JP3882471B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3882471B2
JP3882471B2 JP2000185170A JP2000185170A JP3882471B2 JP 3882471 B2 JP3882471 B2 JP 3882471B2 JP 2000185170 A JP2000185170 A JP 2000185170A JP 2000185170 A JP2000185170 A JP 2000185170A JP 3882471 B2 JP3882471 B2 JP 3882471B2
Authority
JP
Japan
Prior art keywords
region
circuit board
flexible circuit
claw
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000185170A
Other languages
Japanese (ja)
Other versions
JP2002009234A (en
Inventor
陽一郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000185170A priority Critical patent/JP3882471B2/en
Publication of JP2002009234A publication Critical patent/JP2002009234A/en
Application granted granted Critical
Publication of JP3882471B2 publication Critical patent/JP3882471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having three-dimensional mounting modular construction using a flexible substrate excellent in easiness of three- dimensional assembling and workability of repair (or rework). SOLUTION: Electronic parts 121, 122, and 123 mainly correspond to mounting regions 111, 112, and 113 on a flexible substrate 11, respectively, to be mounted face down, and other electronic parts 124, 125 are also mounted. A flexible substrate 13 has a construction where respective mounting regions 111-113 are folded upward on a base region 110 with a predetermined order (f1-f3). An all-in-one spacer 13 is provided with a thick region 131 and a thin region 132 which are firmly fixed so as to lap over on the substrate 11, displayed with a dashed line arrow, to support lamination of respective electronic parts 121-125. To facilitate positioning and mounting/dismounting, there is arranged a hook nail part 134 and a nail receiving part 14 for fitting.

Description

【0001】
【発明の属する技術分野】
本発明は、フレキシブル回路基板を用いた半導体装置に係り、特に安価で小型化、薄型化、軽量化が要求される3次元実装モジュールを構成する半導体装置に関する。
【0002】
【従来の技術】
フレキシブル回路基板は、リジッド回路基板と違って柔らかく、変形可能な利点がある。従ってICの高密度実装、モジュールのコンパクト化に有利である。すなわち、フレキシブル回路基板は、TCP(Tape Carrier Package)やCOF(Chip On FlexibleまたはFilm)等に利用され、特に、各種メディア機器の小型化には必要不可欠である。
【0003】
また、メディア機器の小型化、薄型化、軽量化の実現には、システムLSIの技術も重要である。システムLSIは、周辺回路のLSIを取り込みながら1チップ化への技術を着実に進歩させている。しかし、システムLSIの開発においては、長い開発期間と、異種プロセス混合によるチップコスト上昇を招くことになる。これにより、メディア機器が要望する短納期、低コストを満足できないのが現状である。
【0004】
【発明が解決しようとする課題】
上述の理由により、3次元実装を主体とするシステム機能実装の要求が高まり、システムLSIと実装技術の統合が重要になってきた。メディア機器産業では、周波数(高速化)と納期(短納期)で成長の度合いが決められる。このため、内蔵されるLSIも、実装やパッケージ技術によって可能な限り接続長、配線長を短縮しなければならない。このような理由から、3次元実装モジュールは様々な工夫がなされ実用化の段階に入ってきている。
【0005】
例えば、3次元実装モジュールは、従来、次のような構成が実用化、あるいは実用化段階にある。まず、(A)として、TCP(Tape Carrier Package)を積層し、チップ積層間の接続はTCPのアウターリードで達成する。また、(B)として、TCPの積層間に配線用の枠体を配備して、チップ積層間の接続を達成する。その他、(C)として、チップレベルで積層し、チップ積層間を導電材で接続したもの等、様々な技術がある。
【0006】
このような従来技術によれば、チップ積層間は、何らかのインタポーザを介して電気的に接続される必要がある。このようなインタポーザ間の接続構成は、上記(A)や(C)のような、外部で接続する構成と、上記(B)のような、内部で接続する構成がある。いずれにしても、3次元実装モジュールの構造が達成されて初めてモジュール製品としての電気的動作が認められ、測定、検査等が可能となる。
【0007】
そこで、3次元実装モジュールとして測定、検査等の結果、不良と判定された場合は、良品化のためのリペア(またはリワーク)作業をすることになる。すなわち、3次元実装モジュールでは、3次元への組立て段階において、共通電極と非共通電極の処理の仕方、リペア(またはリワーク)作業性を考慮した接続形態が重要である。この点において、上述の従来技術では時間及びコストが嵩むという問題がある。
【0008】
本発明は上記のような事情を考慮してなされたもので、3次元への組立て段階における容易性、リペア(またはリワーク)作業性に優れたフレキシブル回路基板を用いた3次元実装モジュール構成の半導体装置を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明の半導体装置は、ベース領域及びその周辺に連設された1つ以上の実装領域を有し、ベース領域上方に各実装領域が折り重ねられるように形成されたフレキシブル回路基板と、前記実装領域に対応して実装された電子部品と、前記電子部品を保護するように設けられそれぞれ所定の外形枠を有する第1領域と、前記第1領域よりも薄く、この第1領域と共に一体化し折り曲げ可能な第2領域と、を含む積層支持体と、前記積層支持体と前記フレキシブル回路基板が一体化するための接着部材と、前記積層支持体の前記第1領域上における所定箇所に設けられた鉤爪部と、前記フレキシブル回路基板の前記実装領域に対する裏面側の所定箇所に設けられた前記鉤爪部が固定される爪受け部とを具備し、前記フレキシブル回路基板が前記積層支持体と共に前記ベース領域上方に各実装領域折り重ねる際、前記第1領域がフレキシブル回路基板を介して重なり合う部分で前記鉤爪部と爪受け部が嵌合して固定されること、を特徴とする。
【0010】
本発明の半導体装置によれば、フレキシブル回路基板に電子部品を実装した時点で、モジュール製品としての動作が可能になる。これにより、3次元実装モジュールとして組み立てられる以前に測定、検査等が実施できる。
【0011】
さらに、3次元実装モジュールとして組み立てるための積層支持体は一体型であり、フレキシブル回路基板上に一括して装着される。その後は積層支持体を伴って実装領域が折り重ねられ固定される。すなわち、少ない工数で3次元実装モジュールを実現する。その際、予め設けられた鉤爪部と爪受け部の嵌合により積層の位置決めが容易になり、組み立て精度は向上する。
【0012】
【発明の実施の形態】
図1は、本発明の第1実施形態に係る半導体装置の構成を示す概観図である。また、図2は、図1の構成の特徴的な組み立て形態を示す概観図である。図1に示すように、フレキシブル回路基板11は、破線で示すような略四角形のベース領域110とその周辺に連設された実装領域111,112,113を有し、保護膜下に所定の導電パターン(図示せず)が形成されている。また、ベース領域110の周辺で上記実装領域が設けられない領域に外部端子部115が設けられている。外部端子部115は、ここではコネクタ端子である。
【0013】
フレキシブル回路基板11において、実装領域111,112,113にはそれぞれ主に電子部品121,122,123が各対応し、フェイスダウン実装されている。電子部品121,122,123は、メモリチップやシステムLSIチップ、コントロールユニットその他様々考えられる。
【0014】
このような電子部品121,122,123のフェイスダウン実装としては、例えば、上記各電子部品のバンプ電極とフレキシブル回路基板11の所定の導電パターンとのハンダ付けが考えられる。また、ACF(異方性導電フィルム)による接続も考えられる。すなわち、上記各電子部品のバンプ電極とフレキシブル回路基板11の所定の導電パターンとの間にACF(異方性導電フィルム)を介在させ加熱圧着する。これにより、ACF中の導電粒子によって各電子部品121,122,123とフレキシブル回路基板11の導電パターンとの必要な電気的接続が得られる。その他、ACP(異方性導電ペースト)接合、絶縁樹脂の収縮力によって電気的接続を得るNCP接合、バンプによる金−金、金−錫などの金属共晶接合など、様々考えられる。また、場合によってはワイヤボンディング方式を用いるフェイスアップ実装も適用可能である。さらに、極薄のICパッケージの実装も考えられ、電子部品の実装形態は別段限定されることはない。
【0015】
一方、上記電子部品121,122,123に関係する小型の電子部品(周辺素子)も幾つか実装されている。例えば複数の電子部品124はチップコンデンサやチップ抵抗等、電子部品125は、クロック生成に必要なクリスタル等である。
【0016】
フレキシブル回路基板11は、ポリイミドのような自由に折り曲げることのできる柔らかい材料で構成されている。フレキシブル回路基板11は、ベース領域110上方に各実装領域111〜113が予め決められた順番(f1〜f3)で折り重ねられるように構成されている。従って、各実装領域111〜113が折り重ねられるまでの折り曲げ距離を考慮し、距離d1〜d3は異ならせてある。
【0017】
このフレキシブル回路基板11には、一体型スペーサ13が装着される。一体型スペーサ13は、破線矢印で示すようにフレキシブル回路基板上に重なるように固着され、各実装領域111〜113が折り重ねられたときに各電子部品の積層を支持する。一体型スペーサ13は、厚い領域131と薄い領域132を有する。
【0018】
一体型スペーサ13の厚い領域131は、電子部品121〜123、その他の電子部品124,125における積層保護のために設けられている。この厚い領域131は、例えば電子部品121〜123それぞれを取り囲む形態をとる。また、端の方に実装された小型の電子部品(125など)に対しては、周辺に部分的に沿うような形態をとってもよい。いずれにしてもこの厚い領域131は、ベース領域110上方に積み重ねられるため、ベース領域110上に合わせられるような外形枠を有することが好ましい。
【0019】
一体型スペーサ13の薄い領域132は、ベース領域110上に延在し、上記厚い領域131と一体化している。この薄い領域132は、少なくともベース領域110の周囲の折り曲げ可能な領域を形成している。また、電子部品(124)の実装が妨げられないよう開口部133が設けられることもある。
【0020】
このような一体型スペーサ13は、例えば、リフロー耐熱性を考慮したポリイミド樹脂の成形品などで構成することが考えられる。厚い領域131は、実装される各電子部品(121〜123その他)の積層が妨げとならない程度の厚みを有する。また、薄い領域132は、折り曲げ部を含むのでなるべく薄い方がよく、例えば0.1〜0.2mm程度の厚みにしておく。一体型スペーサ13としての取り扱いが困難でなければ、さらに薄くてもかまわない。
【0021】
一体型スペーサ13は、図示しない裏面側が両面テープや接着剤等の接着部材を介してフレキシブル回路基板11上に固着される。これにより、フレキシブル回路基板11と一体化した構成をとる。
【0022】
さらに、一体型スペーサ13の厚い領域131上における所定箇所には、固定用の鉤爪部134が予め設けられている。鉤爪部134は、厚い領域131の外縁部付近において、任意の幅のものを設けることができる。この鉤爪部134は、ベース領域110上に最初に折り重ねられる厚い領域131上には設けられない。
【0023】
さらに、フレキシブル回路基板11の実装領域111,112に対する裏面側には鉤爪部134が嵌め込まれる爪受け部14がそれぞれ設けられている。爪受け部14の箇所に対応するフレキシブル回路基板11では部分的な切り欠き部Cが設けられる。
【0024】
図2には、実装領域111に対する裏面側の爪受け部14が示されている。爪受け部14の一つは実装領域111上における一体型スペーサ13の厚い領域131の縁部に沿って設けられる。また、爪受け部14はフレキシブル回路基板11の裏面を貫通し(図1のH)、一体型スペーサ13の厚い領域131の一部に入り込んで形成されるものもある。
【0025】
すなわち、破線矢印に示すように、実装領域112上における鉤爪部134が嵌め込まれるように設けられている。図示しないが、実装領域112に対する裏面側にも、実装領域113上における鉤爪部134を嵌め込むための爪受け部14が設けられている。このような爪受け部14は、ベース領域110上方に最後に折り重ねられる実装領域113における厚い領域131では、特に用途がなければ設けなくてもよい。
【0026】
上記鉤爪部134と爪受け部14の嵌合形態により、厚い領域131の積層固定側(斜線)には、両面テープや接着剤等の接着部材を配さなくても支障ない。ただし、ベース領域110上に最初に折り重ねられる厚い領域131上には両面テープや接着剤等の接着部材を配する必要がある。
【0027】
すなわち、各電子部品121〜123(その他の小型電子部品含む)を順に積層し、一体型スペーサ13の厚い領域131がフレキシブル回路基板11を介して重なり合う部分で上記鉤爪部134と爪受け部14が嵌合して固定される。
【0028】
図3は、図1の半導体装置の組み立て形態における特徴部分(鉤爪部)を含めて示す任意の側面及び断面を含む概略図である。組み立て状況を分かりやすくするため、正面から折り曲げたフレキシブル回路基板も透過させて表している。鉤爪部134と爪受け部14の嵌合形態は一部断面で示し、かつ一点鎖線の円内に拡大図を表した。これにより、実装領域111,112,113が順にベース領域110上方に折り重ねられ、電子部品121,122,123その他周辺の電子部品124,125が3次元的に積み重ねられ固定された形態を示している。
【0029】
一体型スペーサ13は、例えば両面テープによってフレキシブル回路基板11上に一体的に固着されている。厚い領域131の積層固定には上記鉤爪部134と爪受け部14の嵌合形態が寄与している。これにより、電子部品121,122,123その他周辺の電子部品124,125は、各々厚い領域131に囲まれ保護される。
【0030】
一体型スペーサ13の薄い領域132は、フレキシブル回路基板11の折り曲げ領域を支持し、特に急な角度がつきやすい折り曲げ端部領域21,22に対するフレキシブル回路基板11の保護の役割も果たす。
【0031】
さらに、鉤爪部134と爪受け部14は、その嵌合によって、一体型スペーサ13を伴ったフレキシブル回路基板11における各実装領域の折り重ねの位置決めに寄与する。
【0032】
上記第1実施形態によれば、フレキシブル回路基板11に電子部品(121〜123その他)を実装した時点で、モジュール製品としての動作が可能になる。これにより、3次元実装モジュールとして組み立てられる以前に測定、検査等が実施できる。
【0033】
さらに、3次元実装モジュールとして組み立てるための一体型スペーサ13は、フレキシブル回路基板11上に一括して装着できる。その後は一体型スペーサ13を伴って実装領域111〜113が折り重ねられ固定される。その際、予め設けられた鉤爪部134と爪受け部14の嵌合によって、位置決めが極めて容易になる。また、鉤爪部134と爪受け部14の嵌合形態は、接着部材なしに固定でき、積層固定後の着脱も容易であるという利点もある。
【0034】
このようなことから、3次元実装モジュールとして、組み立て性(組み立ての早さ、精度)は著しく向上し、加工工数の減少も達成することができる。これにより、リペア(またはリワーク)作業性に優れ、コスト削減にも寄与する。また、仮にスペーサがセパレートタイプであった場合と比較すれば、組み立て性が向上し、部品点数が減少する。この結果、コスト削減に寄与する。また、鉤爪部134と爪受け部14の嵌合による位置決め精度の向上によって、より小さいクリアランスで製品設計が可能となる利点がある。これにより、よりコンパクトな3次元実装モジュールが実現できる。
【0035】
本発明における3次元実装モジュールは、フレキシブル回路基板11上に各電子部品(121〜123その他)を実装してフレキシブル回路基板11、一体型スペーサ13と共に折り重ねる形態である。これにより、ICチップを積み重ねるスタックド・パッケージなどと比較して、ICのサイズやパッド配置の制約が極めてゆるい。スタックド・パッケージでは、組み合わせるICの大きさやIC端子位置など様々な制約がある。これに対して本発明に係る3次元実装モジュールは、ICの種類、組み合わせの自由度が広く、複数の周辺素子まで実装できる点を考慮すれば、電気特性的にも最適なモジュール化が可能である。
【0036】
図4(a),(b)は、それぞれ本発明の第2実施形態に係る半導体装置の構成であり、(a)は組み立て前の平面図、(b)は組立後の3次元実装モジュールにおける特徴部分(鉤爪部)を含めて示す任意の側面及び断面を含む概略図である。組み立て状況を分かりやすくするため、正面から折り曲げたフレキシブル回路基板も透過させて表している。鉤爪部134と爪受け部14の嵌合形態について一点鎖線の円内に一部断面の拡大図を表した。前記第2実施形態と同様の箇所には同一の符号を付して説明は省略する。
【0037】
この第2実施形態においては、前記第1実施形態に比べて、フレキシブル回路基板41が異なっている。図示のように、フレキシブル回路基板41はベース領域110にも電子部品126が実装される形態となっている。これにより、一体型スペーサ13は、その厚い領域131を、電子部品126に応じてベース領域110上にも設けている。
【0038】
また、電子部品126上方に各電子部品121〜123が順に積層されるのでそれを考慮して、一体型スペーサ13は、ベース領域110上の厚い領域131と各実装領域111〜113上の厚い領域131との間の距離d11〜d13を異ならせている。
【0039】
さらに、実装領域111上に設けた一体型スペーサ13の厚い領域131上には、所定箇所に鉤爪部134が配備されている。そして、ベース領域110上に設けた一体型スペーサ13の厚い領域131上には、上記鉤爪部134と嵌合する爪受け部14が設けられている。
【0040】
これにより、フレキシブル回路基板41は、一体型スペーサ13(厚い領域131)と共に決められた順に折り重ねられる。すなわち、それぞれ鉤爪部134と爪受け部14の嵌合を伴って各電子部品121〜125が前記第1実施形態のときと同様に積層固定される(図4(b))。
【0041】
図5(a),(b)は、それぞれ本発明の第3実施形態に係る半導体装置の構成であり、(a)は組み立て前の平面図、(b)は組立後の3次元実装モジュールにおける特徴部分(鉤爪部)を含めて示す任意の側面及び断面を含む概略図である。組み立て状況を分かりやすくするため、正面から折り曲げたフレキシブル回路基板も透過させて表している。鉤爪部134と爪受け部14の嵌合形態について一点鎖線の円内に一部断面の拡大図を表した。前記第2実施形態と同様の箇所には同一の符号を付して説明は省略する。
【0042】
この第3実施形態においては、前記第1実施形態に比べて、フレキシブル回路基板51が異なっている。図示のように、フレキシブル回路基板51のベース領域110の裏面において、破線のような外部端子部(例えばボール電極)52が設けられている。すなわち、前記第1実施形態(図1)で示した外部端子部115を、コネクタ端子の代りにアレイタイプの電極(52)とした構成となっている。
【0043】
実装領域(111〜113)を配したフレキシブル回路基板51の主表面において、図示しない外部端子に相当する導電パターンの端部は、ビアパターン(図示せず)を介して外部端子部(ボール電極)52に接続されている。
【0044】
また、電子部品125はクリスタルを示すが、いままでのシリンダタイプに代ってSMD(Surface Mount Device)タイプを適用している。SMDタイプなら3次元モジュールをメイン基板にハンダ実装する際に、リフロー可能で信頼性が高い。
【0045】
一体型スペーサ13は、その厚い領域131を、電子部品121〜125に応じて設けている。これにより、フレキシブル回路基板11は、一体型スペーサ13(厚い領域131)と共に決められた順に折り重ねられる。すなわち、厚い領域131におけるそれぞれの鉤爪部134と爪受け部14の嵌合を伴って、各電子部品121〜125が前記第1実施形態のときと同様に積層固定される(図5(b))。
【0046】
なお、電子部品121〜125は必要に応じて予め熱硬化タイプなどの接着手段でフレキシブル回路基板51に固定しておいてもよい。これは、3次元モジュールとして、メイン基板にリフローハンダ実装される際、例えばハンダ接合した電子部品124や125の落下防止に寄与する。このような接着手段は、温度条件や電子部品の質量に依存するため、必ずしも必要な条件ではない。いずれにしてもスペーサ13に干渉しないように所定の電子部品が接着されることが望ましい。
【0047】
また、上記構成は、ベース領域110の周辺である四辺全てに各実装領域が設けられることも十分考えられる。その場合も、厚い領域と薄い領域を含む一体型スペーサを伴い各電子部品が決められた順に積層され、前記第1実施形態のときと同様に固定される。
【0048】
上記のような第2、第3実施形態は、共により高密度実装を追求した構成である。このような実施形態によっても、フレキシブル回路基板41または51に電子部品を実装した時点で、モジュール製品としての動作が可能になる。これにより、3次元実装モジュールとして組み立てられる以前に測定、検査等が実施できる。
【0049】
また、3次元実装モジュールとして組み立てるための一体型スペーサ13は、フレキシブル回路基板41または51上に一括して装着可能である。その後は一体型スペーサ13を伴って各実装領域が折り重ねられ固定される。その際、予め設けられた鉤爪部134と爪受け部14の嵌合によって、位置決めが極めて容易になる。鉤爪部134と爪受け部14の嵌合形態は、接着部材なしに固定でき、積層固定後の着脱も容易である。
【0050】
なお、鉤爪部134及び爪受け部14の形、個数、設ける位置は限定されることはなく、位置決めまたは固定に必要な箇所に設ければよい。特に鉤爪部134及び爪受け部14が一体型スペーサ13の厚い領域131の縁部に設けられるときは1辺の縁部全体に沿って形成されてもよい。
【0051】
以上の各実施形態によれば、一体型スペーサ及びこれに伴う鉤爪部と爪受け部の嵌合により、接着部材も少なくて済み、組み立て性(組み立ての早さ、精度)は著しく向上し、より小さいクリアランスで製品設計が可能となる。さらに、組み立て積層固定後の着脱も容易である。仮にスペーサがセパレートタイプであった場合に比べ、組み立て性の向上、部品点数の減少が達成され、コスト削減に寄与する。さらに、ICの種類、組み合わせの自由度が広く、複数の周辺素子まで実装できる点を考慮すれば、電気特性的にも最適な3次元実装モジュールが実現可能である。
【0052】
【発明の効果】
以上説明したように本発明の半導体装置によれば、折り重ねて3次元実装モジュールにするべくフレキシブル回路基板に電子部品を実装する。これにより、3次元実装モジュールへの組み立て以前に測定、検査等が実施可能である。
【0053】
さらに、3次元実装モジュールとして組み立てるための積層支持体、すなわち一体型スペーサは、フレキシブル回路基板上に一括して装着される。その後はこのスペーサを伴って実装領域が折り重ねられ固定される。その際、予め設けられた鉤爪部と爪受け部の嵌合によって、位置決めが極めて容易になり、かつ組み立て積層固定後の着脱も容易になる。
【0054】
以上の結果、高密度3次元実装モジュールへの組み立ての容易性、制御性が得られ、よりコンパクトで、リペア(またはリワーク)作業性に優れ、自由度が高くかつ電気特性的にも最適な、フレキシブル回路基板を用いた高信頼性の3次元実装モジュール構成の半導体装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る半導体装置の構成を示す概観図である。
【図2】図1の構成の特徴的な組み立て形態を示す概観図である。
【図3】図1の半導体装置の組み立て形態における特徴部分(鉤爪部)を含めて示す任意の側面及び断面を含む概略図である。
【図4】(a),(b)は、それぞれ本発明の第2実施形態に係る半導体装置の構成であり、(a)は組み立て前の平面図、(b)は組立後の3次元実装モジュールにおける特徴部分(鉤爪部)を含めて示す任意の側面及び断面を含む概略図である。
【図5】(a),(b)は、それぞれ本発明の第3実施形態に係る半導体装置の構成であり、(a)は組み立て前の平面図、(b)は組立後の3次元実装モジュールにおける特徴部分(鉤爪部)を含めて示す任意の側面及び断面を含む概略図である。
【符号の説明】
11,41、51…フレキシブル回路基板
110…ベース領域
111,112,113…実装領域
115,52…外部端子部
121,122,123,124、125,126…電子部品
13…一体型スペーサ
131…一体型スペーサの厚い領域
132…一体型スペーサの薄い領域
133…開口部
134…鉤爪部
14…爪受け部
21,22…折り曲げ端部領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device using a flexible circuit board, and more particularly, to a semiconductor device that constitutes a three-dimensional mounting module that is inexpensive and is required to be reduced in size, thickness, and weight.
[0002]
[Prior art]
Unlike rigid circuit boards, flexible circuit boards have the advantage of being soft and deformable. Therefore, it is advantageous for high-density mounting of IC and compactness of the module. That is, the flexible circuit board is used for TCP (Tape Carrier Package), COF (Chip On Flexible or Film), and the like, and is particularly indispensable for miniaturization of various media devices.
[0003]
In addition, system LSI technology is also important for realizing miniaturization, thinning, and weight reduction of media devices. The system LSI is steadily advancing the technology to one chip while incorporating the peripheral circuit LSI. However, in the development of a system LSI, a long development period and a chip cost increase due to mixing different types of processes are caused. As a result, the short delivery time and low cost required by media devices cannot be satisfied.
[0004]
[Problems to be solved by the invention]
For the reasons described above, there has been an increasing demand for system function mounting mainly for three-dimensional mounting, and integration of system LSI and mounting technology has become important. In the media equipment industry, the degree of growth is determined by frequency (high speed) and delivery (short delivery). For this reason, the connection length and wiring length of the built-in LSI must be shortened as much as possible depending on the mounting and package technology. For these reasons, the three-dimensional mounting module has been put into practical use after being devised in various ways.
[0005]
For example, the following configuration of a three-dimensional mounting module has hitherto been put into practical use or in a practical use stage. First, as (A), a TCP (Tape Carrier Package) is stacked, and the connection between chip stacks is achieved by a TCP outer lead. Further, as (B), a wiring frame is provided between the TCP stacks to achieve connection between the chip stacks. In addition, as (C), there are various techniques such as stacking at the chip level and connecting the chip stacks with a conductive material.
[0006]
According to such a conventional technique, chip stacks need to be electrically connected via some interposer. Such interposer connection configurations include an external connection configuration such as (A) and (C) above and an internal connection configuration such as (B) above. In any case, electrical operation as a module product is recognized only after the structure of the three-dimensional mounting module is achieved, and measurement, inspection, etc. are possible.
[0007]
Therefore, when it is determined that the three-dimensional mounting module is defective as a result of measurement, inspection, etc., a repair (or rework) operation for quality improvement is performed. That is, in the three-dimensional mounting module, in the three-dimensional assembly stage, a connection configuration that takes into consideration the processing method of the common electrode and the non-common electrode and the repair (or rework) workability is important. In this respect, the above-described conventional technique has a problem of increasing time and cost.
[0008]
The present invention has been made in consideration of the above-described circumstances, and a semiconductor having a three-dimensional mounting module configuration using a flexible circuit board excellent in ease of assembly in three dimensions and repair (or rework) workability. The device is to be provided.
[0009]
[Means for Solving the Problems]
A semiconductor device according to the present invention includes a flexible circuit board having a base region and one or more mounting regions continuously provided around the base region, the mounting regions being folded over the base region, and the mounting An electronic component mounted corresponding to the region, a first region provided so as to protect the electronic component and having a predetermined outer frame, each thinner than the first region, and integrated and bent together with the first region A laminated support including a second region, an adhesive member for integrating the laminated support and the flexible circuit board, and a predetermined portion on the first region of the laminated support. A claw portion, and a claw receiving portion to which the claw portion provided at a predetermined position on the back surface side of the mounting area of the flexible circuit board is fixed. When each mounting region is folded over the base region together with the support, the claw portion and the claw receiving portion are fitted and fixed at a portion where the first region overlaps with the flexible circuit board. .
[0010]
According to the semiconductor device of the present invention, it becomes possible to operate as a module product when an electronic component is mounted on the flexible circuit board. Thereby, measurement, inspection, etc. can be carried out before being assembled as a three-dimensional mounting module.
[0011]
Furthermore, the laminated support for assembling as a three-dimensional mounting module is an integral type, and is collectively mounted on the flexible circuit board. Thereafter, the mounting area is folded and fixed together with the laminated support. That is, a three-dimensional mounting module is realized with a small number of man-hours. At that time, the positioning of the stack is facilitated by the fitting of the claw portion and the claw receiving portion provided in advance, and the assembly accuracy is improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing the configuration of the semiconductor device according to the first embodiment of the present invention. FIG. 2 is a schematic view showing a characteristic assembly form of the configuration of FIG. As shown in FIG. 1, the flexible circuit board 11 has a substantially rectangular base region 110 as shown by a broken line and mounting regions 111, 112, and 113 connected to the periphery thereof, and has a predetermined conductive property under the protective film. A pattern (not shown) is formed. In addition, an external terminal portion 115 is provided in a region around the base region 110 where the mounting region is not provided. Here, the external terminal portion 115 is a connector terminal.
[0013]
In the flexible circuit board 11, electronic components 121, 122, and 123 mainly correspond to the mounting regions 111, 112, and 113, respectively, and are mounted face-down. The electronic components 121, 122, 123 can be variously considered as a memory chip, a system LSI chip, a control unit, and the like.
[0014]
As such face-down mounting of the electronic components 121, 122, and 123, for example, soldering between the bump electrodes of each electronic component and a predetermined conductive pattern of the flexible circuit board 11 can be considered. Moreover, the connection by ACF (anisotropic conductive film) is also considered. That is, ACF (anisotropic conductive film) is interposed between the bump electrode of each electronic component and a predetermined conductive pattern of the flexible circuit board 11 and thermocompression bonded. Thereby, the necessary electrical connection between each electronic component 121, 122, 123 and the conductive pattern of the flexible circuit board 11 is obtained by the conductive particles in the ACF. In addition, various conceivable methods such as ACP (anisotropic conductive paste) bonding, NCP bonding in which electrical connection is obtained by the contraction force of the insulating resin, and metal eutectic bonding such as gold-gold and gold-tin by bumps are possible. In some cases, face-up mounting using a wire bonding method is also applicable. Furthermore, it is possible to mount an ultra-thin IC package, and the mounting form of the electronic component is not particularly limited.
[0015]
On the other hand, some small electronic components (peripheral elements) related to the electronic components 121, 122, 123 are also mounted. For example, the plurality of electronic components 124 are chip capacitors and chip resistors, and the electronic component 125 is a crystal or the like necessary for clock generation.
[0016]
The flexible circuit board 11 is made of a soft material such as polyimide that can be bent freely. The flexible circuit board 11 is configured such that the mounting areas 111 to 113 are folded above the base area 110 in a predetermined order (f1 to f3). Accordingly, the distances d1 to d3 are different in consideration of the bending distance until the mounting regions 111 to 113 are folded.
[0017]
An integrated spacer 13 is attached to the flexible circuit board 11. The integrated spacer 13 is fixed so as to overlap the flexible circuit board as indicated by the broken-line arrows, and supports the stack of electronic components when the mounting regions 111 to 113 are folded. The integrated spacer 13 has a thick region 131 and a thin region 132.
[0018]
The thick region 131 of the integrated spacer 13 is provided for protection of stacking in the electronic components 121 to 123 and the other electronic components 124 and 125. The thick region 131 takes a form surrounding each of the electronic components 121 to 123, for example. Further, a small electronic component (such as 125) mounted toward the end may take a form partially along the periphery. In any case, since the thick region 131 is stacked above the base region 110, it is preferable that the thick region 131 has an outer frame that can be fitted on the base region 110.
[0019]
A thin region 132 of the integrated spacer 13 extends on the base region 110 and is integrated with the thick region 131. This thin region 132 forms a foldable region at least around the base region 110. In addition, an opening 133 may be provided so that mounting of the electronic component (124) is not hindered.
[0020]
Such an integrated spacer 13 may be formed of, for example, a molded product of polyimide resin considering reflow heat resistance. The thick region 131 has a thickness that does not hinder the stacking of each electronic component (121 to 123, etc.) to be mounted. Moreover, since the thin area | region 132 includes a bending part, the thinner one is good, for example, is made into thickness about 0.1-0.2 mm. If handling as the integrated spacer 13 is not difficult, it may be thinner.
[0021]
The back surface side (not shown) of the integrated spacer 13 is fixed on the flexible circuit board 11 via an adhesive member such as a double-sided tape or an adhesive. Thereby, the structure integrated with the flexible circuit board 11 is taken.
[0022]
Further, a fixing claw portion 134 is provided in advance at a predetermined location on the thick region 131 of the integrated spacer 13. The claw portion 134 can be provided with an arbitrary width in the vicinity of the outer edge portion of the thick region 131. The claw portion 134 is not provided on the thick region 131 that is first folded on the base region 110.
[0023]
Further, on the back side of the flexible circuit board 11 with respect to the mounting regions 111 and 112, the claw receiving portions 14 into which the claw portions 134 are fitted are provided. In the flexible circuit board 11 corresponding to the location of the claw receiving portion 14, a partial cutout portion C is provided.
[0024]
FIG. 2 shows the claw receiving portion 14 on the back surface side with respect to the mounting region 111. One of the claw receiving portions 14 is provided along the edge of the thick region 131 of the integrated spacer 13 on the mounting region 111. Further, the claw receiving portion 14 may be formed by penetrating the back surface of the flexible circuit board 11 (H in FIG. 1) and entering a part of the thick region 131 of the integrated spacer 13.
[0025]
That is, as indicated by the dashed arrow, the claw portion 134 on the mounting region 112 is provided to be fitted. Although not shown, a claw receiving portion 14 for fitting the claw portion 134 on the mounting region 113 is also provided on the back side of the mounting region 112. Such a claw receiving portion 14 does not need to be provided in the thick region 131 in the mounting region 113 that is finally folded above the base region 110 unless there is a particular application.
[0026]
Due to the fitting form of the claw portion 134 and the claw receiving portion 14, there is no problem even if an adhesive member such as a double-sided tape or an adhesive is not disposed on the laminated fixing side (shaded line) of the thick region 131. However, it is necessary to dispose an adhesive member such as a double-sided tape or an adhesive on the thick region 131 that is first folded on the base region 110.
[0027]
That is, the electronic components 121 to 123 (including other small electronic components) are sequentially stacked, and the claw portion 134 and the claw receiving portion 14 are formed in a portion where the thick region 131 of the integrated spacer 13 overlaps with the flexible circuit board 11. It is fixed by fitting.
[0028]
FIG. 3 is a schematic view including an arbitrary side surface and a cross section including a characteristic portion (claw claw portion) in the assembled form of the semiconductor device of FIG. In order to make the assembly situation easy to understand, a flexible circuit board bent from the front is also shown through. The fitting form of the claw part 134 and the claw receiving part 14 is shown in a partial cross section, and an enlarged view is shown in a circle of a one-dot chain line. As a result, the mounting regions 111, 112, and 113 are sequentially folded above the base region 110, and the electronic components 121, 122, and 123 and other peripheral electronic components 124 and 125 are three-dimensionally stacked and fixed. Yes.
[0029]
The integrated spacer 13 is integrally fixed on the flexible circuit board 11 with, for example, a double-sided tape. The laminated form of the thick region 131 is contributed by the fitting form of the claw portion 134 and the claw receiving portion 14. Thus, the electronic components 121, 122, 123 and other peripheral electronic components 124, 125 are each surrounded by the thick region 131 and protected.
[0030]
The thin area 132 of the integrated spacer 13 supports the bent area of the flexible circuit board 11 and also serves to protect the flexible circuit board 11 against the bent end areas 21 and 22 that are particularly likely to have a steep angle.
[0031]
Further, the claw portion 134 and the claw receiving portion 14 contribute to positioning of the mounting regions in the flexible circuit board 11 with the integrated spacer 13 by fitting.
[0032]
According to the said 1st Embodiment, the operation | movement as a module product is attained at the time of mounting an electronic component (121-123 others) on the flexible circuit board 11. FIG. Thereby, measurement, inspection, etc. can be carried out before being assembled as a three-dimensional mounting module.
[0033]
Further, the integrated spacer 13 for assembling as a three-dimensional mounting module can be mounted on the flexible circuit board 11 at a time. Thereafter, the mounting regions 111 to 113 are folded and fixed together with the integrated spacer 13. At that time, positioning becomes extremely easy by fitting the claw portion 134 and the claw receiving portion 14 provided in advance. Moreover, the fitting form of the claw part 134 and the claw receiving part 14 has an advantage that it can be fixed without an adhesive member, and can be easily attached and detached after the lamination is fixed.
[0034]
For this reason, as a three-dimensional mounting module, the assemblability (speed of assembling and accuracy) is remarkably improved, and a reduction in processing man-hours can be achieved. Thereby, it is excellent in repair (or rework) workability and contributes to cost reduction. Further, as compared with the case where the spacer is a separate type, the assemblability is improved and the number of parts is reduced. As a result, it contributes to cost reduction. Moreover, there is an advantage that product design is possible with a smaller clearance by improving positioning accuracy by fitting the claw portion 134 and the claw receiving portion 14. Thereby, a more compact three-dimensional mounting module can be realized.
[0035]
The three-dimensional mounting module according to the present invention has a configuration in which each electronic component (121 to 123, etc.) is mounted on the flexible circuit board 11 and folded together with the flexible circuit board 11 and the integrated spacer 13. As a result, compared to a stacked package in which IC chips are stacked, restrictions on IC size and pad arrangement are very loose. In the stacked package, there are various restrictions such as the size of the IC to be combined and the IC terminal position. On the other hand, the three-dimensional mounting module according to the present invention has a wide range of IC types and flexibility in combination, and considering the fact that a plurality of peripheral elements can be mounted, it is possible to make the module optimal in terms of electrical characteristics. is there.
[0036]
FIGS. 4A and 4B are configurations of the semiconductor device according to the second embodiment of the present invention, respectively, FIG. 4A is a plan view before assembly, and FIG. 4B is a three-dimensional mounting module after assembly. It is the schematic containing the arbitrary side surfaces and cross sections shown including a characteristic part (claw part). In order to make the assembly situation easy to understand, a flexible circuit board bent from the front is also shown through. About the fitting form of the claw part 134 and the claw receiving part 14, the enlarged view of a partial cross section was represented in the circle of a dashed-dotted line. The same parts as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0037]
In the second embodiment, the flexible circuit board 41 is different from the first embodiment. As shown in the figure, the flexible circuit board 41 is configured such that the electronic component 126 is also mounted on the base region 110. As a result, the integrated spacer 13 has a thick region 131 on the base region 110 corresponding to the electronic component 126.
[0038]
In addition, since the electronic components 121 to 123 are sequentially stacked above the electronic component 126, the integrated spacer 13 includes a thick region 131 on the base region 110 and a thick region on the mounting regions 111 to 113. The distances d11 to d13 are different from each other.
[0039]
Further, on the thick region 131 of the integrated spacer 13 provided on the mounting region 111, a claw portion 134 is provided at a predetermined location. Then, on the thick region 131 of the integrated spacer 13 provided on the base region 110, the claw receiving portion 14 that fits with the claw portion 134 is provided.
[0040]
Thus, the flexible circuit board 41 is folded together with the integrated spacer 13 (thick region 131) in the order determined. That is, the electronic components 121 to 125 are stacked and fixed in the same manner as in the first embodiment with the fitting of the claw portion 134 and the claw receiving portion 14 (FIG. 4B).
[0041]
FIGS. 5A and 5B are configurations of a semiconductor device according to the third embodiment of the present invention, respectively, FIG. 5A is a plan view before assembly, and FIG. 5B is a three-dimensional mounting module after assembly. It is the schematic containing the arbitrary side surfaces and cross sections shown including a characteristic part (claw part). In order to make the assembly situation easy to understand, a flexible circuit board bent from the front is also shown through. About the fitting form of the claw part 134 and the claw receiving part 14, the enlarged view of a partial cross section was represented in the circle of a dashed-dotted line. The same parts as those in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0042]
In the third embodiment, the flexible circuit board 51 is different from the first embodiment. As shown in the drawing, on the back surface of the base region 110 of the flexible circuit board 51, an external terminal portion (for example, a ball electrode) 52 as shown by a broken line is provided. That is, the external terminal 115 shown in the first embodiment (FIG. 1) is configured as an array type electrode (52) instead of the connector terminal.
[0043]
On the main surface of the flexible circuit board 51 in which the mounting regions (111 to 113) are arranged, the end portion of the conductive pattern corresponding to an external terminal (not shown) is connected to an external terminal portion (ball electrode) via a via pattern (not shown). 52.
[0044]
Moreover, although the electronic component 125 shows a crystal, the SMD (Surface Mount Device) type is applied instead of the conventional cylinder type. The SMD type is reflowable and highly reliable when the 3D module is solder-mounted on the main board.
[0045]
The integrated spacer 13 has a thick region 131 corresponding to the electronic components 121 to 125. As a result, the flexible circuit board 11 is folded together with the integrated spacer 13 (thick region 131) in the determined order. That is, the electronic parts 121 to 125 are stacked and fixed in the same manner as in the first embodiment with the fitting of the claw portions 134 and the claw receiving portions 14 in the thick region 131 (FIG. 5B). ).
[0046]
Note that the electronic components 121 to 125 may be fixed to the flexible circuit board 51 in advance by an adhesive means such as a thermosetting type as necessary. This contributes to, for example, preventing the soldered electronic parts 124 and 125 from falling when the three-dimensional module is mounted on the main board by reflow soldering. Such an adhesive means is not always necessary because it depends on temperature conditions and the mass of the electronic component. In any case, it is desirable that a predetermined electronic component is bonded so as not to interfere with the spacer 13.
[0047]
Further, in the above configuration, it is conceivable that each mounting area is provided on all four sides around the base area 110. Also in that case, each electronic component is laminated in a predetermined order with an integrated spacer including a thick region and a thin region, and is fixed in the same manner as in the first embodiment.
[0048]
The second and third embodiments as described above are configurations pursuing higher density mounting. Also according to such an embodiment, when an electronic component is mounted on the flexible circuit board 41 or 51, an operation as a module product becomes possible. Thereby, measurement, inspection, etc. can be carried out before being assembled as a three-dimensional mounting module.
[0049]
The integrated spacer 13 for assembling as a three-dimensional mounting module can be mounted on the flexible circuit board 41 or 51 at a time. Thereafter, each mounting region is folded and fixed together with the integrated spacer 13. At that time, positioning becomes extremely easy by fitting the claw portion 134 and the claw receiving portion 14 provided in advance. The fitting form of the claw portion 134 and the claw receiving portion 14 can be fixed without an adhesive member, and can be easily attached and detached after the lamination is fixed.
[0050]
In addition, the shape, the number, and the position where the claw portion 134 and the claw receiving portion 14 are provided are not limited, and may be provided at a position necessary for positioning or fixing. In particular, when the claw portion 134 and the claw receiving portion 14 are provided at the edge of the thick region 131 of the integrated spacer 13, it may be formed along the entire edge of one side.
[0051]
According to each of the above embodiments, the number of adhesive members can be reduced by the fitting of the integrated spacer and the claw portion and the claw receiving portion associated therewith, and the assemblability (speed of assembly and accuracy) is remarkably improved. Product design is possible with small clearance. Furthermore, it is easy to attach / detach after assembling and fixing. As compared with the case where the spacer is a separate type, an improvement in assembly and a reduction in the number of parts are achieved, which contributes to cost reduction. Furthermore, considering the wide variety of IC types and the degree of freedom of combination and mounting up to a plurality of peripheral elements, a three-dimensional mounting module that is optimal in terms of electrical characteristics can be realized.
[0052]
【The invention's effect】
As described above, according to the semiconductor device of the present invention, the electronic component is mounted on the flexible circuit board so as to be folded into a three-dimensional mounting module. Thereby, measurement, inspection, etc. can be performed before assembly into the three-dimensional mounting module.
[0053]
Furthermore, a laminated support for assembling as a three-dimensional mounting module, that is, an integral spacer is mounted on the flexible circuit board in a lump. Thereafter, the mounting area is folded and fixed with the spacer. At that time, the fitting between the claw portion and the claw receiving portion provided in advance makes positioning extremely easy and also facilitates attachment / detachment after assembly lamination and fixing.
[0054]
As a result, ease of assembly and controllability into a high-density three-dimensional mounting module can be obtained, it is more compact, has excellent repair (or rework) workability, has a high degree of freedom, and is optimal in terms of electrical characteristics. A highly reliable semiconductor device having a three-dimensional mounting module configuration using a flexible circuit board can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a configuration of a semiconductor device according to a first embodiment of the present invention.
2 is a schematic view showing a characteristic assembly form of the configuration of FIG. 1; FIG.
3 is a schematic view including an arbitrary side surface and a cross section including a characteristic portion (claw claw portion) in the assembled form of the semiconductor device of FIG. 1;
FIGS. 4A and 4B are configurations of a semiconductor device according to a second embodiment of the present invention, respectively, FIG. 4A is a plan view before assembly, and FIG. 4B is three-dimensional mounting after assembly. It is the schematic containing the arbitrary side surfaces and cross sections shown including the characteristic part (claw part) in a module.
5A and 5B are configurations of a semiconductor device according to a third embodiment of the present invention, respectively, FIG. 5A is a plan view before assembly, and FIG. 5B is three-dimensional mounting after assembly. It is the schematic containing the arbitrary side surfaces and cross sections shown including the characteristic part (claw part) in a module.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11, 41, 51 ... Flexible circuit board 110 ... Base area | region 111,112,113 ... Mounting area | region 115,52 ... External terminal part 121,122,123,124,125,126 ... Electronic component 13 ... Integral type spacer 131 ... One Thick region 132 of body-shaped spacer ... Thin region 133 of integrated spacer ... Opening 134 ... Claw portion 14 ... Claw receiving portion 21, 22 ... Bent end region

Claims (6)

ベース領域及びその周辺に連設された1つ以上の実装領域を有し、ベース領域上方に各実装領域が折り重ねられるように形成されたフレキシブル回路基板と、
前記実装領域に対応して実装された電子部品と、
前記電子部品を保護するように設けられそれぞれ所定の外形枠を有する第1領域と、前記第1領域よりも薄く、この第1領域と共に一体化し折り曲げ可能な第2領域と、を含む積層支持体と、
前記積層支持体と前記フレキシブル回路基板が一体化するための接着部材と、
前記積層支持体の前記第1領域上における所定箇所に設けられた鉤爪部と、
前記フレキシブル回路基板の前記実装領域に対する裏面側の所定箇所に設けられた前記鉤爪部が固定される爪受け部とを具備し、
前記フレキシブル回路基板が前記積層支持体と共に前記ベース領域上方に各実装領域を折り重ねる際、前記第1領域がフレキシブル回路基板を介して重なり合う部分で前記鉤爪部と爪受け部が嵌合して固定されること、
を特徴とする半導体装置。
A flexible circuit board having a base region and one or more mounting regions connected to the periphery thereof, and formed so that each mounting region is folded above the base region;
An electronic component mounted corresponding to the mounting area;
A laminated support body including a first region provided to protect the electronic component and having a predetermined outer frame, and a second region which is thinner than the first region and can be integrated and bent together with the first region. When,
An adhesive member for integrating the laminated support and the flexible circuit board;
Claw portions provided at predetermined locations on the first region of the laminated support;
A claw receiving portion to which the claw portion provided at a predetermined position on the back surface side of the mounting area of the flexible circuit board is fixed;
When the flexible circuit board folds each mounting area with the laminated support above the base area, the claw part and the claw receiving part are fitted and fixed at the part where the first area overlaps with the flexible circuit board. Being
A semiconductor device characterized by the above.
前記フレキシブル回路基板は、前記ベース領域の周辺に連設された外部端子領域をさらに含むことを特徴とする請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the flexible circuit board further includes an external terminal region provided continuously around the base region. 前記フレキシブル回路基板は、前記ベース領域下方側の面に設けられた外部端子領域をさらに含むことを特徴とする請求項1記載の半導体装置。  The semiconductor device according to claim 1, wherein the flexible circuit board further includes an external terminal region provided on a lower surface of the base region. 前記積層支持体は、その第1領域に関して前記電子部品の周辺を取り囲むような構成であることを特徴とする請求項1〜3いずれか一つに記載の半導体装置。  The semiconductor device according to claim 1, wherein the stacked support body is configured to surround a periphery of the electronic component with respect to the first region. 前記積層支持体は、その第1領域に関して前記電子部品の周辺に部分的に沿うような構成であることを特徴とする請求項1〜3いずれか一つに記載の半導体装置。  The semiconductor device according to claim 1, wherein the stacked support body is configured to partially extend around the electronic component with respect to the first region. 前記ベース領域にも電子部品が実装される形態をさらに具備し、前記ベース領域に実装される電子部品に対応した前記積層支持体の前記第1領域と前記第1領域上に前記鉤爪部と嵌合する爪受け部が設けられることを特徴とする請求項1〜5いずれか一つに記載の半導体装置。  The electronic component is further mounted on the base region, and the claw portion is fitted on the first region and the first region of the laminated support corresponding to the electronic component mounted on the base region. 6. The semiconductor device according to claim 1, further comprising a claw receiving portion to be fitted.
JP2000185170A 2000-06-20 2000-06-20 Semiconductor device Expired - Fee Related JP3882471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185170A JP3882471B2 (en) 2000-06-20 2000-06-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185170A JP3882471B2 (en) 2000-06-20 2000-06-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002009234A JP2002009234A (en) 2002-01-11
JP3882471B2 true JP3882471B2 (en) 2007-02-14

Family

ID=18685523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185170A Expired - Fee Related JP3882471B2 (en) 2000-06-20 2000-06-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3882471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692254B2 (en) * 2005-12-02 2011-06-01 ソニー株式会社 Semiconductor module and method for manufacturing semiconductor module
WO2018065121A1 (en) 2016-10-06 2018-04-12 Possehl Electronics Deutschland Gmbh Housing for an electronic component, in particular a semiconductor chip

Also Published As

Publication number Publication date
JP2002009234A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
JP3855594B2 (en) Semiconductor device
JP2001308260A (en) Semiconductor device
US6867496B1 (en) Interconnect substrate, semiconductor device, methods of fabricating, inspecting, and mounting the semiconductor device, circuit board, and electronic instrument
US6486544B1 (en) Semiconductor device and method manufacturing the same, circuit board, and electronic instrument
JP2008109378A (en) Optical device module and its manufacturing method, and optical device unit and its manufacturing method
JP2003133518A (en) Semiconductor module
JP3925615B2 (en) Semiconductor module
JP3888037B2 (en) Semiconductor device
JP2002009229A (en) Semiconductor device
JP2002009228A (en) Semiconductor device
WO2000019515A1 (en) Semiconductor device and manufacturing method thereof, circuit board and electronic equipment
JP3882471B2 (en) Semiconductor device
JP3377757B2 (en) Liquid crystal panel driving integrated circuit package and liquid crystal panel module
JP2005210409A (en) Camera module
JPS63240825A (en) Endoscope
JP2007036086A (en) Semiconductor device and liquid crystal module
JP4016587B2 (en) Electronic component and manufacturing method thereof
JPH11112121A (en) Circuit module and electronic device containing circuit module
US20240142232A1 (en) Electronic Component, Sensor Module, And Method For Manufacturing Electronic Component
JP2008311347A (en) Semiconductor module and its manufacturing method
JP2002009226A (en) Semiconductor device
JP2004031432A (en) Semiconductor device
JPH08307777A (en) Solid-state image pickup device of electron endoscope
JP2002009230A (en) Semiconductor device
JP4247623B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees