JP3882457B2 - Axial plunger pump - Google Patents

Axial plunger pump Download PDF

Info

Publication number
JP3882457B2
JP3882457B2 JP2000090693A JP2000090693A JP3882457B2 JP 3882457 B2 JP3882457 B2 JP 3882457B2 JP 2000090693 A JP2000090693 A JP 2000090693A JP 2000090693 A JP2000090693 A JP 2000090693A JP 3882457 B2 JP3882457 B2 JP 3882457B2
Authority
JP
Japan
Prior art keywords
slipper
plunger
spherical surface
surface portion
swash plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000090693A
Other languages
Japanese (ja)
Other versions
JP2001271763A (en
Inventor
英紀 町村
由起夫 高橋
稔 橋田
好信 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000090693A priority Critical patent/JP3882457B2/en
Publication of JP2001271763A publication Critical patent/JP2001271763A/en
Application granted granted Critical
Publication of JP3882457B2 publication Critical patent/JP3882457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、斜板の揺動によって回転軸の回転運動をプランジャの往復運動に変換する機構を備えたアキシャルプランジャポンプに係り、特に斜板とプランジャとの間にスリッパを有するものに関する。
【0002】
【従来の技術】
従来のアキシャルプランジャポンプでは、たとえば特開平5−113173号に示されているように、シリンダの圧縮室からプランジャの貫通孔を介して圧縮油の圧力をスリッパとプランジャの接触部に供給している。
【0003】
更に、上記ポンプでは、スリッパにも貫通孔を設け、上記高圧をスリッパと斜板の摺接面間に上記圧縮油を導き主に静圧により油膜を確保している。
【0004】
またスリッパとプランジャとの接触面間の潤滑は、プランジャが吸入,圧縮工程を繰り返すことで発生するスクイーズ効果と、プランジャ先端の球面部が揺動することで発生する潤滑油の吸い込み効果により確保している。
【0005】
【発明が解決しようとする課題】
上記従来技術では、圧縮室からスリッパの摺動部に高圧油を導くため、作動流体の一部を漏洩させていることとなり、容積効率を悪化させていた。
【0006】
また、作動流体とスリッパ摺動部を潤滑するための流体を隔絶したい場合は、2流体が混合することとなり構造が成立しない。
【0007】
また、プランジャの戻しばねを有する構造をとる場合、前記スクイーズ効果によるスリッパ球面側の油膜形成効果は低減する。
【0008】
また、斜板角或いは斜軸角が極端に小さい場合、前記潤滑油の引き込み効果は低減する。
【0009】
【課題を解決するための手段】
上記課題を解決するために、スリッパの中央部にスリッパの表裏を連通する細孔を設け、斜板とスリッパとが摺動することでスリッパの摺動面部に発生する潤滑油の動圧をスリッパとプランジャとの摺接部に供給し、さらにこの動圧を利用して斜板面に供給される潤滑油をスリッパとプランジャとの摺接部から漏れ出させるように構成した。
【0010】
【発明の実施の形態】
図1は本発明の一実施形態を有するガソリン直接噴射エンジン用高圧ガソリンポンプの構造図を示す。
【0011】
図示しないエンジンのカムシャフトからの回転力がカップリング1を介してシャフト2に伝達されると、ケーシング3にラジアル軸受4とスラスト軸受5を介して回転自在に支持されている前記シャフト2が回転する。前記シャフト2には前記シャフト2の軸線に対し傾きをもつ平面2aaを有する斜板部2aが一体に形成されており、シャフト2が回転することで前記平面2aaには回転揺動運動が発生する。前記平面2aaに摺接する平面部6aを有し反対側に凹球面部6bを有するスリッパ6は、平面部6aと凹球面部6bが細孔6cで連通しており、凸球面部7aを有するプランジャ7に回転及び揺動自在に係留されている。また前記プランジャ7は、シリンダ8の中心軸を中心に円周配置したボア穴8aに往復動自在に支持されている。シリンダ8は、ケーシング3とリアボディ13により挟まれ、締付けボルト14の推力により固定されている。図示しないフィードポンプにより、送られてきた低圧燃料は、前記リアボディ13に設けられた通路13aを通り、シリンダ8の中央部に設けられた低圧燃料室8dに流入する。
【0012】
前記プランジャ7の内部には吸入弁9が設けられ、前記低圧燃料室8dに流入した低圧燃料は、連通孔8eを通り、プランジャ7の吸入通路7bが開口する位置に形成された低圧燃料室8bに流入する。さらにプランジャ7の内部には、戻しばね10が設けられ、上死点へ移動したプランジャ7を下死点方向へ押し戻す。上記プランジャ7が往復運動することで、プランジャ7とボア穴8aで囲まれた圧縮室8cの容積は収縮、膨張を繰り返すことで、吸入弁9から流入した低圧燃料を加圧し、ボア穴8aの底部に設けられた吐出弁11から、リアボディ13に設けられた高圧ガソリン室13bへ高圧ガソリンを吐出する。
【0013】
また前記ケーシング3とシリンダ8により囲むことで形成され、斜板部2a,スリッパ6、及びプランジャ7の凸球面部7aを内蔵するオイル室3aには、軸受及び摺動部潤滑用のオイルが貯溜されており、前記低圧燃料室8bとオイル室3aは、軸シール12により隔絶されている。前記ケーシング3には図示しないエンジン側から供給されるオイルをオイル室3aに導入するためのオイル孔3bが設けられ、前記オイル孔3bから流入したオイルは、一部がオイル室3aに貯溜し軸受と摺動部の潤滑を行なう。また、余剰分のオイルはラジアル軸受4のボール間隙間を通り、図示しないエンジンのシリンダヘッド部へ帰還する。
【0014】
図2に本発明の一実施形態におけるスリッパの摺動状態説明図を示すが、オイルが貯溜するオイル室3a中で、スリッパ6の平面部6aは斜板部2aの平面2aa上を相対速度Vで摺動すると、平面部6aと平面2aaの隙間には潤滑剤としてのオイルが介在し、動圧が発生する。前記動圧の圧力分布pを動圧の発生する面積a上で積分し得られる荷重Fは、プランジャ7がスリッパ6を押付ける力W、即ち圧縮室8bからプランジャ7が受ける圧縮反力と戻しばね10のばね力による合成荷重と釣り合う。また、稼動時前記スリッパ6の平面部6aに生ずる圧力分布pは、スリッパ6の凹球面部6bとプランジャ7の凸球面部7aの摺接部に隙間がなく、圧力漏れが生じないと仮定した場合、中央部で最も高くなる傾向を示す。スリッパ6の凹球面部6bとプランジャ7の凸球面部7aの摺接部に隙間がなく、圧力漏れが生じないと仮定した場合の、前記平面部6aの中央部に生ずる圧力をPmaxとし、この圧力Pmaxが細孔6cにより連通することで凹球面部6bに作用すると、スリッパ6の凹球面部6bとプランジャ7の凸球面部7aの接触部より内側の面(前記平面2aaへの投影面積A)には上記圧力Pmaxが作用する。即ち、スリッパ6の凹球面部6bとプランジャ7の凸球面部7aは荷重Fa=Pmax×Aで引き離されようとする。前記荷重FとFaの間にF≦Faの関係が成立する様前記面積Aを設定すると、実際は前記荷重FとFaは釣り合わなければならず、スリッパ6の凹球面部6bとプランジャ7の凸球面部7aの接触部には隙間が発生しオイルの流れが生じる。したがって、球面摺動部の油膜が確保可能となる。さらに、図3に示す様、スリッパ6の平面部6aを凸状にすることで、前記荷重Fに変化はなくとも圧力分布pを変化させることができ、中央部に生ずる圧力Pmaxを高めることが可能となる。但し実際の圧力分布は、スリッパ6の凹球面部6bとプランジャ7の凸球面部7aの間に油膜(オイルの流れ)が存在すると、図4に示す様、中央部に生ずる圧力PmaxはP′maxまで低下していることは言うまでもない。また、図5に示す様スリッパ6の凹球面部6bとプランジャ7の凸球面部7aが環状の接触幅Sで接触する場合は、前記凹球面部6b側に生ずる圧力分布は台形上となる。この様な場合、少なくとも前記環状の内側接触部(面積A″)で受圧面積を設定すれば、同様に扱うことができる。
【0015】
また、形状や潤滑環境、及び摺動部の面粗さの制約があり前記面積Aを十分にとることができない場合、焼結材に代表される空孔を有する多孔質材をスリッパ6の材料に適用することで、凹球面部6bへの潤滑油供給を補うことも潤滑上有効である。さらにスリッパ6の摺動部が潤滑上不利な条件下で摺動する場合は、前記焼結材に水蒸気処理による硬質酸化膜(Fe34)を形成し、表面の塑性流動を防ぐことで、耐摩耗性、及び耐焼付性を向上させることも可能である。また、スリッパ6の材質にマルテンサイト系ステンレス鋼を用い、スリッパ6の摺動表面に窒化層を形成することも耐焼付性を向上する上で有効である。当然のことながら、相手材すなわち斜板2a及びプランジャ7の材質を摺動性に優れたものにすることでスリッパ6の耐摩耗性、及び耐焼付性は向上する。斜板2aの材料としては、例えば平面2aa表面に存在する黒鉛の自己潤滑作用が発揮される球状黒鉛鋳鉄を用いることも有効である。また、プランジャ7の材料としては、例えば合金工具鋼を用い、更に摺動表面に窒化層を形成する方法も有効である。
【0016】
本実施例でスリッパの中央に細孔を設けた場合は設けない場合に比べスリッパのプランジャ側の摺接部の摩耗量が約1/7に減った。
【0017】
また、スリッパの斜板との摺接面側を2、5ミクロンの凸球面に形成した場合、スリッパのプランジャ側の摺接部の摩耗量が1/90乃至1/160に低下した。
【0018】
本実施例によれば、圧縮室からプランジャの貫通孔を介して高圧をスリッパ摺動部に供給しなくてもスリッパ摺動部の油膜形成が可能となるため、作動流体の漏洩を抑えることができ容積効率が向上する。
【0019】
さらに、プランジャとシリンダの間に軸シールを設けることで作動流体とスリッパの摺動部を潤滑するための流体を隔絶することが可能となる。
【0020】
また、プランジャの戻しばねにより常にプランジャがスリッパに押付けられる場合でも、スクイーズ効果に期待することなく、スリッパ球面側の油膜形成が可能となる。
【0021】
斜板角或いは斜軸角が極端に小さい場合も、球面部の揺動運動による潤滑油の引き込み効果に期待することなく、スリッパ球面側の油膜形成が可能となる。
【0022】
【発明の効果】
本発明によれば、斜板とスリッパとの間に供給される潤滑油によって、斜板とスリッパとの間の潤滑だけでなく、スリッパとプランジャとの間の潤滑も可能となった。
【0023】
また、潤滑油の動圧が斜板とスリッパとの間及びスリッパとプランジャとの間に作用することで、これら相互の金属接触が緩和され結果的にこれらの間の摺動による摩耗が低減した。
【図面の簡単な説明】
【図1】本発明の一実施形態を有するガソリン直接噴射エンジン用高圧ガソリンポンプの構造図。
【図2】本発明の一実施形態におけるスリッパの摺動状態説明図。
【図3】本発明の一実施形態におけるスリッパ平面側圧力分布改善手段説明図。
【図4】本発明の一実施形態におけるスリッパ平面側圧力分布説明図。
【図5】本発明の一実施形態におけるスリッパ球面側圧力分布説明図。
【符号の説明】
1…カップリング、2…シャフト、2a…斜板部、2aa…平面、3…ケーシング、3a…オイル室、3b…オイル孔、4…ラジアル軸受、5…スラスト軸受、6…スリッパ、6a…平面部、6b…凹球面部、6c…細孔、7…プランジャ、7a…凸球面部、7b…吸入通路、8…シリンダ、8a…ボア穴、8b…低圧燃料室、8c…圧縮室、8d…低圧燃料室、8e…連通孔、9…吸入弁、10…戻しばね、11…吐出弁、12…軸シール、13…リアボディ、13b…高圧ガソリン室、14…締付けボルト。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an axial plunger pump having a mechanism for converting a rotary motion of a rotary shaft into a reciprocating motion of a plunger by swinging a swash plate, and more particularly to a pump having a slipper between a swash plate and a plunger.
[0002]
[Prior art]
In a conventional axial plunger pump, for example, as shown in Japanese Patent Laid-Open No. 5-113173, compressed oil pressure is supplied from a compression chamber of a cylinder to a contact portion between the slipper and the plunger through a through hole of the plunger. .
[0003]
Further, in the above pump, a through hole is also provided in the slipper, and the compressed oil is guided between the sliding contact surfaces of the slipper and the swash plate to ensure the oil film mainly by static pressure.
[0004]
Also, the lubrication between the contact surfaces of the slipper and the plunger is ensured by the squeeze effect that occurs when the plunger repeats the suction and compression processes and the suction effect of the lubricating oil that occurs when the spherical surface of the plunger tip swings. ing.
[0005]
[Problems to be solved by the invention]
In the above prior art, since high pressure oil is guided from the compression chamber to the sliding portion of the slipper, part of the working fluid is leaked, and the volumetric efficiency is deteriorated.
[0006]
Further, when it is desired to isolate the working fluid from the fluid for lubricating the slipper sliding portion, the two fluids are mixed and the structure is not established.
[0007]
Moreover, when the structure which has the return spring of a plunger is taken, the oil film formation effect by the side of a slipper spherical surface by the said squeeze effect reduces.
[0008]
Further, when the swash plate angle or the oblique axis angle is extremely small, the effect of drawing in the lubricating oil is reduced.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a pore that communicates the front and back of the slipper is provided at the center of the slipper, and the sliding pressure between the swash plate and the slipper causes the dynamic pressure of the lubricating oil generated on the sliding surface of the slipper to slip. The lubricating oil supplied to the swash plate surface is leaked from the sliding contact portion between the slipper and the plunger by using this dynamic pressure.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a structural diagram of a high-pressure gasoline pump for a gasoline direct injection engine having an embodiment of the present invention.
[0011]
When a rotational force from a camshaft of an engine (not shown) is transmitted to the shaft 2 via the coupling 1, the shaft 2 rotatably supported by the casing 3 via the radial bearing 4 and the thrust bearing 5 rotates. To do. The shaft 2 is integrally formed with a swash plate portion 2a having a plane 2aa inclined with respect to the axis of the shaft 2, and rotation and oscillation motion is generated in the plane 2aa when the shaft 2 rotates. . The slipper 6 having a flat surface portion 6a slidably contacting the flat surface 2aa and having a concave spherical surface portion 6b on the opposite side has a flat surface portion 6a and a concave spherical surface portion 6b communicating with each other through a pore 6c, and a plunger having a convex spherical surface portion 7a. 7 is moored so as to be rotatable and swingable. The plunger 7 is supported in a freely reciprocating manner in a bore hole 8a arranged circumferentially around the central axis of the cylinder 8. The cylinder 8 is sandwiched between the casing 3 and the rear body 13 and is fixed by the thrust of the tightening bolt 14. Low-pressure fuel sent by a feed pump (not shown) flows through a passage 13 a provided in the rear body 13 and flows into a low-pressure fuel chamber 8 d provided in the center of the cylinder 8.
[0012]
A suction valve 9 is provided inside the plunger 7, and the low-pressure fuel that has flowed into the low-pressure fuel chamber 8d passes through the communication hole 8e and is formed at a position where the suction passage 7b of the plunger 7 is opened. Flow into. Further, a return spring 10 is provided inside the plunger 7 to push the plunger 7 moved to the top dead center back toward the bottom dead center. When the plunger 7 reciprocates, the volume of the compression chamber 8c surrounded by the plunger 7 and the bore hole 8a contracts and expands repeatedly, thereby pressurizing the low-pressure fuel flowing in from the suction valve 9 to the bore hole 8a. High pressure gasoline is discharged from a discharge valve 11 provided at the bottom to a high pressure gasoline chamber 13b provided in the rear body 13.
[0013]
The oil chamber 3a, which is formed by being surrounded by the casing 3 and the cylinder 8 and contains the swash plate portion 2a, the slipper 6, and the convex spherical surface portion 7a of the plunger 7, stores oil for lubricating bearings and sliding portions. The low-pressure fuel chamber 8b and the oil chamber 3a are isolated by the shaft seal 12. The casing 3 is provided with an oil hole 3b for introducing oil supplied from the engine side (not shown) into the oil chamber 3a, and a part of the oil flowing in from the oil hole 3b is stored in the oil chamber 3a. And lubricate the sliding part. The surplus oil passes through the gap between the balls of the radial bearing 4 and returns to the cylinder head portion of the engine (not shown).
[0014]
FIG. 2 is an explanatory view of the sliding state of the slipper according to one embodiment of the present invention. In the oil chamber 3a in which oil is stored, the flat surface portion 6a of the slipper 6 moves on the flat surface 2aa of the swash plate portion 2a relative speed V. When sliding, the oil as the lubricant is interposed in the gap between the flat portion 6a and the flat surface 2aa, and dynamic pressure is generated. The load F obtained by integrating the pressure distribution p of the dynamic pressure over the area a where the dynamic pressure is generated is the force W that the plunger 7 presses the slipper 6, that is, the compression reaction force that the plunger 7 receives from the compression chamber 8b. It balances with the combined load due to the spring force of the spring 10. In addition, the pressure distribution p generated in the flat surface portion 6a of the slipper 6 during operation is assumed that there is no gap between the sliding contact portion of the concave spherical surface portion 6b of the slipper 6 and the convex spherical surface portion 7a of the plunger 7, and no pressure leakage occurs. In the case, it tends to be highest in the central part. When it is assumed that there is no gap in the sliding contact portion between the concave spherical surface portion 6b of the slipper 6 and the convex spherical surface portion 7a of the plunger 7 and no pressure leakage occurs, the pressure generated at the central portion of the flat surface portion 6a is defined as Pmax. When the pressure Pmax communicates with the concave spherical surface portion 6b by communicating with the pore 6c, the inner surface of the contact portion between the concave spherical surface portion 6b of the slipper 6 and the convex spherical surface portion 7a of the plunger 7 (projected area A on the plane 2aa). ) Acts on the pressure Pmax. That is, the concave spherical surface portion 6b of the slipper 6 and the convex spherical surface portion 7a of the plunger 7 are about to be separated with a load Fa = Pmax × A. When the area A is set so that the relationship F ≦ Fa is established between the loads F and Fa, the loads F and Fa must actually be balanced, and the concave spherical surface portion 6b of the slipper 6 and the convex spherical surface of the plunger 7 A gap is generated at the contact portion of the portion 7a to cause an oil flow. Therefore, it is possible to secure an oil film on the spherical sliding portion. Furthermore, as shown in FIG. 3, by making the flat portion 6a of the slipper 6 convex, the pressure distribution p can be changed even if the load F does not change, and the pressure Pmax generated in the center portion can be increased. It becomes possible. However, in the actual pressure distribution, when an oil film (oil flow) exists between the concave spherical surface portion 6b of the slipper 6 and the convex spherical surface portion 7a of the plunger 7, as shown in FIG. Needless to say, it has dropped to max. In addition, when the concave spherical surface portion 6b of the slipper 6 and the convex spherical surface portion 7a of the plunger 7 are in contact with each other with an annular contact width S as shown in FIG. 5, the pressure distribution generated on the concave spherical surface portion 6b side is trapezoidal. In such a case, if the pressure receiving area is set at least by the annular inner contact portion (area A ″), it can be handled in the same manner.
[0015]
In addition, when there is a restriction on the shape, lubrication environment, and surface roughness of the sliding portion and the area A cannot be sufficiently taken, a porous material having pores represented by a sintered material is used as the material of the slipper 6. It is also effective in terms of lubrication to supplement the supply of lubricating oil to the concave spherical surface portion 6b. Further, when the sliding portion of the slipper 6 slides under disadvantageous conditions for lubrication, a hard oxide film (Fe 3 O 4 ) is formed on the sintered material by steam treatment to prevent plastic flow on the surface. It is also possible to improve wear resistance and seizure resistance. It is also effective in improving seizure resistance to use martensitic stainless steel as the material of the slipper 6 and to form a nitride layer on the sliding surface of the slipper 6. As a matter of course, the wear resistance and seizure resistance of the slipper 6 are improved by making the mating material, that is, the material of the swash plate 2a and the plunger 7 excellent in slidability. As a material for the swash plate 2a, for example, it is also effective to use spheroidal graphite cast iron that exhibits the self-lubricating action of graphite existing on the surface of the flat surface 2aa. Further, as a material for the plunger 7, for example, an alloy tool steel is used, and a method of forming a nitride layer on the sliding surface is also effective.
[0016]
In this embodiment, when the fine hole is provided in the center of the slipper, the amount of wear at the sliding contact portion on the plunger side of the slipper is reduced to about 1/7.
[0017]
In addition, when the sliding contact surface side of the slipper with the swash plate was formed as a convex spherical surface of 2.5 microns, the wear amount of the sliding contact portion on the plunger side of the slipper was reduced to 1/90 to 1/160.
[0018]
According to this embodiment, it is possible to form an oil film on the slipper sliding portion without supplying high pressure to the slipper sliding portion from the compression chamber through the through hole of the plunger, thereby suppressing the leakage of the working fluid. And volumetric efficiency is improved.
[0019]
Furthermore, by providing a shaft seal between the plunger and the cylinder, it becomes possible to isolate the working fluid from the fluid for lubricating the sliding portion of the slipper.
[0020]
Even when the plunger is always pressed against the slipper by the return spring of the plunger, it is possible to form the oil film on the spherical surface of the slipper without expecting a squeeze effect.
[0021]
Even when the swash plate angle or the oblique axis angle is extremely small, it is possible to form an oil film on the slipper spherical surface side without expecting the effect of drawing the lubricating oil by the swinging motion of the spherical surface portion.
[0022]
【The invention's effect】
According to the present invention, the lubricating oil supplied between the swash plate and the slipper enables not only the lubrication between the swash plate and the slipper, but also the lubrication between the slipper and the plunger.
[0023]
In addition, since the dynamic pressure of the lubricating oil acts between the swash plate and the slipper and between the slipper and the plunger, the mutual metal contact is relaxed, and as a result, wear due to sliding between them is reduced. .
[Brief description of the drawings]
FIG. 1 is a structural diagram of a high-pressure gasoline pump for a gasoline direct injection engine having an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a sliding state of a slipper in one embodiment of the present invention.
FIG. 3 is an explanatory view of slipper plane side pressure distribution improving means in one embodiment of the present invention.
FIG. 4 is an explanatory diagram of slipper plane pressure distribution in one embodiment of the present invention.
FIG. 5 is an explanatory diagram of slipper spherical surface side pressure distribution in one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Coupling, 2 ... Shaft, 2a ... Swash plate part, 2aa ... Plane, 3 ... Casing, 3a ... Oil chamber, 3b ... Oil hole, 4 ... Radial bearing, 5 ... Thrust bearing, 6 ... Slipper, 6a ... Plane Part, 6b ... concave spherical part, 6c ... fine hole, 7 ... plunger, 7a ... convex spherical part, 7b ... suction passage, 8 ... cylinder, 8a ... bore hole, 8b ... low pressure fuel chamber, 8c ... compression chamber, 8d ... Low pressure fuel chamber, 8e ... communication hole, 9 ... suction valve, 10 ... return spring, 11 ... discharge valve, 12 ... shaft seal, 13 ... rear body, 13b ... high pressure gasoline chamber, 14 ... tightening bolt.

Claims (6)

回転斜板と往復動プランジャとの間に配設され、前記斜板と摺接するスリッパを有し、
前記プランジャは前記スリッパとの接触面側が凸球面形状に形成され、
前記スリッパの前記プランジャとの接触面側は凹球面に形成され、
両者が接触した状態で、前記凹凸球面で囲まれた微少空間が形成され、
当該空間と前記スリッパの前記斜板との摺接面とを繋ぐ細孔が前記スリッパに設けられたものにおいて
前記斜板の平面とスリッパの凸球面部とが摺動することでスリッパの凸球面部に発生する動圧の積分値F(但し、スリッパの凹球面部とプランジャの凸球面部の摺接部に隙間がなく、圧力漏れが生じないと仮定した場合の値)に対し、スリッパの平面側中央部に発生する動圧P max (但し、スリッパの凹球面部とプランジャの凸球面部の摺接部に隙間がなく、圧力漏れが生じないと仮定した場合の値)とスリッパ凹球面部におけるプランジャ凸球面部との摺接部より内側の面積A(但しスリッパの平面側への投影面積)の積をF≦
max ×A となるように前記面積Aを規定し、
前記スリッパの前記斜板との摺接面部に発生する動圧を、前記細孔を介して前記微小空間に導き、
当該動圧の作用で前記スリッパの裏面に設けた前記凹球面と前記プランジャの先端の前記凸球面との摺接面部とが離間して微小隙間が発生するように構成し、
もって、前記細孔を通り、前記微小空間および微小隙間を通って流れる潤滑油の
流れを形成するよう構成されたアキシャルプランジャポンプ。
A swash plate disposed between the reciprocating plunger, possess the swash plate in sliding contact slipper,
The plunger is formed in a convex spherical shape on the contact surface side with the slipper,
The contact surface side of the slipper with the plunger is formed as a concave spherical surface,
In a state where both are in contact, a minute space surrounded by the concave and convex spherical surfaces is formed,
In the slipper provided with pores connecting the space and the sliding contact surface of the slipper with the swash plate ,
Integral value F of dynamic pressure generated in the convex spherical surface portion of the slipper due to sliding of the flat surface of the swash plate and the convex spherical surface portion of the slipper (however, the sliding contact portion of the concave spherical surface portion of the slipper and the convex spherical surface portion of the plunger) Is a dynamic pressure P max generated at the center portion on the flat side of the slipper (however, the sliding contact between the concave spherical surface portion of the slipper and the convex spherical surface portion of the plunger). Of the slipper concave spherical surface portion and the sliding contact portion of the plunger convex spherical portion with the area A on the inner side (however, the projected area on the flat surface side of the slipper) of the slipper concave spherical surface portion The product is F ≦
P max × A The area A is defined so that
The dynamic pressure generated in the sliding contact surface portion with the swash plate of the slipper is guided to the minute space through the pores,
The concave spherical surface provided on the back surface of the slipper by the action of the dynamic pressure and the sliding contact surface portion of the convex spherical surface of the tip of the plunger are separated so that a minute gap is generated,
Therefore, the lubricating oil flowing through the pores and through the minute spaces and minute gaps
An axial plunger pump configured to create a flow .
前記スリッパの斜板との摺動面側を凸状に形成した請求項1に記載したアキシャルプランジャポンプ。 A key Shall plunger pump according to claim 1 formed with the sliding surface side of the slipper of the swash plate in a convex shape. スリッパの材質に空孔を有する焼結材、或いは前記焼結材に水蒸気処理による硬質酸化膜(Fe34)を形成した材料を用いた請求項1に記載のアキシャルプランジャポンプ。 The axial plunger pump according to claim 1, wherein the slipper is made of a sintered material having pores, or a material in which a hard oxide film (Fe 3 O 4 ) is formed on the sintered material by steam treatment. スリッパの材質にマルテンサイト系ステンレス鋼を用い、更にスリッパの摺動表面に窒化層を形成した請求項1に記載のアキシャルプランジャポンプ。 The axial plunger pump according to claim 1 , wherein martensitic stainless steel is used as a material of the slipper, and a nitride layer is further formed on the sliding surface of the slipper. 斜板の材質に球状黒鉛鋳鉄を用いた請求項1に記載のアキシャルプランジャポンプ。 The axial plunger pump according to claim 1 , wherein spheroidal graphite cast iron is used as a material of the swash plate. プランジャの材質に合金工具鋼を用い、更にプランジャの摺動表面に窒化層を形成した請求項1に記載のアキシャルプランジャポンプ。 The axial plunger pump according to claim 1 , wherein alloy material is used for the plunger material and a nitride layer is formed on the sliding surface of the plunger.
JP2000090693A 2000-03-27 2000-03-27 Axial plunger pump Expired - Lifetime JP3882457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090693A JP3882457B2 (en) 2000-03-27 2000-03-27 Axial plunger pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090693A JP3882457B2 (en) 2000-03-27 2000-03-27 Axial plunger pump

Publications (2)

Publication Number Publication Date
JP2001271763A JP2001271763A (en) 2001-10-05
JP3882457B2 true JP3882457B2 (en) 2007-02-14

Family

ID=18606267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090693A Expired - Lifetime JP3882457B2 (en) 2000-03-27 2000-03-27 Axial plunger pump

Country Status (1)

Country Link
JP (1) JP3882457B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020182205A1 (en) * 2019-03-13 2020-09-17 青岛科而泰控股有限公司 Duplex axial plunger motor
WO2020182200A1 (en) * 2019-03-13 2020-09-17 青岛科而泰控股有限公司 Sliding plate supported through-shaft plunger pump or motor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106040883A (en) * 2016-07-29 2016-10-26 中国航空工业集团公司西安飞行自动控制研究所 Complete graded mold device for closing plunger assembly
CN106694712A (en) * 2016-12-16 2017-05-24 内蒙古机集团瑞特精密工模具有限公司 Special die for closing double-end spherical hinge ball pin shell
CN106840629B (en) * 2017-01-23 2019-02-15 太重集团榆次液压工业有限公司 A kind of plunger piston slippery boots assembly durability test device
JP7397603B2 (en) * 2019-09-10 2023-12-13 株式会社タカコ Hydraulic rotating machine and piston shoe
CN116221050A (en) * 2023-03-07 2023-06-06 华侨大学 Sliding shoe with self-lubricating surface, preparation method thereof and sliding shoe pair

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020182205A1 (en) * 2019-03-13 2020-09-17 青岛科而泰控股有限公司 Duplex axial plunger motor
WO2020182200A1 (en) * 2019-03-13 2020-09-17 青岛科而泰控股有限公司 Sliding plate supported through-shaft plunger pump or motor

Also Published As

Publication number Publication date
JP2001271763A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
KR100538334B1 (en) Piston pump for internal combustion engine fuel
KR100493218B1 (en) Sliding member and sliding device
US7278348B2 (en) High-pressure pump for a fuel injection system of an internal combustion engine
JP3882457B2 (en) Axial plunger pump
US6615799B2 (en) Fuel injection pump
US7284537B2 (en) High-pressure pump for a fuel-injection device of an internal combustion engine
CN101421510B (en) A radial cylinder hydraulic
US6217289B1 (en) Axial piston pump with auxiliary pump
US3418942A (en) Contamination-resistant fuel pump with eccentrically located drive shaft
JP3945005B2 (en) pump
US20020044873A1 (en) High pressure fuel pump
JP2001003839A (en) High pressure fuel pump
JP3940259B2 (en) Fuel pump and in-cylinder injection engine using the same
US20020046646A1 (en) Compressors
US6575080B1 (en) Single-headed piston for swash plate type compressor wherein head portion has a curved surface at axial end
JP2619727B2 (en) Radial piston pump for low viscosity fuel oil
JPH11351096A (en) Fuel pump
JPH1150951A (en) Swash plate-type hydraulic pump
JP2001280220A (en) High pressure fuel pump
JP3666170B2 (en) Swash plate compressor
JPH085342Y2 (en) Radial piston pump for low viscosity fuel oil
JP2870132B2 (en) Fuel injection pump
JPH053748Y2 (en)
JPS5823506B2 (en) Radial plunger type variable capacity fluid machine
JP2587484Y2 (en) Swash plate compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R151 Written notification of patent or utility model registration

Ref document number: 3882457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

EXPY Cancellation because of completion of term