JP3882319B2 - 電源供給アダプタ、電子機器および信号伝送システム - Google Patents

電源供給アダプタ、電子機器および信号伝送システム Download PDF

Info

Publication number
JP3882319B2
JP3882319B2 JP05786798A JP5786798A JP3882319B2 JP 3882319 B2 JP3882319 B2 JP 3882319B2 JP 05786798 A JP05786798 A JP 05786798A JP 5786798 A JP5786798 A JP 5786798A JP 3882319 B2 JP3882319 B2 JP 3882319B2
Authority
JP
Japan
Prior art keywords
signal
power supply
circuit
adapter
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05786798A
Other languages
English (en)
Other versions
JPH11262191A (ja
Inventor
民次 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP05786798A priority Critical patent/JP3882319B2/ja
Priority to US09/260,042 priority patent/US6169341B1/en
Priority to TW088103328A priority patent/TW434965B/zh
Priority to KR1019990007461A priority patent/KR100605737B1/ko
Publication of JPH11262191A publication Critical patent/JPH11262191A/ja
Application granted granted Critical
Publication of JP3882319B2 publication Critical patent/JP3882319B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特に電源供給アダプタと電子機器とを+端子と−端子との2つの端子で接続して信号を伝送することが可能な電源供給アダプタ、電子機器および信号伝送システムに関する。
【0002】
【従来の技術】
電子機器の二次電池として、リチウムイオン電池が注目を集めている。リチウムイオン電池は、従来の二次電池と比べ、持続時間が長くでき、しかもメモリ効果が殆どないという利点がある。そのリチウムイオン電池を充電する場合には、電源供給アダプタ(以下、ACアダプタと称する)と電子機器のマイコン(マイクロコンピュータ)による信号のやり取りによって、当該電子機器に接続されたACアダプタが当該電子機器と正しい対応関係のACアダプタであるか否かが判別されている。それは、二次電池の定格、例えば4.2V/0.5Aを超えて電圧、電流が供給された場合、例えば6V/1Aで充電された場合、二次電池が破損するおそれがあるためである。
【0003】
【発明が解決しようとする課題】
そこで、そのような場合、図34Aに示すように、商用電源に接続可能なコンセントを備えたACアダプタ291と電子機器のセット292とが+端子、−端子そして信号端子の3端子で接続する必要があった。
【0004】
しかしながら、ACアダプタ291とセット292との間に電源供給に必要な+端子および−端子の2つの端子とは別に信号端子を1つ設けることによるコストアップや、充電器が発熱して破損するのを抑えるための保護回路を付加することによる大型化が問題となっている。また、その信号端子に発生するノイズによる誤動作も問題となっている。
【0005】
また、ACアダプタ291とセット292とを2端子で接続する場合、図34Bに示すように、フィルタを使用する方法がある。
【0006】
しかしながら、フィルタを使用した場合、フィルタが高価になり、大きくなる欠点が生じ、ノイズなどが発生し、特定の周波数を使用する必要があるなどの問題があった。
【0007】
従って、この発明の目的は、+端子と−端子との2つの端子を用いて、ACアダプタと電子機器とを接続するようにしても通信することができる電源供給アダプタ、電子機器および信号伝送システムを提供することにある。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、電子機器と2端子で接続されうる電源供給アダプタにおいて、小電力を出力する小電力モードと、大電力を出力する大電力モードとを切り替え可能な電源部と、電源部から出力される電流を検出する電流検出手段と、電子機器から発信される信号を受信する信号受信手段と、電流検出手段で検出された電流が基準以下の場合、電源部を小電力モードで動作させると共に、信号受信手段を動作させるようにした制御手段とからなることを特徴とする電源供給アダプタである。
【0009】
請求項4に記載の発明は、電子機器と2端子で接続されうる電源供給アダプタにおいて、小電力を出力する小電力モードと、大電力を出力する大電力モードとを切り替え可能な電源部と、電源部から出力される電流を検出する電流検出手段と、信号を電子機器へ発信する信号発信手段と、電流検出手段で検出された電流が基準以下の場合、電源部を小電力モードで動作させると共に、信号発信手段を動作させるようにした制御手段とからなることを特徴とする電源供給アダプタである。
【0010】
請求項7に記載の発明は、電源供給アダプタと2端子で接続されうる電子機器において、電源供給アダプタから発信される信号を受信する信号受信手段と、信号受信手段に受信された信号に基づいて制御する制御手段と、制御手段によって制御され、信号を電源供給アダプタへ発信する信号発信手段と、電源供給アダプタから供給される電源を切断するスイッチ手段とからなり、信号受信手段は、信号発信手段から発信された信号を受信し、受信した信号が信号発信手段から発信された信号か否かを判断するようにしたことを特徴とする電子機器である。
請求項8に記載の発明は、電源供給アダプタと2端子で接続されうる電子機器において、電源供給アダプタから発信される信号を受信する信号受信手段と、信号受信手段に受信された信号に基づいて制御する制御手段と、制御手段によって制御され、信号を電源供給アダプタへ発信する信号発信手段と、電源供給アダプタから供給される電源を切断するスイッチ手段とからなり、制御手段は、信号発信手段から発信された信号に基づいて、スイッチ手段のオン/オフ動作を制御するようにしたことを特徴とする電子機器である。
【0011】
請求項に記載の発明は、電源供給アダプタと2端子で接続されうる電子機器において、信号を電源供給アダプタへ発信する信号発信手段と、信号発信手段を制御する制御手段と、電源供給アダプタから供給される電源を切断するスイッチ手段とからなり、制御手段は、信号発信手段から発信された信号に基づいて、スイッチ手段のオン/オフ動作を制御するようにしたことを特徴とする電子機器である。
【0012】
請求項10に記載の発明は、交流電源と接続され、所定の直流電源電圧を発生する電源供給アダプタと、電源供給アダプタと電子機器とが2端子で接続される信号伝送システムにおいて、電源供給アダプタは、小電力を出力する小電力モードと、大電力を出力する大電力モードとを切り替え可能な電源部と、電源部から出力される電流を検出する電流検出手段と、電子機器から発信される信号を受信する第1の信号受信手段と、電流検出手段で検出された電流が基準以下の場合、電源部を小電力モードで動作させると共に、第1の信号受信手段を動作させるようにした第1の制御手段とを有し、電子機器は、信号を電源供給アダプタへ発信する第2の信号発信手段と、第2の信号発信手段を制御する第の制御手段と、電源供給アダプタから供給される電源を切断するスイッチ手段とを有することを特徴とする信号伝送システムである。
【0013】
請求項13に記載の発明は、交流電源と接続され、所定の直流電源電圧を発生する電源供給アダプタと、電源供給アダプタと電子機器とが2端子で接続される信号伝送システムにおいて、電源供給アダプタは、小電力を出力する小電力モードと、大電力を出力する大電力モードとを切り替え可能な電源部と、電源部から出力される電流を検出する電流検出手段と、信号を電子機器へ発信する第1の信号発信手段と、電流検出手段で検出された電流が基準以下の場合、電源部を小電力モードで動作させると共に、第1の信号発信手段を動作させるようにした第1の制御手段とを有し、電子機器には、電源供給アダプタから発信される信号を受信する第2の信号受信手段と、第2の信号受信手段に受信された信号に基づいて制御する第2の制御手段と、電源供給アダプタから供給される電源を切断するスイッチ手段とを有することを特徴とする信号伝送システムである。
【0014】
このように、ACアダプタとセットとを+端子と−端子の2つの端子で接続しても信号を発信および受信することができる。ACアダプタから現在のACアダプタの状態を意味する信号を伝送することによって、その信号を受信したセットは、ACアダプタの状態にあうように状態を制御する。また、セットから現在のセットの状態を意味する信号を伝送することによって、その信号を受信したACアダプタは、セットの状態にあうように電圧電流を出力する。
【0015】
【発明の実施の形態】
以下、この発明の実施形態について図面を参照して説明する。図1は、この発明が適用された実施形態の概略的構成を示す。商用電源が接続可能なコンセント1と結合されたACアダプタ2と、セット3とが接続される。この図1では、セット3の一例として、携帯用電話機が用いられている。セット3には、負荷回路4が含まれる。この負荷回路4には、二次電池が含まれる。
【0016】
説明を容易とするために、この発明の基本的な通信方法を図2を用いて説明する。この図2は、ACアダプタ2の出力段とセット3の入力段の一例の概略図である。ACアダプタ2の出力段は、負荷停止検出回路11、信号受信/発信回路12および制御回路13から構成され、負荷回路4の入力段は、電源状態検出回路14、信号受信/発信回路15および制御回路16から構成される。
【0017】
入力端子T1およびT2を介して商用電源から作られた直流の電圧電流が供給される。負荷停止検出回路11では、負荷、すなわちセット3が接続されているか、否かが検出される。信号受信/発信回路12では、負荷停止検出回路11を介してセット3からの信号を受信する、または負荷停止検出回路11を介してセット3へ信号が発信される。制御回路13では、受信した信号または発信した信号に応じてACアダプタ2が制御される。
【0018】
出力端子T3およびT4を介して負荷回路4へ電圧電流が供給される。電源状態検出回路14では、ACアダプタ2から電源の供給が停止されたか、または電圧電流が変化したかが検出される。信号受信/発信回路15では、ACアダプタ2から信号を受信する、またはACアダプタ2へ信号が発信される。制御回路16では、受信した信号または発信した信号に応じてセット3が制御される。
【0019】
このときの動作を説明する。まず、セット3は、負荷接続を一時切り離す。ACアダプタ2は、セット3の負荷が停止したことを検出する。この検出によって、ACアダプタ2では、信号を受信または発信できる状態(小電力モード)に切り替えられる。ACアダプタ2とセット3とは、信号を通信する。
【0020】
また、ACアダプタ2は、電源供給後、電源供給を一時停止する。セット3は、電源供給が停止したことを検出する。セット3では、負荷を停止し、信号を受信または発信できる状態(小電力モード)に切り替えられる。ACアダプタ2とセット3とは、信号を通信する。
【0021】
信号伝送する方向は、セット3、ACアダプタ2からセット負荷一時停止および電源供給一時停止させることによってわかる。この動作により信号を通信する。
【0022】
この発明が適用された信号伝送システムのいくつかの例について説明する。図3は、第1の例の概略的なブロック図を示す。ACアダプタ2は、スイッチ回路43がオン状態であるので、大電力回路44で動作する。このとき、電流検出回路41において、セット3のスイッチ回路46のオフ状態が検出された場合、スイッチ回路43をオフ状態とし、ACアダプタ2は、小電力回路42のみで動作する。ACアダプタ2がこの小電力回路42のみで動作するとき、セット3の信号発信回路47から信号が発信される。その信号を信号受信回路45で受信し、受信した信号に応じてACアダプタ2が制御される。
【0023】
ここで、大電力回路44は、図4に示すように、一例として5V/1Aの電圧電流を出力し、小電力回路42は、5V/10mAの電圧電流を出力する。そして、電流検出回路41において、検出される電流が20mA以下になると、スイッチ回路44がオフ状態である、または無負荷に近い状態であると判断し、スイッチ回路43をオフ状態とし、小電力回路42のみで動作するようにする。そして、信号発信回路47から信号が発信され、信号受信回路45で受信される。
【0024】
この発明が適用された信号伝送システムの第2の例の概略的なブロック図を図5に示す。ACアダプタ2は、スイッチ回路164がオン状態であり、大電力回路163で動作する。ここで、スイッチOFF信号発信回路166によって制御された、小電力回路162および大電力回路163からセット3のスイッチ回路167をオフ状態とするための信号が発信される。その信号を検出回路168で検出し、スイッチ回路167がオフ状態とされる。そして、ACアダプタ2では、スイッチ回路167がオフ状態となったことが電流検出回路161で検出され、電流検出回路161によって、スイッチ回路164がオフ状態とされる。すなわち、小電力回路162のみの動作となる。また、電流検出回路161でスイッチ回路167がオフ状態となったことが検出された場合、信号発信回路165によって制御された、小電力回路162からセット3に対して信号が発信される。
【0025】
この発明が適用された信号伝送システムの第3の例の概略的なブロック図を図6に示す。ACアダプタ2は、小電力回路202で動作し、スイッチOFF信号を発信する。そして、電流検出回路201では、セット3のスイッチ回路207のオフ状態が検出される。この状態からセット3の信号発信回路206は、スイッチ回路207のオン/オフ動作を繰り返すように制御することにより、信号を発信させる。その信号を信号受信回路205で受信すると、スイッチ回路204がオフ状態からオン状態へ切り替えられる。すなわち、ACアダプタ2は、セット3からの信号で小電力モードから大電力モードへ切り替えられる。
【0026】
この発明が適用された信号伝送システムの第4の例の概略的なブロック図を図7に示す。ACアダプタ2は、小電力回路211で動作し、ACアダプタ2から信号を発信する。このとき、信号発信確認検出回路212では、発信した信号が正確に発信しているか判断される。そして、信号がないと判断された場合、タイマ回路213の所定の時間Δtを経過した後、ストップ回路214によって制御され、小電力回路211の動作は停止される。このとき、セット3でも信号発信確認検出回路215によって、信号が発信されたか否かが検出される。
【0027】
この発明が適用された信号伝送システムの第5の例の概略的なブロック図を図8に示す。この第5の実施形態では、ACアダプタ2またはセット3の一方が信号を発信し、他方が信号を受信する状態になっている。このとき、先に信号を発信した方が信号を発信する優先権を有する。しかし、優先権を有しない方が信号を発信することにより優先権を有することができる。具体的には、小電力回路221で動作し、通信モード発信/受信回路222において図7中のaに示すように信号を発信する。また、ACアダプタ2に優先権がある場合、セット3からスイッチ回路224のオン/オフ動作によって図7中のbに示すように信号が発信された場合、優先権がセット3に移る。そして、通信モード発信/受信回路223からACアダプタ2へ信号が発信される。
【0028】
上述した図2に示す、この発明の基本的な通信方法に対応した第1の実施形態を図10に示す。ACアダプタ2では、電源モードA回路21および電源モードB回路22によって、セット3に供給する電圧電流が制御される。スイッチOFF検出回路23では、セット3のスイッチ回路28がオフされたか否かが検出される。その検出結果は、信号受信回路24および切り替え回路26へ供給される。信号受信回路24では、スイッチOFF検出回路23からの検出結果と、セット3から伝送される信号とが受信される。信号発信回路25では、信号部27から供給された信号に応じて信号をセット3および切り替え回路26へ供給する。切り替え回路26では、スイッチOFF検出回路23からの検出結果と、信号発信回路25からの信号とに応じて、電源モードA回路21および電源モードB回路22を切り替える制御が行われる。
【0029】
セット3では、ACアダプタ2から伝送された信号が、モード検出回路32へ供給される。モード検出回路32では、伝送された信号から通信モードか電源供給モードのいずれかが検出されると共に、その信号が受信回路33へ供給される。受信回路33では、供給された信号が端子34を介して制御部へ供給される。
【0030】
モード検出回路32で検出されたモードに応じて、このセット3は、動作する。まず、電源供給モードの場合、スイッチ回路28がオン状態となり、出力端子T3およびT4を介して、電源がセット側に供給される。通信モードの場合、ストップ回路29から出力される指示は、スイッチ回路28および信号発信回路30へ供給される。この指示に応じてスイッチ回路28をオフ状態とする。また、信号発信回路30では、ストップ回路29からの指示と、信号部31からの信号とに応じて信号が発信される。
【0031】
通信モードにおいて、セット3からACアダプタ2へ通信を行う場合、ACアダプタ2は、セット3のスイッチ回路28のオフ状態を検出する。スイッチ回路28のオフ状態を検出した場合、ACアダプタ2は、通信できる電源モードに切り替えた後、信号を発信する。
【0032】
ACアダプタ2から通信を行う場合、セット3およびACアダプタ2の一時停止または電圧変化を検出する。スイッチ回路28をオフ状態とし、ACアダプタ2およびセット3をそれぞれ通信モードに切り替える。
【0033】
上述した図3の第1の例の概略的な構成からなる第2の実施形態を図11に示す。ACアダプタ2では、スイッチ回路54がオン状態となり、大電力回路53が動作する。このとき、電流検出回路51において、セット3のスイッチ回路64のオフ状態が検出された場合、スイッチ回路54をオフ状態とし、ACアダプタ2は、小電力回路52のみで動作する。また、電流検出回路51の検出結果は、受信回路55にも供給される。受信回路55では、供給された信号によって、スイッチ回路64がオフ状態であると判断すると、受信状態となり、セット3からの信号を受信すると制御回路56へ信号を供給する。
【0034】
セット3では、制御回路62によって、ストップ回路63を制御することにより、スイッチ回路64がオフ状態とされる。スイッチ回路64をオフ状態とした後に、制御回路62は、信号発信回路65を制御することにより、スイッチ回路66のオン/オフ動作を制御する。このスイッチ回路66のオン/オフ動作を制御することにより、定電圧定電流を流すための負荷回路67をオン/オフすることとなり、信号が生成される。スイッチ回路66のオン/オフ動作により生成される信号を受信回路61において受信し、受信した信号は、制御回路62へ供給される。制御回路62では、供給された信号に応じて信号発信回路65を介して、スイッチ回路66のオン/オフ動作が制御される。また、制御回路62は、信号の有無の確認により全動作をストップさせるための信号を発信する。
【0035】
上述した図3の第1の例の概略的な構成からなる第3の実施形態を図12に示す。ACアダプタ2は、小電力回路72および/または大電力回路73で動作する。入力端子T1と接続された電流検出回路71で検出された電流の検出結果は、ストップ回路74へ供給される。このACアダプタ2では、小電力回路72および大電力回路73が制御され、電圧電流が出力される。
【0036】
受信回路75では、セット3から伝送される信号が受信される。受信された信号は、ストップ回路74および信号分析回路76へ供給される。ストップ回路74では、電流検出回路71からの検出結果と、受信回路75からの信号とに基づいて大電力回路73の動作を停止させる。信号分析回路76では、供給された信号の分析が行われ、分析結果は、スイッチ制御回路79およびメモリ信号77へ供給される。
【0037】
スイッチ制御回路79では、供給された分析結果に基づいてスイッチ回路80が切り替えられる。スイッチ回路80には、ACアダプタAモード81、ACアダプタBモード82および充電モード83から制御信号が供給される。その中から適宜選択された制御信号は、小電力回路72および大電力回路73へ供給される。小電力回路72および大電力回路73は、供給された制御信号に応じて動作される。
【0038】
充電モード83と結合される充電メモリ84では、充電モードの状態が記憶される。充電モードが記憶されると、メモリ信号77へ信号が供給される。メモリ信号77では、信号分析回路76からの分析結果と、充電メモリ84からの信号とに基づいて信号が生成される。生成された信号は、信号発信回路78へ供給される。信号発信回路78では、供給された信号に基づいて信号が発信される。
【0039】
信号受信回路91では、ACアダプタ2から伝送される信号が受信される。受信された信号は、信号分析回路92において分析される。その分析結果は、表示部93、ON/OFF回路94および選定回路97へ供給される。表示部93では、例えば液晶ディスプレイによって分析結果が表示され、ユーザに現在のモードが知らされる。また、表示部の一例として、液晶ディスプレイとしたが、音声によって知らせるようにしても良い。
【0040】
選定回路97では、供給された分析結果に基づいてスイッチ回路98を切り替えるための信号がスイッチ回路98へ供給される。スイッチ回路98では、選定回路97によって適宜選択された信号がスイッチOFF回路104および信号発信回路106へ供給される。温度検出回路99では、例えば二次電池(図示しない)の温度が検出され、検出結果がスイッチ回路98を介して信号発信回路106へ供給される。
【0041】
充電モード100では、セット3が充電モードに設定されていることがスイッチ回路98を介して信号発信回路106へ供給される。ACアダプタモード101では、セット3がACアダプタモードに設定されていることがスイッチ回路98を介して信号発信回路106へ供給される。
【0042】
電圧検出電流検出回路102では、電圧および電流が検出される。検出された電圧および電流が電圧電流回路103へ供給される。電圧電流回路103では、現在の電圧をΔVだけ高くなるようにスイッチ回路98を介して信号が信号発信回路106へ供給される。同様に、現在の電流をΔIだけ高くなるようにスイッチ回路98を介して信号が電圧電流回路103から信号発信回路106へ供給される。信号発信回路106では、スイッチ回路98を介して供給された信号に応じた信号が発信される。
【0043】
電圧検出回路105では、供給される電圧が検出される。その検出結果は、スイッチOFF回路104へ供給される。スイッチOFF回路104では、スイッチ回路98からの信号と、電圧検出回路105からの検出結果とからスイッチ回路96をオフ状態とするための信号が制御回路95へ供給される。制御回路95では、ON/OFF回路94からの信号と、スイッチOFF回路からの信号とに基づいてスイッチ回路96を制御するための制御信号がスイッチ回路96へ供給される。スイッチ回路96では、制御回路95からの制御信号に応じてスイッチ回路96のオン/オフ動作が制御される。
【0044】
上述した図3の第1の例の概略的な構成からなる第4の実施形態を図13に示す。この図13は、ACアダプタ2およびセット3の制御部分にマイコン(マイクロコンピュータ)を用いたものである。
【0045】
ACアダプタ2は、小電力回路112および/または大電力回路113で動作する。入力端子T1と接続された電流検出回路111で検出された電流の検出結果は、ストップ回路114およびマイコン116へ供給される。受信回路115では、セット3からの信号が受信される。受信した信号は、マイコン116へ供給される。マイコン116では、供給された検出結果と、信号とからACアダプタ2を制御するために、制御信号をストップ回路114、各モード動作回路117および信号発信回路119へ供給される。ストップ回路114は、電流の検出結果と、マイコン116からの制御信号に基づいて、大電力回路113の動作を停止するように制御する。
【0046】
各モード動作回路117では、マイコン116からの制御信号に応じたモードでこのACアダプタ2を動作させるために、制御回路118へ信号を供給する。制御回路118は、その信号に応じて小電力回路112および大電力回路113を制御する。信号発信回路119では、マイコン116からの制御信号に応じて信号が伝送される。
【0047】
セット3は、信号受信回路121において、ACアダプタ2から伝送された信号が受信される。信号受信回路121では、受信した信号を信号分析回路92へ供給する。信号分析回路122では、供給された信号が分析され、その分析結果は、マイコン123へ供給される。電圧検出回路124では、検出された電圧の検出結果がマイコン123へ供給される。電圧検出・電流検出回路125では、現在の電圧および電流が検出される。検出された電圧および電流は、マイコン123へ供給される。
【0048】
温度検出回路126では、例えば二次電池(図示しない)の温度が検出される。検出された温度は、マイコン123へ供給される。ACアダプタモード127では、セット3が現在ACアダプタ2から電圧電流が供給されるACアダプタモードとなっている場合、マイコン123へその旨を意味する信号を供給する。充電モード128では、セット3が現在二次電池を充電する充電モードとなっている場合、マイコン123へその旨を意味する信号を供給する。
【0049】
マイコン123では、供給された信号に基づいて制御信号が信号発信回路129および制御回路130へ供給される。信号発信回路129では、マイコン123からの制御信号に応じて信号が発信する。制御回路130では、マイコン123からの制御信号に応じてスイッチ回路131のオン/オフ動作を制御する信号が出力する。
【0050】
上述した図11、図12および図13の構成の動作を説明するためのフローチャートを図14および図15に示す。まず、ACアダプタ2の動作を図14のフローチャートを用いて説明する。ステップS1では、電流が検出される。ステップS2では、検出された電流がスイッチ回路がオフ状態の時の電流か否かが判断され、スイッチ回路がオフ状態であると判断された場合、ステップS3へ制御が移り、スイッチ回路がオン状態であると判断された場合、ステップS1へ制御が戻る。
【0051】
ステップS3では、スイッチ回路がオフ状態であると判断されたので、ACアダプタ2を小電力モードで動作させる。ステップS4では、ACアダプタ2を信号受信モードとする。ステップS5では、信号を受信したか否かが判断され、信号を受信したと判断した場合、ステップS6へ制御が移り、信号を受信していないと判断した場合、ステップS4へ制御が戻る。ステップS6では、受信した信号の分析が行われる。
【0052】
ステップS7では、分析された結果に応じてモードの選定が行われ、充電用の電圧電流を出力する場合、ステップS8へ制御が移り、ACアダプタAに設定される電圧電流を出力する場合、ステップS9へ制御が移り、ACアダプタBに設定される電圧電流を出力する場合、ステップS10へ制御が移り、電圧電流を制御して出力する場合、ステップS11へ制御が移る。ステップS8では、ACアダプタ2がセット3の二次電池を充電するための電圧電流を出力する充電モードに設定される。
【0053】
ステップS9では、ACアダプタ2がセット3に対してACアダプタとして電圧電流を出力するACアダプタAモードに設定される。ステップS10では、ACアダプタ2がセット3に対してACアダプタとして電圧電流を出力するACアダプタBモードに設定される。このとき、ACアダプタAモードとACアダプタBモードとは、共にセット3に電圧電流をACアダプタとして供給するモードであるが、例えば電圧の値および/または電流の値が異なるモードである。
【0054】
ステップS11では、ACアダプタ2がセット3に対して制御した電圧電流の値を出力する制御モードに設定される。この一例では、この制御モードは、電圧電流を高くする。具体的には、このモードが設定されると、電圧はΔVだけ高くされ、ACアダプタ2からセット3へ出力され、同様に電流はΔIだけ高くされ、ACアダプタ2からセット3へ出力される。ステップS12では、設定されたモードに応じて大電力回路および/または小電力回路が制御される。そして、制御はステップS1へ戻る。
【0055】
次に、セット3の動作を図15のフローチャートを用いて説明する。ステップS21では、セット3の制御回路が動作する。ステップS22では、スイッチ回路をオン状態からオフ状態へ切り替えられる。ステップS23では、信号発信回路を動作させる。ステップS24では、スイッチ回路のオン/オフ動作が切り替えられ、信号が発信される。ステップS25では、発信した信号が受信回路で受信される。ステップ26では、受信された信号の有無が判断され、信号があると判断された場合、ステップS25へ制御が戻り、信号がないと判断された場合、ステップS27へ制御が移る。ステップS27では、セット3の全回路の動作を停止させる。この実施形態では、制御回路を動作させた後、スイッチ回路をオフ状態とし、信号発信回路を動作しているが、最初から信号発信回路を動作するようにしても良い。すなわち、フローチャートをステップS23から始まるようにしても良い。
【0056】
ここで、セット3から信号を発信する信号発信回路の詳細な回路図を図16に示す。ACアダプタ2では、小電力/大電力回路141が制御回路142によって制御され、まず小電力で動作される。セット3の信号発信部を説明する。NPN型のトランジスタ144のコレクタは、ツェナーダイオード147のカソードと接続され、そのエミッタは、抵抗144を介して接地され、そのベースは、NPN型のトランジスタ145のコレクタと接続される。トランジスタ145のベースは、トランジスタ144のエミッタと接続され、そのエミッタは、接地される。ツェナーダイオード147のアノードと、PNP型のトランジスタ149のエミッタとの間に抵抗148が挿入される。トランジスタ149のエミッタ、ベース間に抵抗150が挿入される。トランジスタ149のコレクタは、トランジスタ145のコレクタと接続され、そのベースは、抵抗151を介してNPN型のトランジスタ152のコレクタと接続される。トランジスタ152のエミッタは、接地される。
【0057】
そして、ツェナーダイオード147のカソードと接地との間に定電圧回路153および回路154が直列に挿入される。定電圧回路153は、5〜7mAの電流が流れる3Vのレギュレータとする。回路154は、例えば二次電池および携帯用電話機などの回路である。
【0058】
図17Aに示す信号が、トランジスタ152のベースに供給される。トランジスタ152のベースに供給される信号がオン状態となると、トランジスタ149、そしてトランジスタ144がオン状態となる。トランジスタ152のベースに供給される信号がオフ状態となると、トランジスタ149、そしてトランジスタ144がオフ状態となる。このように、トランジスタ152のベースにオン/オフの信号を供給し、トランジスタ152をオン/オフすることで、トランジスタ144をオン/オフすることができる。
【0059】
このとき、例えばツェナーダイオード147が3Vでオン状態となる場合、図17Bに示すように、トランジスタ152がオン状態のときに、3Vとなり、オフ状態のときに5Vとなる。そして、トランジスタ144を出力電圧分オン状態とさせる。図17Cに示すように、トランジスタ152がオン状態となり、トランジスタ149がオン状態となる。このとき、トランジスタ144および145には、ツェナーダイオード147までの電流I1 (小電力モード)より定電流が大きいので、ツェナーダイオード147の電圧V1 まで流れる。よって、トランジスタ152のオン/オフ動作をすることで、図17Bに示す信号をつくることができる。
【0060】
一例として、図17Bの信号をセット3から発信し、ACアダプタ2の受信回路143で受信する。受信した信号は、制御回路142へ供給される。制御回路142は、小電力/大電力回路141を制御し、大電力で動作するように切り替える。
【0061】
上述した図5の第2の例の概略的な構成からなる第5の実施形態を図18に示す。ACアダプタ2は、スイッチ回路174をオン状態とし、小電力回路172および大電力回路173で動作する。セット側のスイッチ回路184をオフ状態とするためのスイッチOFF信号がスイッチOFF信号回路180からスイッチOFF確認回路175、信号発信確認回路177および小電力回路172へ供給される。このとき、小電力回路172からスイッチ回路184をオフ状態とするためのスイッチOFF信号が発信される。信号発信確認回路177では、スイッチOFF信号回路180から信号が供給された後に、小電力回路172からスイッチ回路184をオフ状態にする信号が発信されたことが確認される。その信号を受けてセット3のスイッチOFF信号回路183がオフ状態となると、そのオフ状態が電流検出回路171によって、検出される。
【0062】
スイッチOFF確認回路175では、スイッチOFF信号回路180からの信号が供給された後、電流検出回路171において、オフ状態が検出されると、スイッチ回路174、信号発信回路176およびタイマ回路178へ信号が供給される。その信号が供給されたスイッチ回路174は、オフ状態となる。すなわち、ACアダプタ2は、小電力回路172のみで動作する。タイマ回路178では、所定の時間の後、ストップ回路179へ信号が供給される。タイマ回路178からの信号が供給されたストップ回路179は、小電力回路172および大電力回路173の動作を停止するための信号をそれぞれに供給する。信号発信回路176では、信号を発信するために、信号発信確認回路177へ信号を供給する。信号発信確認回路177では、信号発信回路176からの信号と、スイッチOFF信号回路180からの信号とに基づいて、信号を発信すると共に、その信号を発信したことが確認される。
【0063】
セット3では、電流検出回路181において電流が検出され、検出された電流はスイッチOFF確認回路182へ供給される。また、電圧検出回路185において電圧が検出され、検出された電圧はスイッチOFF確認回路182へ供給される。スイッチOFF信号回路183では、ACアダプタ2からスイッチ回路184をオフ状態とするための信号が受信され、その信号をスイッチOFF確認回路182へ供給すると共に、スイッチ回路184をオフ状態とする。スイッチ回路184では、電流検出回路181からの電流と、電圧検出回路185からの電圧と、スイッチOFF信号回路183からの信号とから、スイッチ回路184がオフ状態であることが確認される。
【0064】
スイッチ回路184がオフ状態であることが確認されると、スイッチOFF確認回路182から信号受信回路186へ信号が供給される。これは、スイッチ回路184がオフ状態となったことを電流検出回路171が検出した場合、ACアダプタ2は、小電力動作とした後、信号が発信される。その信号をスイッチOFF確認回路182からの信号の後に受信すると、信号受信回路186から制御回路187および処理回路188へ信号が供給される。制御回路187では、供給された信号に応じた制御が行われる。例えば、セット3からさらに信号を発信するための信号発信回路189などに信号が供給される。処理回路188では、セット側の電源部の温度または二次電池充電容量などの表示および電圧電流の制御の切り替えが行われる。
【0065】
上述した図18の構成の動作を説明するためのフローチャートを図19、図20および図21に示す。ステップS31では、ACアダプタ2が動作する。ステップS32では、スイッチ回路184をオフ状態とするためのスイッチOFF信号がACアダプタ2からセット3へ発信される。ステップS33では、スイッチ回路184のオフ状態を検出するために電流検出回路171において電流が検出される。ステップS34では、検出された電流が規準以下か否かが判断され、規準以下と判断された場合、スイッチ回路184がオフ状態と判断するのでステップS35へ制御が移り、規準より大きいと判断された場合、スイッチ回路184がオン状態と判断するのでステップS39へ制御が移る。
【0066】
ステップS35では、スイッチ回路174がオフ状態とされる。すなわち、ACアダプタ2は、大電力回路173がオフ状態となり、小電力回路172がオン状態となる。ステップS36では、ACアダプタ2からセット3へ信号が発信される。ステップS37では、発信された信号が確認される。ステップS38では、ACアダプタ2から発信される信号の有無が判断され、信号があると判断された場合、ステップS31へ制御が戻り、信号がないと判断された場合、ステップS39へ制御が移る。
【0067】
ステップS39では、タイマによって、時間Δtの間遅延され、ステップS40へ制御が移る。ステップS40では、大電力回路173がオフ状態とされ、ステップS31へ制御が戻る。
【0068】
この図19のフローチャートでは、ステップS34において、スイッチ回路184がオン状態と判断した場合、ステップS39へ制御が移るが、ステップS32へ制御が移るようにしても良い。これは、接続が不完全な場合、遅れが出るときのために、所定の回数だけチェックするようにしても良い。
【0069】
また、このフローチャートでは、ステップS34において、スイッチ回路184がオフ状態と判断した場合、ステップS35へ制御が移るが、ステップS36へ制御が移るようにしても良い。
【0070】
さらに、このフローチャートでは、ステップS38において、信号がないと判断した場合、ステップS39へ制御が移るが、ステップS36へ制御が移るようにしても良い。
【0071】
セット3のスイッチ回路をオフ状態とするために、ACアダプタ2から信号を発信する一実施形態のフローチャートを図20および図21に示す。ステップS41では、スイッチ回路をオフ状態とするため、ACアダプタ2からスイッチOFF信号を発信する。ステップS42では、小電力回路のみで動作し、小電力モードにする信号を伝送する。ステップS43では、発信された信号がセット3で受信される。ステップS44では、スイッチ回路がオフ状態とされる。
【0072】
この一実施形態では、ステップS41の制御の後、ステップS42へ制御が移るようにしているが、点線で示すステップS53へ制御が移るようにしても良い。この場合、ステップS53では、スイッチ回路がオフ状態とされる。ステップS54では、ACアダプタ2が小電力回路のみで動作する小電力モードにされる。
【0073】
ステップS45では、スイッチ回路のオフ状態を検出するために、電流検出回路によって電流が検出される。ステップS46では、検出された電流が基準以下か否かが判断され、電流が基準より大きいと判断された場合、ステップS47へ制御が移り、基準以下と判断された場合、ステップS49へ制御が移る。すなわち、電流検出回路によって検出された電流を判断することで、スイッチ回路のオン/オフ状態が判断される。
【0074】
ステップS47では、ステップS46の制御が所定回数n以下か否かが判断され、所定回数n以下の場合、ステップS41へ制御が戻り、所定回数nより大きい場合、ステップS48へ制御が移る。すなわち、スイッチ回路の接続が不完全な場合を考え、所定回数nの回数だけ繰り返す。ステップS48では、ACアダプタ2から出力される電源が停止される。
【0075】
ステップS49では、スイッチ回路がオフ状態となった旨を知らせる信号が発信される。ステップS50では、発信した信号を受信し、信号が発信されたことが確認される。ステップS51では、確認された信号が発信した信号か否かが判断され、発信した信号であると判断された場合、ステップS61へ制御が移り、発信した信号でないと判断された場合、ステップS52へ制御が移る。
【0076】
ステップS52では、ステップS51の制御が所定回数m以下か否かが判断され、所定回数m以下の場合、ステップS49へ制御が戻り、所定回数mより大きい場合、ステップS48へ制御が移る。すなわち、信号の発信の遅れなどを考え、所定回数mの回数だけ繰り返す。
【0077】
ステップS61では、伝送された信号がセット側で受信される。ステップS62では、充電量が表示され、ステップS63では、ACアダプタ2のパワーが表示され、ステップS64では、電圧電流が表示される。
【0078】
この一実施形態では、ステップS61の制御の後、ステップS62へ制御が移るが、ステップS70に制御が移るようにしても良いし、ステップS62、S63、S64と平行にステップS70の制御を行うようにしても良い。この場合、ステップS70では、使用している間の時間がタイマ表示される。
【0079】
ステップS65では、セット3のスイッチ回路がオン状態とされる。ステップS66では、スイッチ回路のオン状態を検出するために、電流検出回路によって電流が検出される。ステップS67では、検出された電流が基準以上か否かが判断され、電流が基準以上と判断された場合、ステップS68へ制御が移り、基準より小さいと判断された場合、ステップS69へ制御が移る。すなわち、電流検出回路によって検出された電流を判断することで、スイッチ回路のオン/オフ状態が判断される。
【0080】
ステップS68では、ACアダプタ2が大電力回路で動作する大電力モードとされ、ステップS41へ制御が戻る。ステップS69では、ステップS67の制御が所定回数k以下か否かが判断され、所定回数k以下の場合、ステップS49へ制御が戻り、所定回数kより大きい場合、ステップS48へ制御が移る。すなわち、スイッチ回路の接続が不完全な場合を考え、所定回数kの回数だけ繰り返す。そして、ステップS48へ制御が移る。
【0081】
ここで、図22、図23および図24を用いて、ACアダプタ2から発信するスイッチOFF信号を説明する。ACアダプタ2では、スイッチ回路194をオフ状態とするために、スイッチOFF信号回路192からスイッチOFF信号を定電流定電圧回路191へ供給する。この定電流定電圧回路191の電圧電流特性の一例を図19に示す。一例として、この図19中に示す、特性aは5V/1Aとし、特性bは3V/1Aとし、特性cは3V/1.5Aとする。そして、定電流定電圧回路191では、例えば図20Aに示すような所定の信号がスイッチOFF信号として出力される。このスイッチOFF信号が検出回路193で検出された場合、スイッチ回路194は、オフ状態とされる。そして、スイッチ回路194がオフ状態になると、定電流定電圧回路191から図20Bに示すような所定の信号が出力される。
【0082】
上述した第3の例の概略的な構成からなる図6の動作を図25および図26のフローチャートを用いて説明する。まず、図25に示すACアダプタ2の動作のフローチャートは、例えば最初のAC入力時に動作するものである。ステップS71では、セット3のスイッチ回路をオフ状態にする信号が発信される。ステップS72では、電流検出回路において、電流が検出される。ステップS73では、検出された電流が基準以下か否かが判断され、電流が基準以下と判断された場合、スイッチ回路がオフ状態と判断されるのでステップS74へ制御が移り、基準より大きいと判断された場合、スイッチ回路がオフ状態ではないと判断されるのでステップS72へ制御が戻る。ステップS74では、ACアダプタ2から信号が発信される。この信号の発信によって、ACアダプタ2に優先権があることをセット3に知らせる。ステップS75では、信号の発信が停止される。ステップS76では、ACアダプタ2がセット3から伝送される信号を受信できるようになされる。
【0083】
そして、図26に示すセット3の動作のフローチャートは、例えば二次電池の温度が上がったとき、または直流電源が差し込まれたときに動作するものである。ステップS81では、スイッチ回路がオフ状態とされる。ステップS82では、ACアダプタ2が小電力で動作する小電力モードに切り替わったことがわかる。ステップS83では、セット3から信号が発信される。この信号の発信によって、セット3に優先権があることをACアダプタ2に知らせる。ステップS84では、信号の発信が停止される。ステップS85では、セット3がACアダプタ2から伝送される信号を受信できるようになされる。
【0084】
ACアダプタ2の入力端子T1およびT2の前段に、スイッチングレギュレータを用いた第6の実施形態を図27に示す。入力端子231および232から商用電源が供給され、ダイオードブリッジ233を介してトランス239の一次側の一端と接続される。ダイオードブリッジ233の出力の一方は、接地との間にコンデンサ234が挿入され、トランス239と接続され、ダイオードブリッジ233の他方は、接地される。ダイオード238のカソードは、トランス239の一次側の他端と接続され、そのアドノードは、接地される。また、ダイオード238は、FET237のソース、ドレイン間に挿入される。FET237のゲートには、PWM(パルス幅変調)回路26が接続され、このPWM回路26によって、FET237がオン/オフされ、スイッチングが制御される。PWM回路236には、OSC(オシレータ)回路235およびフォトカプラ253から信号が供給される。
【0085】
ダイオード240のアノードは、トランジスタ239の二次側のa端子と接続され、そのカソードは、小電力回路244と接続される。ダイオード242のアノードは、トランジスタ239の二次側のb端子と接続され、大電力が出力され、そのカソードは、出力端子254と接続される。また、出力端子255は接地される。トランス239の二次側のc端子には、ダイオード240のカソードとの間にコンデンサ241が挿入され、ダイオード242との間にコンデンサ243が挿入され、接地との間に電流検出回路250が挿入される。電流検出回路250で検出された電流は、積算回路249へ供給される。
【0086】
小電力回路244は、定電圧定電流回路によって構成され、小電力が出力される。電流検出回路245では、小電力回路244から出力される電流が検出される。検出された電流は、小電力回路244、積算回路248およびスイッチ制御回路251へ供給される。電圧検出回路246では、出力端子254から出力される電圧が検出される。検出された電圧は、優先権検出回路247、積算回路248および249へ供給される。優先検出回路247では、供給された電圧にセット3から伝送された信号が含まれているかが検出される。その検出結果は、小電力回路244へ供給される。
【0087】
積算回路248では、電流検出回路245からの電流と、電圧検出回路246からの電圧とが積算される。その積算結果は、スイッチ回路252へ供給される。積算回路249では、電流検出回路250からの電流と、電圧検出回路246からの電圧とが積算される。その積算結果は、スイッチ回路252へ供給される。スイッチ回路252は、スイッチ制御回路251によって制御され、積算回路248からの積算結果および積算回路249からの積算結果の何れか一方が選択される。選択された積算結果は、フォトカプラ253へ供給される。フォトカプラ253は、供給された積算結果に応じてPWM回路236の動作を制御する。
【0088】
図27に示すスイッチングレギュレータを用いたACアダプタ2の動作を図28のフローチャートを用いて説明する。ステップS91では、ACアダプタ2が大電力と小電力で動作する。ステップS92では、積算回路249がスイッチ回路252で選択され、選択された積算回路249からの積算結果によってフォトカプラ253が駆動される。ステップS93では、電流検出回路250で電流が検出される。
【0089】
ステップS94では、検出された電流が基準以下か否かが判断され、電流が基準以下と判断された場合、負荷が接続されていないと判断するのでステップS95へ制御が移り、電流が基準より大きいと判断された場合、負荷が接続されていると判断するのでステップS93へ制御が戻る。ステップS95では、スイッチ回路252が制御される。
【0090】
ステップS96では、積算回路248がスイッチ回路252で選択され、選択された積算回路248からの積算結果によってフォトカプラ253が駆動される。ステップS97では、ACアダプタ2が小電力で動作するように、PWM回路236がフォトカプラ253によって制御される。ステップS98では、信号が受信される。ステップS99では、信号の有無が判断され、信号があると判断された場合、ステップS91へ制御が戻り、信号がないと判断された場合、ステップS98へ制御が戻る。
【0091】
小電力の出力にスイッチ回路と抵抗を並列に挿入することによって、高インピーダンス電源を生成する第7の実施形態を図29に示す。入力端子T1は、小電力回路261および大電力回路262と接続される。小電力回路261では、小電力の電源が出力される。電流検出回路263では、小電力回路261からの電流が検出れる。検出された電流は、スイッチ回路265およびストップ回路266へ供給される。スイッチ回路265は、供給された電流が基準以下の場合、オフ状態とされ、電流が基準より大きい場合、オン状態とされる。スイッチ回路265と並列に抵抗264が設けられる。ストップ回路266では、供給された電流が基準以下の場合、大電力回路262を停止させるように制御信号が出力され、電流が基準より大きい場合、大電力回路262を動作させるように制御信号が出力される。
【0092】
セット3では、スイッチ回路270の一方と出力端子T3が接続され、スイッチ回路270の他方と接地との間に、抵抗267およびコンデンサ268が直列に挿入される。抵抗267とコンデンサ268との接続点と上述したような、例えば信号発生回路および信号受信回路からなる回路269が接続される。
【0093】
この一実施形態では、抵抗264とスイッチ回路265とが、小電力回路261の出力側に設けられているが、大電力回路262の出力側に設けるようにしても良い。この場合、スイッチ回路が大型となる。
【0094】
図29に示すACアダプタの動作を図30に示すフローチャートを用いて説明する。ステップS101では、ACアダプタが大電力および小電力で動作する。ステップS102では、電流検出回路263によって電流が検出される。ステップS103では、検出された電流が基準以下か否かが検出され、電流が基準以下と判断された場合、スイッチ回路270がオフ状態または無負荷に近い状態であると判断するのでステップS104へ制御が移り、電流が基準より大きいと判断された場合、スイッチ回路270がオン状態であると判断するのでステップS102へ制御が戻る。
【0095】
ステップS104では、スイッチ回路265がオン状態からオフ状態とされる。ステップS105では、大電力回路262の動作が停止するように、ストップ回路266によって制御される。ステップS106では、信号受信または信号発信の制御が行われる。ステップS107では、大電力回路262が動作するように、ストップ回路266によって制御される。ステップS108では、スイッチ回路165がオフ状態からオン状態とされる。そして、ステップS101へ制御が戻る。
【0096】
信号を受信/発信するときに高インピーダンスの電源を用いるようにした第8の実施形態を図31に示す。小電力回路271および大電力回路272が動作する。小電力回路271からの電流を検出する電流検出回路273は、検出された電流をストップ回路274へ供給する。ストップ回路274では、検出された電流に基づいて小電力回路271および大電力回路272の動作を停止する制御がなされる。定電圧回路275では、常に安定した電圧電流が抵抗276を介して出力される。信号受信/発信制御回路277は、ACアダプタ2からセット3へ信号を発信し、またセット3からの信号を受信する。
【0097】
スイッチ回路281の一方は、出力端子T3と接続され、その他方と、接地との間に抵抗278およびコンデンサ279が直列に挿入される。抵抗278とコンデンサ279との接続点は、信号受信/発信制御回路280と接続される。信号受信/発信制御回路280は、セット3からACアダプタ2へ信号を発信すると共に、ACアダプタ2からの信号を受信する。ACアダプタ2からの信号を受信すると、信号受信/発信制御回路280は、その信号に基づいてスイッチ回路281のオン/オフ動作を制御する。
【0098】
図31に示すACアダプタの動作を図32に示すフローチャートを用いて説明する。ステップS111では、小電力回路271および大電力回路272の動作がなされる。ステップS112では、電流検出回路273によって電流が検出される。ステップS113では、検出された電流が基準以下か否かが判断され、電流が基準以下と判断された場合、スイッチ回路281がオフ状態である、または無負荷に近い状態であると判断するのでステップS144へ制御が移り、電流が基準より大きいと判断された場合、スイッチ回路281がオン状態であると判断するのでステップS112へ制御が戻る。
【0099】
ステップS114では、小電力回路271および大電力回路272の動作が停止され、高インピーダンス電源の動作がなされる。ステップS115では、信号受信/発信制御回路277がACアダプタ2からセット3へ信号を発信すると共に、セット3からの信号を受信する。ステップS116では、小電力回路271および大電力回路272の動作がなされ、高インピーダンス電源の動作が停止される。そして、ステップS111へ制御が戻る。このように、高インピーダンス電源では、図33に示すように、信号を伝送することができる。
【0100】
また、2端子で接続しても通信することができるので専用のACアダプタか別のACアダプタかを判別することができる。
【0101】
このため、二次電池の種類およびACアダプタの種類に合わせて使用しても通信することによって、対応するACアダプタを選定することができるため安全である。
【0102】
ACアダプタおよびセットの両者とも通信を行うことができることにより、二次電池の容量および温度検出のための検出信号などはACアダプタ側またはセット側のどちらか一方に用意されていれば良い。
【0103】
【発明の効果】
この発明に依れば、フィルタを使用しなくても信号を伝送することができ、コストを抑えることができ、ノイズに強い。
【0104】
また、この発明に依れば、2端子で信号を伝送することができ、3端子でACアダプタとセットとを接続した場合より接続不良になる割合を少なくすることができる。
【0105】
さらに、この発明に依れば、ACアダプタ側およびセット側でも電流を検出しているので、端子をショートしても過電流が流れることはないので、安全に使用することができる。
【図面の簡単な説明】
【図1】この発明が適用された実施形態の概略的構成を示す。
【図2】この発明の基本的な通信方法を説明するための概略的なブロック図である。
【図3】この発明が適用された第1の例の概略的なブロック図である。
【図4】この発明に適用される一例の電圧電流特性である。
【図5】この発明が適用された第2の例の概略的なブロック図である。
【図6】この発明が適用された第3の例の概略的なブロック図である。
【図7】この発明が適用された第4の例の概略的なブロック図である。
【図8】この発明が適用された第5の例の概略的なブロック図である。
【図9】この発明に適用される通信の一例の略線図である。
【図10】この発明が適用された第1の実施形態を示すブロック図である。
【図11】この発明が適用された第2の実施形態を示すブロック図である。
【図12】この発明が適用された第3の実施形態を示すブロック図である。
【図13】この発明が適用された第4の実施形態を示すブロック図である。
【図14】この発明が適用されるACアダプタの処理の一実施形態を示すフローチャートである。
【図15】この発明が適用されるセット側の処理の一実施形態を示すフローチャートである。
【図16】この発明が適用される信号発信回路の説明に用いる回路図である。
【図17】この発明を説明するための一例の略線図である。
【図18】この発明が適用された第5の実施形態を示すブロック図である。
【図19】この発明が適用されるACアダプタの処理の一実施形態を示すフローチャートである。
【図20】この発明が適用されるセット側の処理の一実施形態を示すフローチャートである。
【図21】この発明が適用されるセット側の処理の一実施形態を示すフローチャートである。
【図22】この発明に適用されるスイッチOFF信号を説明するためのブロック図である。
【図23】この発明に適用されるスイッチOFF信号を説明するための略線図である。
【図24】この発明に適用されるスイッチOFF信号を説明するための略線図である。
【図25】この発明が適用されるACアダプタの処理の一実施形態を示すフローチャートである。
【図26】この発明が適用されるセット側の処理の一実施形態を示すフローチャートである。
【図27】この発明が適用された第6の実施形態を示すブロック図である。
【図28】この発明が適用されるACアダプタの処理の一実施形態を示すフローチャートである。
【図29】この発明が適用された第7の実施形態を示すブロック図である。
【図30】この発明が適用されるACアダプタの処理の一実施形態を示すフローチャートである。
【図31】この発明が適用された第8の実施形態を示すブロック図である。
【図32】この発明が適用されるACアダプタの処理の一実施形態を示すフローチャートである。
【図33】この発明を説明するための略線図である。
【図34】従来のACアダプタとセットのシステムを示した略線図である。
【符号の説明】
51・・・電流検出回路、52・・・小電力回路、53・・・大電力回路、54、64、66・・・スイッチ回路、55、61・・・受信回路、56、62・・・制御回路、63・・・ストップ回路、65・・・信号発信回路、67・・・負荷回路

Claims (15)

  1. 電子機器と2端子で接続されうる電源供給アダプタにおいて、
    小電力を出力する小電力モードと、大電力を出力する大電力モードとを切り替え可能な電源部と、
    上記電源部から出力される電流を検出する電流検出手段と、
    上記電子機器から発信される信号を受信する信号受信手段と、
    上記電流検出手段で検出された上記電流が基準以下の場合、上記電源部を小電力モードで動作させると共に、上記信号受信手段を動作させるようにした制御手段と
    からなることを特徴とする電源供給アダプタ。
  2. 請求項1において、
    上記制御手段は、
    上記信号受信手段で受信された上記信号に基づいて、上記電源部の小電力モードおよび/または上記大電力モードを制御するようにしたことを特徴とする電源供給アダプタ。
  3. 請求項1において、
    さらに、信号を上記電子機器へ発信する信号発信手段を有し、
    上記信号受信手段は、上記信号発信手段から発信された信号を受信し、上記受信した信号が上記信号発信手段から発信された信号か否かを判断するようにしたことを特徴とする電源供給アダプタ。
  4. 電子機器と2端子で接続されうる電源供給アダプタにおいて、
    小電力を出力する小電力モードと、大電力を出力する大電力モードとを切り替え可能な電源部と、
    上記電源部から出力される電流を検出する電流検出手段と、
    信号を上記電子機器へ発信する信号発信手段と、
    上記電流検出手段で検出された上記電流が基準以下の場合、上記電源部を小電力モードで動作させると共に、上記信号発信手段を動作させるようにした制御手段と
    からなることを特徴とする電源供給アダプタ。
  5. 請求項1または請求項4において、
    さらに、上記電源部の小電力モードおよび/または上記大電力モードの動作を停止させるストップ手段を設けたことを特徴とする電源供給アダプタ。
  6. 請求項3または請求項4において、
    さらに、高インピーダンス電源手段を備え、
    上記高インピーダンス電源手段と、上記電源部とを切り替えて動作させ、
    上記高インピーダンス電源手段が動作しているときに、上記信号発信手段から信号を発信するようにしたことを特徴とする電源供給アダプタ。
  7. 電源供給アダプタと2端子で接続されうる電子機器において、
    上記電源供給アダプタから発信される信号を受信する信号受信手段と、
    上記信号受信手段に受信された上記信号に基づいて制御する制御手段と、
    上記制御手段によって制御され、信号を上記電源供給アダプタへ発信する信号発信手段と、
    上記電源供給アダプタから供給される電源を切断するスイッチ手段とからなり、
    上記信号受信手段は、上記信号発信手段から発信された信号を受信し、上記受信した信号が上記信号発信手段から発信された信号か否かを判断するようにしたことを特徴とする電子機器。
  8. 電源供給アダプタと2端子で接続されうる電子機器において、
    上記電源供給アダプタから発信される信号を受信する信号受信手段と、
    上記信号受信手段に受信された上記信号に基づいて制御する制御手段と、
    上記制御手段によって制御され、信号を上記電源供給アダプタへ発信する信号発信手段と、
    上記電源供給アダプタから供給される電源を切断するスイッチ手段とからなり、
    上記制御手段は、
    上記信号発信手段から発信された信号に基づいて、上記スイッチ手段のオン/オフ動作を制御するようにしたことを特徴とする電子機器。
  9. 電源供給アダプタと2端子で接続されうる電子機器において、
    信号を上記電源供給アダプタへ発信する信号発信手段と、
    上記信号発信手段を制御する制御手段と、
    上記電源供給アダプタから供給される電源を切断するスイッチ手段とからなり、
    上記制御手段は、
    上記信号発信手段から発信された信号に基づいて、上記スイッチ手段のオン/オフ動作を制御するようにしたことを特徴とする電子機器。
  10. 交流電源と接続され、所定の直流電源電圧を発生する電源供給アダプタと、上記電源供給アダプタと電子機器とが2端子で接続される信号伝送システムにおいて、
    上記電源供給アダプタは、
    小電力を出力する小電力モードと、大電力を出力する大電力モードとを切り替え可能な電源部と、
    上記電源部から出力される電流を検出する電流検出手段と、
    上記電子機器から発信される信号を受信する第1の信号受信手段と、
    上記電流検出手段で検出された上記電流が基準以下の場合、上記電源部を小電力モードで動作させると共に、上記第1の信号受信手段を動作させるようにした第1の制御手段とを有し、
    上記電子機器は、
    信号を上記電源供給アダプタへ発信する第2の信号発信手段と、
    上記第2の信号発信手段を制御する第の制御手段と、
    上記電源供給アダプタから供給される電源を切断するスイッチ手段とを有することを特徴とする信号伝送システム。
  11. 請求項10において、
    上記第1の制御手段は、
    上記第1の信号受信手段で受信した信号に基づいて上記電源部の上記小電力モードおよび/または上記大電力モードの動作を制御するようにしたことを特徴とする信号伝送システム。
  12. 請求項10において、
    さらに、上記電源供給アダプタには、
    信号を上記電子機器へ発信する第1の信号発信手段を有し、
    上記電子機器には、
    上記第2の制御手段によて制御され、上記電源供給アダプタから発信される信号を受信する第2の信号受信手段とを有するようにしたことを特徴とする信号伝送システム。
  13. 交流電源と接続され、所定の直流電源電圧を発生する電源供給アダプタと、上記電源供給アダプタと電子機器とが2端子で接続される信号伝送システムにおいて、
    上記電源供給アダプタは、
    小電力を出力する小電力モードと、大電力を出力する大電力モードとを切り替え可能な電源部と、
    上記電源部から出力される電流を検出する電流検出手段と、
    信号を上記電子機器へ発信する第1の信号発信手段と、
    上記電流検出手段で検出された上記電流が基準以下の場合、上記電源部を小電力モードで動作させると共に、上記第1の信号発信手段を動作させるようにした第1の制御手段とを有し、
    上記電子機器には、
    上記電源供給アダプタから発信される信号を受信する第2の信号受信手段と、
    上記第2の信号受信手段に受信された上記信号に基づいて制御する第2の制御手段と、
    上記電源供給アダプタから供給される電源を切断するスイッチ手段とを有することを特徴とする信号伝送システム。
  14. 請求項12または請求項13において、
    上記第2の制御手段は、
    上記第2の信号受信手段で受信した信号に基づいて上記スイッチ手段のオン/オフ動作を制御するようにしたことを特徴とする信号伝送システム。
  15. 請求項12または請求項14において、
    上記電源供給アダプタに高インピーダンス電源手段を備え、
    上記高インピーダンス電源手段と、上記電源部とを切り替えて動作させ、
    上記高インピーダンス電源手段が動作しているときに、上記第1の信号発信手段から信号を発信するようにしたことを特徴とする信号伝送システム。
JP05786798A 1998-03-10 1998-03-10 電源供給アダプタ、電子機器および信号伝送システム Expired - Fee Related JP3882319B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP05786798A JP3882319B2 (ja) 1998-03-10 1998-03-10 電源供給アダプタ、電子機器および信号伝送システム
US09/260,042 US6169341B1 (en) 1998-03-10 1999-03-02 Power supplying adapter, electronic equipment, and signal transmission system
TW088103328A TW434965B (en) 1998-03-10 1999-03-04 Power supplying adapter, electronic equipment, and signal transmission system
KR1019990007461A KR100605737B1 (ko) 1998-03-10 1999-03-06 전원공급 어댑터, 전자기기 및 신호전송시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05786798A JP3882319B2 (ja) 1998-03-10 1998-03-10 電源供給アダプタ、電子機器および信号伝送システム

Publications (2)

Publication Number Publication Date
JPH11262191A JPH11262191A (ja) 1999-09-24
JP3882319B2 true JP3882319B2 (ja) 2007-02-14

Family

ID=13067947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05786798A Expired - Fee Related JP3882319B2 (ja) 1998-03-10 1998-03-10 電源供給アダプタ、電子機器および信号伝送システム

Country Status (4)

Country Link
US (1) US6169341B1 (ja)
JP (1) JP3882319B2 (ja)
KR (1) KR100605737B1 (ja)
TW (1) TW434965B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161026A (ja) * 1999-11-30 2001-06-12 Sony Corp 電子機器
DE10203512B4 (de) 2002-01-30 2021-09-02 Robert Bosch Gmbh Handwerkzeugmaschine mit einem elektrischen Antrieb, einem Schaltmittel und einer Batterieeinheit
TWM251392U (en) * 2004-02-02 2004-11-21 Well Shin Technology Co Ltd Power adapter
JP4423157B2 (ja) * 2004-10-06 2010-03-03 キヤノン株式会社 電力線通信装置およびその制御方法
SG124315A1 (en) * 2005-01-31 2006-08-30 Stl Corp Battery pack
KR100621321B1 (ko) * 2005-03-16 2006-09-06 박대규 출력전압 자동설정 어댑터 시스템 및 그 제어방법
JP4096951B2 (ja) * 2005-03-28 2008-06-04 松下電工株式会社 電気機器
JP2007110853A (ja) * 2005-10-14 2007-04-26 Mitsumi Electric Co Ltd Acアダプタ、電子機器及び電源システム
US7612527B2 (en) 2006-11-27 2009-11-03 Eveready Battery Co., Inc. Communicative and virtual battery chargers and methods
KR101015245B1 (ko) * 2007-07-11 2011-02-18 엘지전자 주식회사 전원변환장치 및 이로부터 전원을 공급받는 전자기기,그리고 이를 이용한 전원공급방법
US7960944B2 (en) * 2007-09-05 2011-06-14 Eveready Battery Company, Inc. Power supply that supplies power to and communicates with an electrical appliance
CN201690242U (zh) * 2009-12-03 2010-12-29 国基电子(上海)有限公司 双模充电电路
DE112012005893B4 (de) * 2012-02-17 2015-06-03 Mitsubishi Electric Corporation Stromumwandlungsvorrichtung und Stromumwandlungssystem
KR102158288B1 (ko) * 2012-07-09 2020-09-21 삼성전자주식회사 배터리를 충전하기 위한 방법 및 그 전자 장치
US20140159644A1 (en) * 2012-12-12 2014-06-12 Richtek Technology Corporation Charger Circuit and Charging Control Method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2649950B2 (ja) * 1988-07-19 1997-09-03 旭光学工業株式会社 電源装置
JPH0340728A (ja) * 1989-07-05 1991-02-21 Nec Corp 携帯無線電話機用充電器
GB2242793B (en) * 1990-04-05 1994-08-10 Technophone Ltd Battery charging apparatus
US5325040A (en) * 1992-09-21 1994-06-28 Motorola, Inc. Method and apparatus for charging a battery powered electronic device
CN1104074C (zh) * 1996-06-21 2003-03-26 皇家菲利浦电子有限公司 用于具有可充电电池的装置的电源系统和用于这种电源系统的电源单元与装置
US5734252A (en) * 1996-12-20 1998-03-31 Ericsson, Inc. Method and apparatus for charging a battery of an electronic device using an intelligent external charger
US5889381A (en) * 1997-03-14 1999-03-30 Ericsson, Inc. Means of communication between a battery pack and a battery powered device
US5990659A (en) * 1997-10-01 1999-11-23 Telefonaktiebolaget Lm Ericsson Battery pack that communicates intrinsic information over battery voltage terminals
US6034504A (en) * 1998-06-10 2000-03-07 Ericsson Inc. Two-wire multi-rate battery charger

Also Published As

Publication number Publication date
US6169341B1 (en) 2001-01-02
KR19990077666A (ko) 1999-10-25
JPH11262191A (ja) 1999-09-24
KR100605737B1 (ko) 2006-07-31
TW434965B (en) 2001-05-16

Similar Documents

Publication Publication Date Title
JP3882319B2 (ja) 電源供給アダプタ、電子機器および信号伝送システム
KR101496829B1 (ko) 수전 제어 장치, 수전 장치, 무접점 전력 전송 시스템,충전 제어 장치, 배터리 장치 및 전자 기기
KR100426643B1 (ko) 배터리 충전장치
US6949913B2 (en) Charging apparatus and charging method
US7439708B2 (en) Battery charger with control of two power supply circuits
US7652450B2 (en) Secondary battery charging device
CN1806382B (zh) 开关电源装置和电子设备
US6118255A (en) Charging apparatus, secondary battery apparatus, charging system, and charging method
EP1089414B1 (en) Power source unit
US6452820B2 (en) Power supplying apparatus and method having a primary side insulated from a secondary side
US6208530B1 (en) Switching power supply device having main switching element period control circuit
CN108964215B (zh) 一种充电器
CN217883227U (zh) 开关电源电路及其同步整流芯片
JP3473091B2 (ja) 電池充電装置および方法
JP3178109B2 (ja) コードレス電話機
JPH11299092A (ja) 電源供給アダプタ
JP2002010508A (ja) 充電装置および充電方法
CN212784852U (zh) 一种用于基站备用电源的电池管理系统
CN1333513C (zh) 开关电源电路
JP2001346329A (ja) 電源供給装置および方法
JP4378849B2 (ja) 信号伝送システムおよび電池パック
JP2004312892A (ja) スイッチング電源装置およびその制御方法
KR100532293B1 (ko) 멀티플 배터리 충전기 및 그 충전제어방법
JPH11122809A (ja) 電源供給アダプタ、電子機器および信号伝送システム
JP2000308348A (ja) Dc/dcコンバータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees