数(整数)である。NumBurstが1に設定されている場合、Periodは無視される。Ackは、TRUEに設定されている場合、ターゲットノードに、一回限りであるか周期的に繰り返すかに係らず更新が実行されるたびに、マイクロバーストトポロジー更新が成功したことを示す明示的な承諾を要求する。FALSEに設定されている場合、ターゲットノードは承諾を送らない。RSSP_Listはトポロジー更新が要求されているネットワークの部分の全体(全ネットワークでもよい)をカバーする一組のRSSPである。
トポロジーマイクロバースト要求状態 (Tn, Status)メッセージは、起動されたΨRtコンポーネントを有するターゲットノードのネットワークID(IPアドレス、ATMアドレス等)としてTnを含む。リクエストが完了したときにはStatusは1にセットされる。まだのときはStatusは0にセットされる。リクエストが失敗したときにはStatusは‐1にセットされる。トポロジーマイクロバースト実行メッセージにおいてAckがTRUEにセットされなければ、中間状態または最終状態のレポートがTnに送られることはない。
ΨCnアルゴリズムにおいて、次のステップを使用することができる。
1 外部要因が、ΨRtのその他のコンポーネントを起こすためにΨCnにシグナルを送る。
この外部要因には、ハイブリッドネットワークにおいて一つのルーティング方法から別のルーティング方法にスイッチするために使用されるメカニズムを含んでもよい。
2 ΨCnが、ΨTd、ΨRp、ΨRd、ΨRf、およびΨRmをインアクティブ状態から起こすためにシグナルを送る。
3 ΨCnが、アプリケーション層により特定されたタクティクスによりΨRp、ΨRf、ΨTd(グローバル更新のみ)、およびΨRmの実行を最初にスケジューリングする。
スケジューリングの例としては、周期的なものや、ミッションプランによる非周期的なもの、ネットワークの一部におけるQoSの悪化やノード濃度の急激な変化のような様々なネットワーク条件に基づく非周期的なもの、などがある。
4 ΨRp、ΨRf、ΨTd(グローバル更新のみ)、およびΨRmは、上記の選択されたスケジューリングプランにより実行される。
5 ΨCnは、ある頻度(トポロジーマイクロバースト)で限定エリアのトポロジー更新をするようにΨTdに指示するよう、ΨRpから要求を受け、その後その要求を処理する。
6 ΨCnは、グローバルトポロジー更新レートを変更するよう、ΨRpまたはアプリケーションから要求を受け、その後その要求を処理する。
7 ΨCnは、ΨRp、ΨRd、ΨRf、ΨRm、およびΨTdを停止するか完全にディアクティベイトするよう、外部信号により指示されるまで、ΨRtのフローを監視する。
8 ΨRtは実際に停止していなければ、ステップ1に戻り、それ以外の場合は停止する。
ミッションやノードの動きデータ履歴などのデータは、未来のある時点における二つのノード間の通信の必要性を予測するために使用される。ΨRpはこの必要を満たすため、ルートが実際に必要とされる時点においてネットワークがトポロジー的にどう見えるかを様々な情報に基づき予測し、その指定された未来の時間において完全なルートが予測できる確からしさを判断し、全ルートを予測するのが困難であると思われる場合に信頼性高く予測できる全ルートの部分を特定する。
このセクションで説明した予測エンジンは、ΨRfの基本予測エンジンとしても使用されるが、ΨRpとΨRfの目的は異なるので、両エンジンを覆うロジックは異なる。予測手段が局所的予測および大域的予測を両方とも行う。局所的予測には、新しいルートの必要性を予測するため、ミッションプランなどのアプリケーション情報を使用する。その他の局所的予測としては、ノードおよびリンクの安定性がある。安定性タイプの予測は、他のリンク/ノード計量とともにトポロジー更新および/またはノードビーコンを経て他のノードに伝達される。たとえば、これらの計量はアドホック・オンデマンド・ディスタンス・ベクトル(AODV)やダイナミック・ソース・ルーティング(DSR)などの「従来の」MANETリアクティブルーティングスキームへのルート応答(route reply)として返すこともできる。これらの安定性予測は、必要な頻度のトポロジー更新を適応的に管理するために使用される。
帯域的予測は多数の特徴を有している。Dnへの様々なルーティングパスの安定性の予測は、トポロジー更新やビーコン送信により受け取ったリンク安定性を集積することにより、あるいは ルート応答(route reply)により得ることができる。これらのメカニズムによりルーティングパスの安定性を取得することにより、ネットワーク領域を低安定から高安定まで分類することができる。ネットワークの安定なエリアは、より安定でないエリアより安定なルートや部分ルートをサポートしやすい。「低い」および「高い」という言葉は、大域的安定性をある程度よく予測するには「ファジー」であると思われる。
これらの大域的予測はサービス品質(QoS)にも資するであろう。QoSネットワークコンポーネントは、ΨRtの予測を使ってルート障害の頻度や、要求されるクラスのサービスをサポートするのに必要なルートの数を決定することができる。それゆえ、アプリケーションがサービスのQoSクラスを必要とする場合、設計者がΨRtの予測能力を使用するならば、ルーティングコンポーネントとQoSコンポーネントの間の結びつきは強くなるであろう。確かに、このように二つのコンポーネントが結びつくと、QoS計量に基づかないで探索されたルートにQoSを適用するのとは逆に、QoSベースのルーティングスキームとなる。
一般的に、未来における実際のルートの一部であるルートセグメントは、未来における完全ルートよりも頻繁に予測される。その理由は3つある。第1に、MANETのような高速ダイナミックネットワークにおいては、頻繁なトポロジーの変化は、ルートセグメントと呼ばれる選ばれた、比較的安定なルートの一部よりも、SnからDnまでの予測されたルート全体が分解されることの方が多いことを意味している。前述のとおり、これらのルートセグメントは付随するの境界以外では、(pSn, pDn)のペアにより特定されるであろう。言い換えると、概念的にはルートを確立し利用するのに必要な時間より予測を安定なものにしておく最も高い確率は、全ルートではなくルートセグメントを予測することにより達成されている。選択されたルーティング計量または測定法によって、Snに各セグメントのバウンダリノードはpSnとされている。ルートセグメントのターミネイティングバウンダリノードはpDnである。SnまたはDnがある予測されたルートセグメントの一部であるなら、それらのノード(プロキシではなく)は、予測されたルートセグメントを形成する。これにより、(Sn, pDn)または(pSn, Dn)という形のルートセグメントができる。
所望のペア(Sn, Dn)のために予測プロセスを制御しているノードは、全ルートを起動する必要があるときまでに、全ルートを探索し確保しておけるように、好ましくはこのセグメントされたルート予測を追跡し管理する。このルートセグメント予測追跡管理機能は、予測要求をしたΨCnコンポーネントの重要な一部である。
第二に、時間的な制約により未来におけるルートの探索ウィンドウが制限されることもある。タクティクスとして価値のあるルートセグメントは、未来におけるルート探索プロセス全体を短縮するために選択されたノードのルートテーブル/キャッシュに予め探索され記憶(preload)することができる。未来において必要とされるルートを完全に探索する時間は十分ないかもしれないが、これらルートのセグメントを探索しておく時間は十分ある。ここでは、特定のルートを探索するための時間が主要な要因である。
第三に、ネットワークのバンド幅が、ルート予測をする現在の時間スロットにおいて重要な制約になることもある。したがって、ルート探索プロセスは、ネットワークにオーバーヘッドトラフィックを追加するので、時間短縮の候補となる。ここで困難なことは、このバンド幅を制限されたスロット内で、「適正」な数のルートセグメントのみを見つけるか、またはピーク時間内により多くのトータルネットワークバンド幅を要するルート全体を見つけるよう試みることにより、所定時間内にルート探索のオーバーヘッドを最小化することである。
以上の説明から、ルート予測を選択するアプリケーションのタクティクスは、予測に使用するため選択されたルートセグメントから選ばれることが分かる。以下に説明するとおり、ΨRfとΨRmは、問題が発生する前に多くのルートを特定し修復し、または少なくとも障害に対する反応時間を短縮する。しかし、ルートまたはルートセグメントの維持を頻繁に行うと、時にネットワークのスループットが危険なポイントまで下がることがある。したがって、一般的に最善のストラテジーは、期待される安定性に基づき予測されたルートセグメント内のノード数を制限して、ルート修復の必要を減らすことである。
ΨRpは、一部は最適リンク状態ルーティング(OLSR)等の現在のルーティング方法のものに類似したグローバルおよびローカルなネットワークトポロジー更新を使用して、ネットワークのトポロジー変化を追跡する。ΨTdについては後に説明する。
潜在的な物理的制約(消費電力、プロセッサーのタイプ、メモリー容量、通信能力等)や情報アクセスにおける制約のため、すべてのノードにおいてΨRpがイネーブルとされていなくともよいし、その必要もない。これは、ΨRtネットワークにおいてΨRpの能力を有したノードの数を制約する理由の一つである。これらの「有利な」ノードは、Ψc(予測制御ノード)と呼ばれ、未来のある時点において必要であると予測されたルートまたはルートセグメントを獲得する(ルートテーブル/キャッシュから検索するか一から探索する)
ため、他のノードまたはそれ自身に要求することができる。もしこの要求が送られたノードにルートまたはルートセグメントがあれば、その要求は、ルートが必要とされた後所定の時間が経過するまでそのルートが失効しないようにノードに要求する効果も有する。一般的なMANET環境においてこの予測手段が有効であるためには多くの基礎的要件を満たさなければならない。以下のリストは順不同である。
1 予測手段はオンタイムで実行できなければならない。
・ ネットワーク内の小さな変化のすべてに追随するリアルタイムの実行は一般的に必要ない。小さな変化でもクリティカルな場合にリアルタイムで実行する。
・ ハードウェアとバンド幅の改善は特定のアプリケーションでは役に立つが、最も広い範囲のアプリケーションでは役に立つとはいえない。
2 広い範囲で適用可能な予測手段は、信頼できる予測をすることができる前に多数のデータ(100データポイント以上)の収集を要求してはいけない。
・ リアルタイムを考慮する以上のものである。多数のデータを集めることは、すべての意味のある収集は少しのデータポイントにおいて発生するので、しばしば可能でさえない。
・ ネットワーク内で多数のノードが同時に多量のデータを集めることは、過大なオーバーヘッドにつながり、データのバンド幅とネットワークの素早い反応を脅かす。
3 予測手段は、関連するネットワーク条件が設計者が期待する基準を「幾分」超えているときであっても、信頼できる予測をすることができるという意味で強くなければならない。
4 予測手段は複雑である必要はないが、予測手段自身の振る舞いは、予測手段が仕えるアプリケーションの許容できる予測可能性の範囲内になければならない。
5 このストラテジックかつ基本的な予測手段の技術的土台は、このリストの上記要件の優先順位に係らず、機能するのに十分強くなければならない。
・ この優先順位は、アプリケーションごとに変化する。
ダイナミックに変化するMANETの問題を予測する予測手段の候補は、ファジー論理、ディシジョンツリー、ルールインダクション、またはこれらの組み合わせに基づく。ノンパラメトリックな統計的分析または決定論的な分析は、データを実際の予測手段に送る前に前処理するのに使用される。
上記のセクションで概説した要件に基づき、ΨRp予測手段法は、(ルールインダクションではなく)ファジールールに基づいたアプローチを使用する。本明細書中のΨRpのサンプルは、アプリケーション層からの決定論的ノード展開情報、時間経過におけるノードの実際の動きをフォーキャストする統計的に導かれた数値的データ、およびリンク安定性情報を使用する。一般に、ΨRpを適用する場合、本明細書中に例示したタイプのデータはルート予測に大変に有効であるが、これらに限らず複数のタイプのデータを使用することができる。
ΨRpは9つのコンポーネントからできている。そのコンポーネントとは:
1 データベース(ΨDb)
2 サンプリング、データベース更新、およびタクティクス(SDUT)
3 知識ベース(ΨKb)
4 サンプリング、知識ベース更新、およびタクティクス(SKUT)
5 統計的数値的フォーキャスト(SNF)
6 情報構造インターフェイス(ISI)
7 ファジファイヤFuzzifier(ΨFz)
8 推論エンジン(ΨRe)
9 デファジファイヤDefuzzifier(ΨDf)
これらのコンポーネントについては、ΨRtの予測機能としてこれらのコンポーネントを使用するアルゴリズムとともに以下に説明する。
データベースは、ネットワークが実際に動作している間に収集されたデータセットと、予め組み込まれたデータとを含む。データベースは、ネットワークの物理的特性および動作的特性を典型的に表現する情報を典型的には含む。あらかじめ組み込まれたデータは、ノードの物理的特性を示す定数またはデフォルト値である。データの形式は数値であってもテキストであってもよい。データベースの情報は、主に物理層およびアプリケーション層から得られ、それらに関するものである。より正確で使用しやすい予測を行うために、可能であれば取得されデータベースに入れられる情報を以下に示す。
1 ネットワーク内に最初にあるノード数
2 ネットワークで許容されるノードの最大数(サンプリングされていれば、不定期的に)
3 各ノードの位置(頻繁にサンプリングされる)
4 各ノードの可能なまたは許されている最大速度
5 各ノードのID − 多くの場合IPv4/v6アドレスまたはATMアドレス(サンプリングされる)
6 通信のために使用可能な各ノードのパワー容量
7 ノード通信パワー利用率
8 通信のために現在残存しているパワー容量(サンプリングされる)
9 予定された時刻におけるノードの期待位置
10 予定された時刻におけるノードの期待位置それぞれの確立
11 いろいろな時刻において相互に通信していると計画されているノードのペアまたはグループ
12 ノードの所定の動きパターン
13 サービスを離脱すると計画されているノード
14 サービスに加わると計画されているノード
15 所定の必要なソースルーティングパス
16 ノードの動きの許容された位置境界
17 ノードの移動率 − 速度と加速度(頻繁にサンプリングされる)
18 ノード送信距離
19 ノード受信距離
20 アンテナタイプ(多方向性、方向性、単方向性)
21 アンテナが現在示している方向(方向性である場合)
22 計画された未来におけるアンテナの示す方向
23 リンクの品質(安定性、信頼性、入手性等)
これらのパラメータ、すなわちパワー関連の情報は、ΨRtで一般的であり、層(layer)特有の情報を処理しΨRtのΨRpとその他のコンポーネントが必要とするパラメータを出力するカスタムインターフェイス(図6のインターフェイス参照)により導かれる。このタクティクスにより、ΨRtとそのすべてのコンポーネントは、すべてのタイプのハードウェア、MAC、ミッションプラン等からなるいかなるタイプのネットワークにもトランスポータブルとなる。特に、ΨRpは、使用する前にこれらパラメータの一部をファジー値に変換する(fuzzify)。
ΨRpはルーティングのための予測であるから、サンプリングのストラテジーは、収集される情報のタイプと情報の有効性に対するデータベース更新の必要性をサポートしなければならない。典型的なタイプの情報は、上記のデータベース情報のタイプで「サンプリングされる」と示したものである。多くのノードが大きなデータベースを保持しネットワーク中の情報をサンプリングしなければならないとすれば、ネットワークのバンド幅の大部分を消費し、各ノードのメモリの過半を占有し、ノードのパワーを消耗することとなる。それゆえ、データベースを「軽量化」することは、複数のノードにまたがるデータベースを効率的に適時に同期させるのと同様に重要である。
ノードの位置データは2つのタイプのサンプリングメカニズムで取得される。各メカニズムは2つの異なった時間スケールまたは周期でサンプリングを行う(低頻度低解像度と高頻度高解像度)。第1のサンプリングメカニズムは、リンクレベルの解像度で相対的なノード位置を取得するルート探索技術を使用する。第2のサンプリングメカニズムは、位置データが適用されるノード、またはネットワーク内の他のノードのために位置データを送信するように指定された他のノードのいずれかにより直接送信された座標位置データを使用する。
ΨRpは、ΨTdに現在の低い頻度で「低頻度」グローバルトポロジー更新を行うよう要求する。実際のプサイアクティブトポロジー探索プロセスについて詳細に説明する。ΨRpは、ルートとルートセグメントを予測するノードの部分集合を特定するために、低頻度で取得した位置データを使用する。この全般的な低頻度の推定レートは、アプリケーションに依存し、設計者が与えた所定のレートで初期化される。初期化後、このレートは、ΨRpの結果がアプリケーションに信頼性できるルーティングを適時に供給できるかを推定できるように、必要に応じて修正される。
ΨRpは、ΨTdに現在の高頻度で「高頻度」グローバルトポロジー更新を行うよう要求する。ΨRpは、その部分集合に所属するすべてのノードの推定ノード速度(速さと方向)を算出するために、ネットワークの特定の部分集合の高頻度で取得された位置データを使用する。この高頻度のレートはアプリケーションに依存し、設計者が与えた所定のレートで初期化される。初期化後、このレートは、アプリケーションに対して信頼できるルーティングを適時に供給できるかを推定したΨRpの結果に応じて修正される。サンプリングレートは、位置取得の頻度が高くなれば上昇し、データ取得の頻度が低くなれば低下する。
各ノードは、独立にデータを収集し、ローカルなデータベースに記憶する。一般的に、各ノードのデータベースは、データの数値が他のノードのデータベースと異なるだけでなく、収集するデータのタイプも異なる。一のノードのΨRpは、一般に、インテリジェントで十分な情報にもとづく予測をするために、計画的に、他のノードのデータベースに含まれる情報を得る必要があるので、データの同一性を確保する必要から、データベースは相互に同期していなければならない。これは、データベースの一部は、ローカルノードメモリ資源を節約するため、多数のノードに分散していてもよいが、一方、他の情報は選択された部分集合の各ノードが同じものを持っていなければならない。この同じ情報は、リアルタイムの予測スループットを維持するために、ノードによる特定のアクセスには依存しないレートで更新される。
ΨRpの知識ベースは、次の知識符号化情報の一般的なカテゴリーからなる:一般システムファジーIf−Thenルール、特定アプリケーションファジーIf−Thenルール、データベースを配置するのに使用するサンプリングストラテジー、複数のノードでデータベースを同期させるために使用されるタクティクス。
ΨRpの統計的数値的フォーキャスト部分は、多様な時間スケールにおいて算出された数値的フォーキャスト(予測)をするため、古典的指数重みつき移動平均(exponentially weighted moving average; EWMA)一変量フォーキャスティングのHolt−Winters拡張を使用する。Holt−WintersやEWMAなどの技術は、これらのタイプの技術には適当な統計的モデルがないので、「アドホックな」技術である。それにもかかわらず、そのようなフォーキャスティング方法は非常に便利で実用的であることが、実際に証明されている。各時間スケールの結果は、ΨRp予測全体の異なる数値的入力として使われる。簡単のため、二つの時間スケールだけが、ファジフィケーションマッピング(fuzzification mapping)への主要な3つの入力のうちの二つとして使われれ、統計的数値的フォーキャストとなる。予測ノードに、十分なリアルタイムまたはオンタイムのデータ入力とともに、十分な計算パワーがあれば、アプリケーションの必要に応じて予測結果を向上させるために、時間スケール(複数時間スケール粒度)を増やすことができる。
一つ目の入力は長時間間隔フォーキャスト(LTIF)であり、二つ目の入力は短時間間隔フォーキャスト(STIF)である。ファジファイヤへの三つ目の入力は、ΨRpの数値的に算出されたフォーキャストに直接基づくものではなく、知識ベースから直接の入力として後述する。LTIFは、ノードの動きとリンクの安定性等のデータに全面的に基づく、実際のルートが使用されるようになるずっと以前に取得されたフォーキャストである。STIFは、LTIFに使用するのと同じデータに全面的に基づくフォーキャストであるが、STIFは実際のルートが使用されるようになる直前に取得されたデータにのみ適用されることが異なる。STIFとLTIFの加重結合が最終的な数値的フォーキャストとなる。
一般的に、要求されたルートが予測された直後は、これらの重みは、LTIFの時間により依存し、STIFには大きくは依存しないが、予測されたルートが初めて使用される頃にはLTIFよりSTIFに大きく依存するようになる。
この重みは3通りの基本的な方法により設定することができる。1)ノンパラメトリック統計的推定、2)パラメトリック統計的推定、3)固定的決定論的値。
時間スケールに対するHolt−Wintersフォーキャストで使用される一組の方程式を示す。
Figure 0003883075
Figure 0003883075
はMtの値が与えられた場合の、現在時点tからPの期間だけ未来の予測である。ここで、Mtは時刻tにおけるYの現在価値の予測値である。Btは、予測方程式の傾きであり、データ系列の局所的な線形トレンドを示すと解釈される。Ctは「周期的」な項であり、この場合、加法的なものである。一部の周期的な項は乗法的であってもよく、その場合方程式(1)はこの乗法性を反映するように変わる。説明のため加法的な場合を想定した。λ、λ、λは、上記の範囲における平滑化定数である。この再帰的な方程式によれば、1期間前の結果を再利用して、上記方程式のそれぞれについて現在期間の結果を計算することができる。
LTIFとSTIF間の数学的な相違点は、各期間の長さである。実際的な違いは、データと知識ベース入力が与えられたとして、予測ノードとネットワークの計算能力およびバンド幅に過度な負荷を掛けないで最適な予測に向かう能力である。異なる時間スケールでサンプリングと処理を行う方が、最も細かい時間スケールのレベルでサンプリングと処理を行うと取得して処理するデータの量が大きくなってしまうことよりも好ましい。複数の時間スケールを使うと、自然な時間スケールまたは頻度において最もたやすく現れる、ネットワーク(ノードとリンク)の振る舞いの特長をすばやく取得して識別できることであるLTIFの時間間隔がSTIFの時間間隔の整数倍でなければならないという制約はない。一般的にSTIFとLTIFは自由に決定できるが、それぞれの期間の長さは、アプリケーションの必要に応じて設定した方がよい。
基本的には、ΨRpのデータの取得と分析は、時間ドメインに限られるわけではない。ΨRpを周波数ドメインで定式化することも可能であるが、しかしHolt−Winters方程式から周波数ドメインの等価な方程式への変更を意味する。時間ドメインにおいてΨRpの概念と機能を表すのに必要な定式化の本質を捉えることができるので、本明細書ではこのことには触れない。
情報構造インターフェイス(ISI)は、ネットワークとΨRpの外部コンポーネントと内部コンポーネントとの結合されたインターフェイスである。外部インターフェイスについては後で説明する。内部インターフェイスは、ΨRpの8つの主要なコンポーネントの2つまたはそれ以上を相互に接続するインターフェイスである。ISIは、ΨRpに、またはその中で通信されているデータと知識の表現形式に主に係る。このデータと知識のよりよい表現は、より効率的で理解しやすい情報輸送とΨRp内の処理を意味する。特筆すべきISIコンポーネントの1つは、IPv4/6プロトコルの情報を抽出し、多様なΨRpコンポーネントにより認識される形式に変換するインターフェイスである。このISIコンポーネントの仲間はΨRp情報からインターネットで転送されるIPV4/6パケットを構築する。
ATMやフレームリレーのような他のタイプのプロトコルのために、他のインターフェイスがあってもよい。
ΨRpファジファイヤは、SNFと知識ベースとから数値情報を取り、ファジー集合で表された「ファジー空間」にマップする。実際には、ダイナミックなネットワーク、特にMANETにおいては、予測問題は、ターゲットとする予測そのものか、またはターゲットとする予測に至るために必要な中間のフォーキャストのいずれかにおいて、統計的に数量化できない曖昧さを有している。例えば、ミッションプランは、未来のある時点において、ある(Sn, Dn)ペアの間にルートを構築することが必要だとする。複雑な多体相互作用問題において、未来におけるある時間に、中間ノードの候補となるであろうノードの位置と接続性をどのように特定するかが困難である。言い換えると、この問題は特定の目標を有しているが、曖昧にしか知りえない未来におけるノード、リンク、システム状態情報を使わなければならない。
Holt−Wintersのようなアドホックな方法を含め、統計的な処理と従来のルールベースのシステムのようなアプローチは、このような問題を扱うには「もろ過ぎる」結果しか生まない。もろさは強さの反対であり、予測手段はターゲットのルートのあいまいな仕様を取り扱う能力において強くなければならないという、前述の説明に反する。本発明は、この問題をファジー空間において、このタイプの曖昧さを取り扱い従来のアプローチのもろさを克服する、適当なファジー論理オペレータを用いて定式化することを提案するものである。
ファジー空間マッピングとファジー論理オペレーションは、情報の計算とプロダクションルールの定式化/推定のために使用される。正味の効果は、ΨRpをその予測ができるだけ強いものになるようにすることである。数学的に厳格なファジー論理が、入力を結合するために適用され、適当なマッピングを作成する。
ファジー論理の別の長所は、計算資源とメモリ資源を少ししか要さず、結果がどのように得られたのか理解するために容易に追跡できることである。
推論エンジン(ΨRe)は、プロダクションルールを推定し、一つのファジー集合に複数のルールの出力を融合する。このルールは各時間スケールとΨKbからの入力の結果として出力される。ΨReの基本的な問題は、従来の推論エンジンと異なり、本来的にファジーであり、ファジー推論エンジンからの出力は、典型的には従来のものにより生成されたものと比較してもろくないということである。
デファジファイヤ(Defuzzifier)ΨDfは、ΨReの出力を、ΨRtにより使用される適当なフォーキャスト(予測)である数値、数値範囲、または一組の数値にマップする。それ自体ΨRpの一部ではないが、ΨRtは、より高いレベルのシステム進化特性またはトレンドを判別し、それをΨKb経由で予測プロセスにフィードバックとして使用するため、複数のフォーキャストを収集し、実際の結果と比較してもよい。この追加的な処理アプローチはここでは議論しない。
図6に示したとおり、ΨRpとアプリケーション層、データリンク層、物理層とは直接インターフェイスしている。ΨRtにおいて、ΨRpはΨCn、ΨRd、ΨTdと直接インターフェイスしている。各インターフェイスについては、以下に説明する。アプリケーション層、データリンク層、物理層から得られた、ΨRpが使用する情報は以下の通りである。予定された時刻におけるノードの期待位置、予定時刻におけるノードの各期待位置に付随する確率、予定時刻において相互に通信しているノードの所定ペアまたはグループ、ノードの所定の移動パターン、サービスからのノードの予定された離脱、サービスへのノードの予定された加入、所定の必要とされるソースルーティングパス、ノードの移動の許容された位置境界、ノード移動レート、ノードの送信、受信距離、ノードパワーソースの残り寿命、アンテナタイプ(多方向性、方向性、一方向性)、アンテナの現在の指向方向(方向性の場合)、予定された未来におけるアンテナの指向方向、リンク寝室(安定性、信頼性、入手容易性等)。
ΨRpがΨRdから入力する情報、またはΨRdに出力する情報について以下に示す。ルート探索ステータス(Tn, RequestorID, Status, Term_Node ID)メッセージはTnとして、ルート探索を実行するように指示されたターゲットノードのネットワークID(IPアドレス、ATMアドレス等)を含む。RequestorIDは、このルート探索要求をしているΨRp機能を有する要求元ノードのID(IPアドレス、ATMアドレス等)。Statusは、要求されたルート全体が探索できたとき、TRUEと設定される。要求が成功しなかったとき、FALSEと設定される。StatusがFALSEのとき、Term_Node IDは−1に設定されるか、またはRequestorIDと同じ形の他のノードIDに設定される。−1に設定されると、要求されたルートの安定なルートセグメントも探索できなかった。StatusがFALSEで、Term_Node IDが−1でない場合、探索プロセスによって、実際に要求されたルートまたはプロキシルートのルートセグメントを見つけることができたこととなる。それにもかかわらず、プロキシルートのルートセグメントの方が、実際に必要なルートがまったく探索できないよりよい。
ルート発見要求(Sn,, Dn,, ReqID, RequestorID, ExpTime)メッセージは、Snとして、ΨRp予測により確立する必要があるΨRdにこの要求をしているノードである、本当のターゲットソースノード、または「プロキシソース」ノード(pSn)を含む。また、Dnは、ΨRdにこの要求をしているノードがΨRdの予測により確立する必要がある本来のターゲットデスティネーションか、または「プロキシデスティネーション」ノード(pDn)を含む。ReqIDは、このノードから始まるアクティブルート要求である。RequestorIDはID(IPアドレス、ATMアドレス等)である。ExpTimeは、ターゲットSnと同様にこの要求を受信したノードが、ルートまたはルートセグメントを発見した後、それを陳腐化したものとマークし、削除するまでの時間である。
以下に、本明細書に説明したプサイアクティブコンセプトとアーキテクチャを使用してルート予測をする「通常の」アルゴリズムについて説明する。プサイアクティブアーキテクチャとコンセプトとを使用した他のアルゴリズムも可能である。
1 ノードとネットワークデータベースをノードとリンクの適当な物理的特性で初期化する。
2 ノードとネットワーク知識ベースを適当なファジールールで初期化する。
3 ミッションプランで未来における位置が特定されているノードの位置を探し、追跡するためにトポロジー探索を実行する。これは、未来において必要となるルートを予測するプロセスの1ステップであり、後で説明する予測されるルート障害を回避するために未来必要となるルートを予測するのとは異なる。
4 未来における位置が明示的には予定されてなく、先験的にも知られていない通信ペアとして、ミッションプランで指定されている(Sn, Dn)ペアの位置を特定し追跡するためトポロジー探索を実行する。
5 ネットワークの動作中に収集されたリンク品質データと、所定のプランを入力データとして用いてリンク品質を予測する。このステップは、ルート探索プロセスにおいてよいルートを予測するためである。
6 ネットワークの動作中に収集されたノード品質データと、所定のプランを入力データとして用いてノード品質を予測する。
7 予定された(Sn, Dn)ペアの中間ノードとして資格基準を満たすノードの位置を予測する。
8 未来における位置がミッションプランではなくリアルタイムのトポロジー探索からの入力に基づいて予測される、注目する1つのノードの位置を特定し追跡するためにトポロジー探索を実行する。
9 通信ペアとしてリアルタイム要求により指定された(Sn, Dn)ペアの位置を特定し追跡するためにトポロジー探索を実行する。
10 動作中に収集したノード品質データと、所定のプランを入力データとして利用してノード品質を予測する。
11 アドホック要求(Sn, Dn)ペアの中間ノードとして資格基準を満たすノードの位置を予測する。
12 ルート予測要求ノード(Pr)がターゲット予測管理ノード(Pc)にメッセージを送り、指定されたソースノード(Sn)から指定されたデスティネーションノード(Dn)までの未来において必要とされるルートを決定する。
13 Pcが、完了するまで予測要求を管理する。
14 Snが、ローカルのルーティングテーブル(キャッシュ)をチェックし、ルートが必要とされる前の時間に渡って安定であるとマークされている、完全なルートまたはルートセグメントを決定する。
15 Pcは、有効なグローバルトポロジー情報を読み出し、要求された(Sn, Dn) ペアのための予測を集中する、ネットワークのエリア・オブ・インタレスト(AOI) を決定する。いくつかの(Sn, Dn)ペアが「バッチ」に集まった場合、グローバルトポロジー更新は、単一のグローバルトポロジー更新要求中のすべてをカバーできる。この要求の間にグローバルトポロジー更新がされている場合、グローバルトポロジー更新はPcの要求が満たされる前に完了される。
16 PcはΨTdに要求し、指定したAOIにおいてトポロジーマイクロバーストを実行する。
17 トポロジーマイクロバーストによって得られたデータを使用してHolt−Winters 指数重みつき移動平均線形トレンドをPcが計算する。
18 複数の時間スケールで「周期」とともなうHolt−Wintersフォーキャスト方程式の修正バージョンを使用する。
19 例えばミッションプランからのノード位置のような先験的に決定された値を実際の測定値の替わりに使う。少なくとも、修正Holt−Winters方程式中のデータの一部は、ネットワークが動作している間に測定した実際の値でなければならない。
20 数値がファジフィケーション(fuzzification)過程を経て「ファジー予測」にマップされる。
21 推論エンジンは、知識ベースとファジー予測からの入力を使用して、プロダクションルールを推定し、全ての該当(fire)するルールから生じるファジー出力を一つのファジー集合に集積する。
22 デファジファイヤはファジー結果を修正された数値予測にマップする。
プサイアクティブルート探索(ΨRd)に関して、ルートとルートの部分は、予測として適当なルートテーブル(キャッシュ)に加えられる。一のノードが、他のノードに情報を送る要求を受けたとき、そのルートは、完全にまたは部分的にすでに探索されており、ソースノードSnのルートテーブル(キャッシュ)にロードされる。ユーザは、ルート障害が発生したら修復されるとの自信を持つだけではなく、ΨRtは起こりうると予測されたルート障害をどのように修復するかを、実際に起こる前に考えており、それゆえ修復プロセスはずっと早く進行する。
リンクとノードの情報は、必要な期間について完全なルーとまたはルートセグメントが信頼できるように予測可能であるかについての主要な決定要因である。その情報には、安定性、信頼性、入手容易性が含まれる。
実際のルート探索は、(Sn, Dn)ルート全体のルートセグメントに適用するリアクティブプロトコルにより達成される。ルート探索要求は、一般に、セグメントの一部ではないいずれかのノードから始まる。しかし、この要求元ノードの「外部性」は要件ではない。このことは、ルート探索が常にターゲット(Sn, Dn)ペアのソースノードから開始される他のアプローチと大きく違っている。この違いの理由は、この未来におけるルートのための未来におけるSnは、未来におけるソースノードであることである。これは、未来のある時点においてこのルートを確立する必要があるネットワークノードは、現在この必要性を知る立場にあるノードでは必ずしもないということである。なぜなら、この未来におけるソースノードは、現在はネットワーク内にいないかもしれず、それゆえ、いずれかのデスティネーションノードDnへのルートをいつか必要とすることを予測する立場にないかもしれない。パワフルなルート予測能力の一つの重要な鍵は、未来におけるルートの一部であっても、ネットワークのノードはこの未来における必要性の知識を有し、この必要性の焦点の一つまたは両方である(Sn, Dn)ペアが、ルート探索要求を受ける前であっても、ルート探索プロセスを開始することができる。これは、プロキシソースノードとプロキシデスティネーションノードを設ける他の主要な理由でもある。
特筆すべきこととして、ΨRdは、従来のルート探索方法(プロアクティブまたはリアクティブ)が使用するものには依存しない。問題によっては、一つの方法が別の方法より優れているかもしれない。リアクティブ法の場合はアドホックオンデマンドディスタンスベクトル(AODV)、プロアクティブ法の場合は最適リンク状態ルーティング(OLSR)がΨRdのデフォルトであるが、決定はアプリケーションまたはシステムの設計者がすることができる。本明細書においては、上記二つのルート探索方法についてだけ言及する。
Snは、ターゲット「プロキシSn」(pSn)にメッセージを送りpSnから「プロキシDn」(pDn)へのルートを確立することで、ΨRdを成し遂げる。(Sn, Dn)ペアのためのルート探索のこのフェーズは、実際のSnではなくpSnに始まり、指定されたpDnに終わる。(pSn, pDn)ルートセグメントは、ノードのローカルメモリ(ルートテーブル/キャッシュ)に記録される。一般に、pSnとpDnはルート探索、ルート維持、およびトポロジー探索の結果として選択される。アプリケーションから受け取った情報から選択されることもある。プサイアクティブルート障害予測(ΨRf)機能は、リンク障害の起こりやすさ(またはダイナミクス)を推定し、この情報をルート障害の起こりやすさの推定に使用する。リンク障害の起こりやすさの推定には、以下の様々な情報源からの情報を使用することができる:ノードの移動度および軌道、通信パスにある既知の障害物、およびリンク品質の推定および予測。このリンク障害情報は、ルート(一連のリンクにすぎない)障害の集積した起こりやすさを判断するために使用できる。この情報は、実装でどのルーティング方法が選択されているかによって、プロアクティブなやり方またはリアクティブなやり方で収集し分配してもよい。どのアプローチまたはその組み合わせが取られるかによって、このリンク/ルート障害情報は、トポロジー更新を介してまたはルート探索プロセスによってネットワーク全体に分配されてもよい。ルート障害予測情報はプサイアクティブルート維持機能に送られる。ΨRfは、そのノードのために統計をとり、その統計を使用して計量を作成する。例えば、推定されたノードシャットダウン・スリープ平均時間(Estimated mean time to node shutdown or sleep mode;EMTNS)、推定された各リンクの近傍ノードへのリンク障害平均時間(Estimated mean time to link failure for each link to a neighbor node;EMTNLF)、および推定されたリンク品質(Estimated link quality;ELQ)などである。EMTNS、EMTNLF、およびELQへの入力は、例えば、推定されたノード移動度(ENM)およびRF伝播特性などである。計量は、アドホックネットワークのために定義されたHarrisによるQoS計量と一貫したものでなければならない。各ノードは他のノードにこれらの計量を送る。
これらの計量は、定期的にあるいはトポロジー更新要求に応じてブロードキャストされるトポロジー更新に含まれる。また、パス上のノードが関連する計量情報を挿入するルート探索パケットやルート応答パケットにも含まれる。これによりパケットサイズは大きくなるが、オーバーヘッド送信の数は少なくなる。パケットのサイズが大きいので、潜在的にはオーバーヘッドトラフィックが急増する傾向にある。ソースノードがパス上のすべてのノードとリンクの計量を知ったら、二つのことが発生する。第1に、ソースノードからデスティネーションノードまでのパスの平均障害時間(Mean Time to Failure;MTTF)を計算することができる。これは(Sn, Dn)ペアおよび(pSn, pDn)ペア両方に適用される。第2に、プサイアクティブルート維持(ΨRm)が、パスのMTTFを通知される。ΨRmとΨCnは、この情報に応じてどのように対応するかを決定する。
ルートR1は一連のリンクL1、L2、L3、...、Lnよりなる。個々のリンクは、例えばリンク障害率λLi(障害回数/秒)により特徴づけられる。リンク障害率には多様な要因が影響している:例えば、各ノードの移動度、電波伝搬環境、リンクを損なう障害物である。リンク障害率を推定するのに使用される情報は、リンク品質測定やノード移動軌跡情報を含む複数の情報源から導かれてもよい。
ΨRfアルゴリズムは次のステップを実行する。
1−各ノードと隣接するノードへの各リンクにおいて、以下の1またはそれ以上の観測結果に基づき、リンク障害率λLiを推定する:推定された通信パス上のリンク接続性が(ミッションプランから)推定できる隣接するノードの既知の未来におけるノード軌跡、現在のノード位置および障害物(樹木や建物など)の知識と結びついたノードの動きの外挿に関する知識、リンク品質およびその他の品質の連続的な測定およびこれらの統計的測定に基づいたリンクドロップアウトまでの期待時間の推定などである。
2−リンク障害計量を作成する。これはノードからそれに隣接するノードまでの各リンクについての、リンク障害率λLiでもよい。
3−ルーティング障害計量の作成においてリンク障害計量を使用する。リンク障害計量λLiを使うと仮定する。各リンクにおける障害がポアソン過程としてモデル化できれば、一またはそれ以上のリンク障害が起こればルート障害が発生する。ルートR1について、ルート障害率λRi(障害回数/秒)は、リンク障害は独立な事象であると仮定して以下の式で表される。
Figure 0003883075
ルート障害計量はλRiである。ルートR1のMTTFはMTTFR1=1/λR1秒となる。
リンク障害計量は、プロアクティブルーティングプロトコルまたはリアクティブルーティングプロトコルにおいて使用されてもよい。プロアクティブプロトコルにおいては、リンク障害計量の値は、ノードがネットワークの限定されたエリアまたはネットワーク全体にブロードキャストする、いずれのトポロジー更新パケットにも含まれる。リアクティブプロトコルにおいては、各ノードは、ルート探索パケットに応じて推定されるルートの障害率を更新するときに、ローカルなリンク障害計量を使用する。
プサイアクティブルート維持(ΨRm)は、ルート性能計量(遅れや容量など)と共に、ΨRfにより作成されたルート障害計量を受け、ルート障害の起こりやすさの目標と共に、システム性能目標に合うルートを最もよく確保できるかを決定する。新しいルートを発見する平均時間は1/μ(秒)と表すことができる。この変数の大きさは、ほとんどの興味あるリアクティブおよびプロアクティブルーティングプロトコルに対して、おおよそμ≒1または数秒である。それゆえ、リーズナブルなリンクの能力として、リンクの新しいルート(があるとして)は約1秒で発見しなければならない。
単一のルートがある場合、ルートが必要とされるときに入手できるためには、MTTRR1>>1/μでなければならない。MTTFR1が小さすぎる場合、複数のルートを維持すれば、ほとんど常に、デスティネーションへのルートが入手可能であるとするために、全体としてより大きなMTTFを得ることができる。
ΨRmの一部として二つの主要なストラテジーがある。新しい複数のルートを探索するように要求するストラテジーと、複数のルートを使用するストラテジーである。
ΨRmは、必ずしも代替ルートを発見する必要はない。その他のストラテジーも可能であり、状況によっては使いやすい。例えば、リンクの送信パワーを事前に上げたり、リンクに追加のチャネルを事前に割り当てたりすることにより、ルートの障害に対する能力や反発力を引き上げるというストラテジーもある。
ΨRmは、予測的ルート維持コンポーネントと、従来のルート維持コンポーネントから構成される。予測的コンポーネントは、ルートの一部が障害しそうだと予測したときに使用される。ΨRfからパスのMTTFが与えられ、パス上のすべてのノードとリンクに対するMTTFの推定が与えられている。そして、ルーティングテーブル/キャッシュに、少なくとも必要な時間フレームのうち初めの部分の間は安定でありそうな代替パスがあるか判定される。新しいルートが必要な場合、MTTFとして推定された時間の数分の1の時間内に、代替パスを探索する必要がある。ΨRpは、時刻T1の前に代替パスを探索すべきことを通知される。期間に問題があるノードとリンクの組と共に、パスP1が提供される。
障害の確率が1のとき、すなわち障害が発生したとき、従来のコンポーネントが使用される。ルートエラー(RERR)パケットによって障害の原因を示す従来の通知が、この場合使用できる。新しいルートの探索は、この通知により開始する。ΨRmは、ルート性能計量(遅れおよび容量等)と共にΨRfが作成したルート障害計量を受け取り、ルート障害の起こりやすさの目標と共にシステム性能の目標も満たすルートをどのように維持するかを決定する。ルート選択にあたり、遅れや容量等の性能計量とルート障害の起こりやすさの間にはトレードオフの関係がある。これを達成するには、遅れと容量の最小許容値を設定し、ルート障害の起こりやすさの最大許容値を設定することである。
新しいルートの必要性を予測し、障害が発生したルートを代替するにはいくつかのストラテジーがある:デスティネーションに至る一群のルートを見つけ、いずれかのルートの代替を試みる前に、すべてに障害が発生するまでルートを使用すること。「K」を所望のルートの信頼性を維持するために必要なルートの数として、少なくともK個のルートが常に維持されるように、ルートに障害が発生したら代替する。
新しいルートが必要な場合、ΨRdがプロアクティブな手段か、リアクティブな手段により新しいルートを決定する。ルート障害の起こりやすさを分析して、ルート障害の起こりやすさに対する目標を満たすために新しいルートが必要かを決定できる。以下の分析は複数のルートを使用するために用いるストラテジーに応じて、どのようにこれを行うかを示している。ルートに障害が発生しても代替しなければ、MTTFの分析は簡単である。各ルートは同じルート障害率λR(障害回数/秒)を有し、ルート障害はそれぞれ独立であると仮定する。ルートの修復が行われなければ、障害プロセスはマルコフ連鎖としてモデリングできる。N個のルートがある場合、全てのルートのMTTFは、以下の通りである。
Figure 0003883075
K個のルートだけに障害が発生せずに残る平均時間は、以下の通りである。
Figure 0003883075
ルートに障害が発生したら修復するストラテジーを分析することもできる。N個のルートから出発して、ルートが障害したら修復すると仮定すると、問題はやはりマルコフ連鎖として分析できる。安定状態において、k個のルートに障害が発生し修復されない確率は以下の通りである。
Figure 0003883075
Nおよび/またはλ/μの値が大きい場合、N個のルートすべてに障害が発生する確率は非常に小さくなる。新しいルートを探索する必要があるときは常に、ルートをいくつ維持しておくことが必要か決定するために、このような計算は適応性のあるアルゴリズムにおける中心的な要素である。
複数のルートを使用するための可能なストラテジーはいくつかある。以下のアプローチの各々は、ΨRmで使用できる:
1−与えられたデスティネーションノードについて一度に一つだけのルートをしようする(他のルートは、主要なルートに障害が発生した場合に代替ルートとして使用できる。障害が発生したルートの探索に必要な時間に一時的にルートがなくなる場合もある)。
2−複数のパス間で負荷をバランスさせるため、ラウンドロビン等の方式で複数のルートにデスティネーションへのトラフィックを分割することによりデスティネーションまでの機能している複数のルートすべてが使用される。ネットワーク内で負荷をバランスさせた方が有利である。さらに、一つのルートがなくなった場合、トラフィックは他のパスで送り続けられるので、ルート障害が検知されていない間に、トラフィックの一部分のみが消失すればすむ。リアルタイムのトラフィックにとってはQoSが幾分低下し、TCPトラフィックを再送する必要が生じることになる。
3−特に高いレベルのQoSを要するトラフィックフローに対しては、一つのデスティネーションへの複数のルートを使用して、そのデスティネーションへの同一のトラフィックを各ルートで重複して送る。このアプローチは、重複した情報を送信するのに追加的な資源を多く使用するという不利益を有する。しかし、重複した情報が他のルーティングパスを経由して送信されているので、一つのルートが消失しても、ルートの障害が検出されるまでの間にデータは消失しないという長所を有している。一旦ルートの消失が検出されると、所望の数の重複するルートを維持するために、追加のルートを探索することができる。
4−デスティネーションへの複数のルートを同時に使用し、ネットワーク−時間コーディングを使用することにより、複数のルート間でそのデスティネーションへのトラフィックを分割する。このアプローチは、非常に高いレベルのQoSを提供するため、デスティネーションへの同じトラフィックに同時ルートを非常に効率的に使用するため、インターリーブを伴うエラー訂正符号のパリティチェックを使用する。前述のアプローチのように、このアプローチは、重複した情報が別のルーティングパスを経由してFECパリティチェックをして送信されるので、ルート障害が検出される前であっても、一つのルートが消失しても一時的にでもデータが消失することはないという長所を有している。
複数のルートを使用する上述のストラテジーの一つを使って、ΨRmを以下の手順でコントロールできる:
1−各デスティネーションへの最低ルート性能計量を満足する各ルートのλR(障害回数/秒)の値を、ΨRfから受信する情報により更新する。
2−各デスティネーションノードへのルートのMTTFRoutesの値を算出する。この計算手順は、複数のルートを使用するストラテジーに依存する。
・MTTFRoutesの値がMTTFRoutesに要求されるその最小値より小さければ、一つまたはそれ以上の追加ルートが必要であるかもしれない。
・追加ルートが必要な場合、ΨRdがデスティネーションへの追加ルートを探索するために起動される。
新しいルートが見つかった場合、ルートの使用にその新しいルートを含めるよう適合させる。どのように行うかは、複数のルートを使用するストラテジーによる。例えば、ネットワーク−時間符号化が使用される場合、符号レートとインターリーブパラメータは、追加ルートを適応させるように修正される。そのデスティネーションノードへのトラフィック(パリティを含む)の一部は、新しいルートを経由して送られてもよい。
ΨTdは、ΨRtがネットワークトポロジー(ノードとリンクの構成/状態)を決定するために使用する方法である。ΨTdは、ルート探索、ルート障害分析、およびルート維持の予測および非予測の面をサポートしている。プサイアクティブトポロジー探索は、二つの基本的起動タクティクスを使用する。第1に、予測がされたときにだけ起動する方法。第2に、同じ一群のノードの相対的に非常に短時間の接近したトポロジースナップショットを撮るためにトポロジー探索マイクロバースト(TDmBs)を起動する方法。これは、他の情報からは必要とする分解能でノードの動き情報が得られない場合、ローカルなノードの動き特性を決めるのに役に立つ。
ΨRtは、予測的ルート探索が必要な場合、随時行われる広域ネットワークトポロジー更新からの情報を使用する。この広域トポロジー情報は、非常にフォーカスされたトポロジー更新(探索)がなされる、ノードのより限定的な部分集合が抽出できるグローバルマップとしての役割を果たす。次のプロセスにより、ノードの部分集合にトポロジー探索を限定する。ソースノードSnが、次のパラメータを含むローカルトポロジーレポートメッセージを送る:
ターゲットとなるノードの部分集合内の各ノードのID
1 各ターゲットノード周辺のNホップの周辺探索
2 探索パケットのTime−to−Live
3 送出するトポロジーレポートの数
4 各トポロジーレポートのサンプリング期間
トポロジー探索の結果は、ルート探索パケットの伝播を制限するために使用できる。この結果は、ルート探索が、またそれゆえルートが及ぶべきノードの部分集合を特定することができる。Ψルーティングのためのデフォルトトポロジー探索は、トポロジー探索起動時間においてソースノードSnにより特定されるエリアのみに限定されるリンク状態トポロジー探索法である。
本発明によるモバイルアドホックネットワークを示す図である。 本発明によるモバイルアドホックネットワークの動作を示す図である。 本発明によるルートの探索と維持を管理する方法の段階を示すフローチャートである。 本発明のネットワークによるノードのルータを示す図である。 図4に示したルータのコントローラの詳細を示す図である。 プサイアクティブルーティングの一般的アーキテクチャを示す図である。
符号の説明
20 ルータ
22 通信デバイス
24 コントローラ
26 メモリ
30 ルート探索手段
32 ルート必要性予測手段
34 トポロジー/ダイナミクス予測手段
36 ルートテーブル
40 ルート維持手段

Claims (10)

  1. 複数のモバイルノードと、前記モバイルノードを接続する複数のワイヤレス通信リンクよりなるモバイルアドホックネットワークを動作させる方法であって、
    ファジー論理を利用してネットワークにおいて未来において必要となる、ソースからデスティネーションへの一組のワイヤレス通信リンクとモバイルノードよりなるルートを予測し、
    前記予測した未来において必要となるルートに基づき、少なくとも部分ルートおよび完全ルートの一方を含むルートを探索し、
    前記探索したルートを記憶することを特徴とする方法。
  2. 請求項1記載の方法であって、
    未来において必要となるルートの予測は、前記ネットワークの物理的特性および動作的特性の少なくとも一方を含む前記ネットワークの記述的情報を記憶することを特徴とする方法。
  3. 請求項2記載の方法であって、
    未来において必要となるルートの予測は、前記ネットワークの前記記憶された記述的情報をサンプリングし、更新することを特徴とする方法。
  4. 請求項1記載の方法であって、
    未来において必要となるルートの予測は、統計的数値的フォーキャスティングを含むことを特徴とする方法。
  5. 請求項4記載の方法であって、
    前記統計的数値的フォーキャスティングは、Holt−Wintersフォーキャストを実行することを含むことを特徴とする方法。
  6. モバイルアドホックネットワークであって、
    複数のモバイルノードと、
    前記モバイルノードを接続する複数のワイヤレス通信リンクとを有し、
    各モバイルノードは、
    前記ワイヤレス通信リンクを経由して他のモバイルノードと無線通信する通信手段と、
    前記通信手段による通信をルーティングする制御手段とを有し、
    前記制御手段は、
    ファジー論理を利用して前記複数のノードの少なくとも2つの間に未来における通信の必要性を予測するファジー論理ルート必要性予測手段と、
    ソースノードからデスティネーションノードへの一組のワイヤレス通信リンクとモバイルノードよりなるルートのうち、前記ネットワークにおける部分ルートと完全ルートを定義するルートテーブル手段と、
    前記未来における通信の必要性に基づき、部分ルートと完全ルートのうち少なくとも一方を含むルートを探索するルート探索手段と、
    を含むことを特徴とするモバイルアドホックネットワーク。
  7. 請求項6記載のネットワークであって、
    前記ファジー論理ルート必要性予測手段は、前記ネットワークの物理的特性および動作的特性のうち少なくとも一方を含むネットワークの記述的情報を記憶することを特徴とするネットワーク。
  8. 請求項7記載のネットワークであって、
    前記ファジー論理ルート必要性予測手段は、前記ネットワークの記憶された記述的情報をサンプリングし、更新することを特徴とするネットワーク。
  9. 請求項6記載のネットワークであって、
    前記ファジー論理ルート必要性予測手段は、統計的数値的フォーキャスティングを利用して未来において必要とされるルートを予測することを特徴とするネットワーク。
  10. 請求項9記載のネットワークであって、
    前記統計的数値的フォーキャスティングは、Holt−Wintersフォーキャストの実行を含むことを特徴とするネットワーク。
JP2004134739A 2003-04-30 2004-04-28 モバイルアドホックネットワークにおけるファジー論理を利用した予測的ルーティング Expired - Fee Related JP3883075B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/426,580 US7299038B2 (en) 2003-04-30 2003-04-30 Predictive routing including the use of fuzzy logic in a mobile ad hoc network

Publications (2)

Publication Number Publication Date
JP2004336768A JP2004336768A (ja) 2004-11-25
JP3883075B2 true JP3883075B2 (ja) 2007-02-21

Family

ID=32990415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134739A Expired - Fee Related JP3883075B2 (ja) 2003-04-30 2004-04-28 モバイルアドホックネットワークにおけるファジー論理を利用した予測的ルーティング

Country Status (7)

Country Link
US (1) US7299038B2 (ja)
EP (1) EP1473879B1 (ja)
JP (1) JP3883075B2 (ja)
AU (1) AU2004201581A1 (ja)
CA (1) CA2464792A1 (ja)
DE (1) DE602004030743D1 (ja)
NO (1) NO20041679L (ja)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975614B2 (en) * 2002-09-04 2005-12-13 Harris Corporation Intelligent communication node object beacon framework in a mobile ad hoc network
US10476619B2 (en) * 2003-04-23 2019-11-12 Apple Inc. Routing quality-of-service traffic in a wireless system
US7363528B2 (en) * 2003-08-25 2008-04-22 Lucent Technologies Inc. Brink of failure and breach of security detection and recovery system
NZ546349A (en) * 2003-09-29 2010-03-26 Cipla Ltd Pharmaceutical formulation with improved stability
US20070101015A1 (en) * 2003-12-19 2007-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Fast opportunistic distributed resource reallocation for established connections in a multihop network
US8218550B2 (en) * 2003-12-23 2012-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for routing traffic in ad hoc networks
EP1698117B1 (en) 2003-12-23 2013-04-17 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Method and system for efficient routing in ad hoc networks
EP1698115B1 (en) * 2003-12-23 2013-03-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Predictive ad-hoc
US7948931B2 (en) * 2004-03-01 2011-05-24 The Charles Stark Draper Laboratory, Inc. MANET routing based on best estimate of expected position
FR2870657B1 (fr) * 2004-05-18 2006-10-27 Alcatel Sa Procede et dispositif de pridiction d'une interruption de lien dans un reseau de communication ad hoc a protocole de routage de type manet
GB0412494D0 (en) * 2004-06-04 2004-07-07 Nokia Corp Adaptive routing
US7606176B2 (en) * 2004-06-24 2009-10-20 Meshnetworks, Inc. System and method to improve the performance of an on demand routing protocol in a wireless network
DE112005001934T5 (de) * 2004-08-10 2007-07-05 MeshNetworks, Inc., Maitland Softwarearchitektur und Hardware-Abstraktionsschicht für Multifunk-Routing und Verfahren zum Bereitstellen desselben
US7656804B2 (en) * 2004-08-16 2010-02-02 Motorola, Inc. Method and apparatus for operating an AD-HOC communication system
US9160649B2 (en) * 2004-09-27 2015-10-13 Alcatel Lucent Method for routing traffic using traffic weighting factors
US7532607B1 (en) 2004-11-04 2009-05-12 At&T Intellectual Property Ii, L.P. Ad-hoc IP closed user group networks
US20060104219A1 (en) 2004-11-15 2006-05-18 Harris Corporation Predictive mobile ad hoc networking including associated systems and methods
CA2588790A1 (en) 2004-12-13 2007-04-19 Telcordia Technologies, Inc. Lightweight packet-drop detection for ad hoc networks
US7113788B1 (en) * 2005-03-08 2006-09-26 Motorola, Inc. Method and apparatus for network formation
US20060239291A1 (en) * 2005-04-26 2006-10-26 Birchler Mark A Method and apparatus for determining a best route within an ad-hoc communication system
US7995464B1 (en) * 2005-06-27 2011-08-09 At&T Intellectual Property Ii, L.P. Method and apparatus for measuring quality of service levels
US7542436B2 (en) * 2005-07-22 2009-06-02 The Boeing Company Tactical cognitive-based simulation methods and systems for communication failure management in ad-hoc wireless networks
JP2007074177A (ja) * 2005-09-06 2007-03-22 Hitachi Ltd モバイルアドホックネットワークシステム
US8711698B2 (en) * 2005-10-17 2014-04-29 The Invention Science Fund I, Llc Signal routing dependent on a loading indicator of a mobile node
US7639652B1 (en) * 2005-09-28 2009-12-29 Rockwell Collins, Inc. Inter-channel bridge node communications protocol for TDMA networks
US20070076673A1 (en) * 2005-09-30 2007-04-05 Avinash Joshi System and method to discover and maintain multiple routes in a wireless communication network
US8125896B2 (en) 2005-10-17 2012-02-28 The Invention Science Fund I, Llc Individualizing a connectivity-indicative mapping
US20070087695A1 (en) * 2005-10-17 2007-04-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Mobile directional antenna
US8495239B2 (en) * 2005-10-17 2013-07-23 The Invention Science Fund I, Llc Using a signal route dependent on a node speed change prediction
US8125964B2 (en) * 2005-11-18 2012-02-28 Telcordia Licensing Company, Llc Framework for hybrid ad-hoc networks
US20070133486A1 (en) * 2005-12-13 2007-06-14 Sivakumar Muthuswamy Data pre-provisioning plan method and apparatus
FR2895624B1 (fr) * 2005-12-23 2008-05-02 Alcatel Sa Noeud de reseau de transport, a adjonction de donnees temporelles a des donnees d'ingenierie de trafic
US8335207B2 (en) * 2005-12-30 2012-12-18 Samsung Electronics Co., Ltd. Link mobility tracking and its application to mobile ad hoc networks
US20070177597A1 (en) * 2006-02-02 2007-08-02 Yu Ju Ethernet connection-based forwarding process
US20070195702A1 (en) * 2006-02-17 2007-08-23 Yuen Wing H Link duration based routing protocol for multihop ad hoc networks
US20080065574A1 (en) * 2006-09-08 2008-03-13 Morgan Stanley Adaptive database management and monitoring
US7787450B1 (en) * 2006-10-11 2010-08-31 Itt Manufacturing Enterprises, Inc Method and system for efficient network formation and maintenance of node routing databases in a mobile ad-hoc network
US20080089333A1 (en) * 2006-10-17 2008-04-17 Kozat Ulas C Information delivery over time-varying network topologies
US8654627B2 (en) * 2007-01-03 2014-02-18 Harris Corporation Data-path dynamic link maintenance in mobile ad hoc networks
US8174990B2 (en) * 2007-02-16 2012-05-08 International Business Machines Corporation Mechanism and system for programmable measurement of aggregate metrics from a dynamic set of nodes
US20080256395A1 (en) * 2007-04-10 2008-10-16 Araujo Carlos C Determining and analyzing a root cause incident in a business solution
JP4294723B2 (ja) 2007-08-28 2009-07-15 パナソニック株式会社 ネットワーク制御装置、方法、及びプログラム
JP5068153B2 (ja) * 2007-12-11 2012-11-07 三菱電機株式会社 移動ノードおよびネットワークシステム
US8135431B2 (en) 2007-12-18 2012-03-13 Gilat Satellite Networks, Ltd. Multi-dimensional adaptive transmission technique
US8650270B2 (en) * 2008-07-10 2014-02-11 Juniper Networks, Inc. Distributed computing with multiple coordinated component collections
US8195118B2 (en) 2008-07-15 2012-06-05 Linear Signal, Inc. Apparatus, system, and method for integrated phase shifting and amplitude control of phased array signals
US8107451B2 (en) * 2008-08-31 2012-01-31 International Business Machines Corporation Efficient deallocation of network resources based on network node location extrapolation
US9544924B2 (en) * 2008-11-25 2017-01-10 Lantiq Beteiligungs-GmbH & Co. KG Ad hoc communication protocol method and apparatus
US8872719B2 (en) 2009-11-09 2014-10-28 Linear Signal, Inc. Apparatus, system, and method for integrated modular phased array tile configuration
TWI426811B (zh) * 2010-03-23 2014-02-11 Inst Information Industry 行動隨意網路系統與路由建立方法
US8516152B2 (en) * 2010-11-12 2013-08-20 Alcatel Lucent Lookahead computation of routing information
US9167463B2 (en) * 2011-09-02 2015-10-20 Telcordia Technologies, Inc. Communication node operable to estimate faults in an ad hoc network and method of performing the same
US9590820B1 (en) 2011-09-02 2017-03-07 Juniper Networks, Inc. Methods and apparatus for improving load balancing in overlay networks
US9072117B1 (en) * 2011-11-16 2015-06-30 Amazon Technologies, Inc. Distributed computing over a wireless ad hoc network
WO2014175955A1 (en) * 2013-04-23 2014-10-30 Bae Systems Information And Electronic Systems Integration Inc. Mobile infrastructure assisted ad-hoc network
JP6237770B2 (ja) * 2013-05-31 2017-11-29 富士通株式会社 無線端末、重要度生成方法及び無線通信システム
CN103476086B (zh) * 2013-09-18 2016-07-06 南京理工大学 基于节点拥塞度预测的动态多径aodv路由方法
US9674077B2 (en) * 2013-10-03 2017-06-06 National Chiao Tung University Vehicular communication system and routing method thereof
US10015720B2 (en) 2014-03-14 2018-07-03 GoTenna, Inc. System and method for digital communication between computing devices
US10158539B2 (en) * 2014-10-13 2018-12-18 Belkin International, Inc. Mesh network transmission decisions based on node performance metrics
CN104506337B (zh) * 2014-11-20 2018-02-13 北京邮电大学 基于区域性故障预测的虚拟网络映射方法及装置
US10420012B2 (en) * 2015-09-14 2019-09-17 Prodatakey, Inc. Adaptive unicast timeout for a wireless network having optimized routing
US10182387B2 (en) * 2016-06-01 2019-01-15 At&T Intellectual Property I, L.P. Method and apparatus for distributing content via diverse networks
US10693732B2 (en) 2016-08-03 2020-06-23 Oracle International Corporation Transforming data based on a virtual topology
US10389628B2 (en) 2016-09-02 2019-08-20 Oracle International Corporation Exposing a subset of hosts on an overlay network to components external to the overlay network without exposing another subset of hosts on the overlay network
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
US10462013B2 (en) 2017-02-13 2019-10-29 Oracle International Corporation Implementing a single-addressable virtual topology element in a virtual topology
US10291507B2 (en) 2017-02-13 2019-05-14 Oracle International Corporation Implementing a virtual tap in a virtual topology
US10819591B2 (en) 2017-05-30 2020-10-27 At&T Intellectual Property I, L.P. Optical transport network design system
US10944669B1 (en) 2018-02-09 2021-03-09 GoTenna, Inc. System and method for efficient network-wide broadcast in a multi-hop wireless network using packet echos
US10813169B2 (en) 2018-03-22 2020-10-20 GoTenna, Inc. Mesh network deployment kit
CN109376103B (zh) * 2018-06-19 2021-10-19 华为技术有限公司 快速均衡的方法、芯片和通信系统
US11082324B2 (en) 2018-07-27 2021-08-03 goTenna Inc. Vine: zero-control routing using data packet inspection for wireless mesh networks
CN109121179A (zh) * 2018-11-02 2019-01-01 深圳市楷盟无线通信有限公司 一种基于定位信息的无线中继路由方法和系统
WO2020185707A1 (en) 2019-03-08 2020-09-17 goTenna Inc. Method for utilization-based traffic throttling in a wireless mesh network
EP3716725A1 (en) * 2019-03-27 2020-09-30 Volkswagen Aktiengesellschaft A concept for determining user equipment for relaying signals to and from another user equipment in a mobile communication system
GB2590448A (en) * 2019-12-18 2021-06-30 Sony Corp A controller, computer program and method
CN113472689B (zh) * 2021-06-22 2022-07-19 桂林理工大学 一种基于双缓存区AoI感知的物联网数据收集方法
CN114039918B (zh) * 2021-10-09 2023-07-18 广东技术师范大学 一种信息年龄优化方法、装置、计算机设备及存储介质
CN114585041A (zh) * 2022-03-01 2022-06-03 海能达通信股份有限公司 路由协议方法、移动自组织网络、站点及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555444A (en) * 1994-03-11 1996-09-10 Motorola, Inc. Method and apparatus for predictive operation of a communication system
DE19528563C2 (de) * 1995-08-03 1997-11-06 Siemens Ag Verfahren zur Bewertung von mindestens zwei mehrteiligen Kommunikationsverbindungen zwischen zwei Kommunikationspartnern in einem Mehrknotennetzwerk
US6130881A (en) * 1998-04-20 2000-10-10 Sarnoff Corporation Traffic routing in small wireless data networks
US6304556B1 (en) * 1998-08-24 2001-10-16 Cornell Research Foundation, Inc. Routing and mobility management protocols for ad-hoc networks
US6483808B1 (en) * 1999-04-28 2002-11-19 3Com Corporation Method of optimizing routing decisions over multiple parameters utilizing fuzzy logic
US6766309B1 (en) * 1999-07-14 2004-07-20 Liang Cheng Method and system for adapting a network application based on classifying types of communication links using fuzzy logic
US6611726B1 (en) * 1999-09-17 2003-08-26 Carl E. Crosswhite Method for determining optimal time series forecasting parameters
US6535498B1 (en) * 1999-12-06 2003-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Route updating in ad-hoc networks
US6556671B1 (en) * 2000-05-31 2003-04-29 Genesys Telecommunications Laboratories, Inc. Fuzzy-logic routing system for call routing with-in communication centers and in other telephony environments
US7266085B2 (en) 2001-03-21 2007-09-04 Stine John A Access and routing protocol for ad hoc network using synchronous collision resolution and node state dissemination
US7035937B2 (en) * 2001-04-25 2006-04-25 Cornell Research Foundation, Inc. Independent-tree ad hoc multicast routing
US6640253B2 (en) * 2001-06-27 2003-10-28 Symbol Technologies, Inc. Dynamic logical control of network units in ad-hoc communications networks
US8406127B2 (en) * 2001-10-09 2013-03-26 Lockheed Martin Corporation Precedence-based routing/re-routing
US6718394B2 (en) * 2002-04-29 2004-04-06 Harris Corporation Hierarchical mobile ad-hoc network and methods for performing reactive routing therein using ad-hoc on-demand distance vector routing (AODV)
US7561526B2 (en) * 2002-12-17 2009-07-14 Nortel Networks Limited Communication network route determination

Also Published As

Publication number Publication date
US20040219909A1 (en) 2004-11-04
US7299038B2 (en) 2007-11-20
NO20041679L (no) 2004-11-01
AU2004201581A1 (en) 2004-11-18
EP1473879A2 (en) 2004-11-03
JP2004336768A (ja) 2004-11-25
DE602004030743D1 (de) 2011-02-10
CA2464792A1 (en) 2004-10-30
EP1473879B1 (en) 2010-12-29
EP1473879A3 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP3883075B2 (ja) モバイルアドホックネットワークにおけるファジー論理を利用した予測的ルーティング
JP3866248B2 (ja) モバイルアドホックネットワークにおける予測的ルーティング
JP3955579B2 (ja) モバイルアドホックネットワークにおける予測ルート維持
US8717940B2 (en) Predictive mobile ad hoc networking including associated systems and methods
Zhang et al. A novel multicast routing method with minimum transmission for WSN of cloud computing service
US20100254312A1 (en) Dynamically transformed channel set routing
Fareen Farzana et al. Ant-based routing and QoS-effective data collection for mobile wireless sensor network
Sun et al. Adaptive QoS routing based on prediction of local performance in ad hoc networks
Tabatabaei et al. Fuzzy-based routing protocol to increase throughput in mobile ad hoc networks
Kumar et al. Link discontinuity and optimal route data delivery for random waypoint model
Kumar et al. QoS guarantee towards reliability and timeliness in industrial wireless sensor networks
Yu et al. Distributed geographical packet forwarding in wireless sensor and actuator networks–a stochastic optimal control approach
Varma et al. A self-adaptive network for multi-robot warehouse communication
Nithya et al. Performance evaluation of dynamic zone radius estimation in ZRP for multihop adhoc networks
Zhang Routing protocols in intermittently connected mobile ad hoc networks and delay-tolerant networks
Al-Turjman A Rational Routing Protocol for WBAN
Abujassar An optimization of IoT usage real-time traffic in smart network clustering
Cha et al. A study on mobile ad-hoc network for reliable multimedia streaming services
CN117500016A (zh) 一种软件定义传感网架构及其编码机会路由方法
Zhao Policy-Based Adaptive Routing in Ad Hoc Wireless Networks
Mythilipriya et al. IEQGOR to Increase the Quality of Service in Wireless Sensor Network
Ruiz-Ibarra et al. 20 Cooperation in Wireless Sensor and Actor Networks

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees