JP3882260B2 - Bottom-blown tuyere and converter operation method - Google Patents

Bottom-blown tuyere and converter operation method Download PDF

Info

Publication number
JP3882260B2
JP3882260B2 JP09497597A JP9497597A JP3882260B2 JP 3882260 B2 JP3882260 B2 JP 3882260B2 JP 09497597 A JP09497597 A JP 09497597A JP 9497597 A JP9497597 A JP 9497597A JP 3882260 B2 JP3882260 B2 JP 3882260B2
Authority
JP
Japan
Prior art keywords
tuyere
pipe
blowing
gas
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09497597A
Other languages
Japanese (ja)
Other versions
JPH10273714A (en
Inventor
清志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09497597A priority Critical patent/JP3882260B2/en
Publication of JPH10273714A publication Critical patent/JPH10273714A/en
Application granted granted Critical
Publication of JP3882260B2 publication Critical patent/JP3882260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は底吹き羽口及び転炉操業方法に係り、特に純酸素底吹き転炉、もしくは純酸素上底吹き転炉に用いられる多重構造の底吹き羽口及びそれを利用した転炉操業方法に関する。
【0002】
【従来の技術】
従来、純酸素底吹き転炉もしくは純酸素上底吹き転炉の底吹き羽口においては、図に示す如き2重管構造の底吹き羽口が使用されている。鉄皮2にライニングされた永久れんが3および炉底れんが4には内管6と外管8の2重管構造の羽口が羽口取付けフランジ12上に固定して設けられ、内管6からは精錬用ガスとして純酸素、窒素、アルゴン、炭酸ガスを吹込み、外管8と内管6の間隙10からは羽口の保護冷却用ガスとしてプロパン、窒素、アルゴン、炭酸ガス等を吹込み、炉底羽口の損傷の防止を図っている。
上記の如き2重管構造の羽口においては保護冷却用ガスにより羽口先端に生成する凝固鉄いわゆるマッシュルームを安定して生成し、存在させることが重要である。しかし、操業中には、加熱、冷却による温度の変動が大きいうえ、炉底耐火物とマッシュルームの含熱量(比熱)、熱伝導率、線膨張率の差異から、マッシュルームが羽口保護の効果を従来十分に挙げ得ないことがある。
【0003】
底吹き機能を有する上記の如き転炉の冶金的な優位性、長所は周知であるが、底吹き羽口が、安定操業、炉寿命を左右し、その長寿命化、安定化が底吹き転炉の最大の課題の一つである。この課題に対し、従来以下の如き数々の対策、技術開発が行なわれてきている。
▲1▼耐スポーリング性に優れた羽口れんがの開発
▲2▼スラグコーティング技術の開発
▲3▼操業方法の改善(Q、D、T法;Quick Direct Tapping)
▲4▼羽口冷却の適正化
(イ)プロパン等の冷却ガス流量の適正制御
(ロ)酸素ガスへのAr、N2、CO2等の希釈冷却ガスの混入
【0004】
以上の従来技術は、いずれも羽口寿命の向上、損耗抑制に大きな効果を発揮しており、一応の成功を収めている。
しかし、羽口損耗現象面からみると、以下の点で未だ問題が残されている。
すなわち、羽口れんがの吹錬中と非吹錬中との大きな温度変化を抑制し、羽口冷却を適正化する手段としての下記技術において満足すべき技術が開発されていない。
▲1▼プロパン等の羽口冷却ガスの流量を低下させ、吹錬中の羽口外管温度、羽口れんがの過冷却を防止する。
▲2▼羽口冷却ガス(プロパン)に希釈ガス(Ar、N2、CO2など)を混合し、吹錬中の羽口外管温度、羽口れんがの過冷却を防止する。
▲3▼▲1▼、▲2▼と併せ、羽口内管から吹込まれる純酸素ガスに希釈ガス(Ar、N2、CO2)を混合し、冷却ガスによる必要冷却量を減少させる。
【0005】
以上の方法、手段は、羽口外管の過冷却を防止し、羽口れんがの温度変化を抑制可能であるが、羽口先端に形成されるマッシュルームまでもが縮小してしまい、羽口れんがのクラック発生、れんが欠落は抑制できても、溶鋼と接する面の保護層が小さくなることにより、羽口先端からの損耗を抑制できない。また、▲3▼の方法はマッシュルームに与える熱量が小さくなり、マッシュルーム維持保護には有効であるが、底吹きガスのほとんどを占める内管ガスに希釈ガスを混合することは、精錬ガスコストの上昇を招く結果となる。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記底吹き羽口の従来技術の問題点、特に羽口れんがの吹錬中と非吹錬中との大なる温度変化を抑制し、羽口冷却を適正化し、もってマッシュルームの適正保護を有効とする底吹き羽口構造を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明者は底吹き羽口構造の内、特に、羽口外管は吹錬時の過冷却ならびに非吹錬時の温度上昇により甚しい温度変化によって羽口れんが内にクラックの発生、れんがの欠落が生じ、−方羽口冷却ガス流量を低下させた場合には溶鋼と接する面のマッシュルームの保護層が小さくなり、羽口先端からの損耗も甚しい現状に鑑み、外管の外側に更に最外管を設けて不活性ガスを流す断熱管を設けることに着目し、さらに、該断熱管に流す不活性ガスの流量を調整することにより羽口れんがの温度変化量を小さくできることを発見して本発明を完成したその要旨とするところは次のとおりである。
(1)精錬用ガスを吹込む内管と羽口の保護冷却用ガスを吹込む外管との2重管構造を有して成る純酸素底吹きもしくは純酸素上底吹き転炉の底吹き羽口において、前記外管の更に外側に不活性ガスを流す断熱管を設けるとともに、該断熱管に流す不活性ガス量を制御するために前記内管、外管および断熱管より成る羽口周辺の耐火物中に埋没して、もしくは前記断熱管の外面に接して温度センサーを設けたことを特徴とする底吹き羽口。
(2)前記断熱管は高温強度の大なるステンレス鋼もしくは耐熱鋼より成ることを特徴とする請求項1記載の底吹き羽口。
(3)請求項1又は2記載の底吹き羽口を用い、温度センサーより得られる温度情報に基づいて断熱管保護ガス流量を羽口れんがの温度変化が小さくなるように断熱管保護ガスの流量を増減する制御を行うことを特徴とする純酸素底吹きもしくは純酸素上底吹き転炉の操業方法。
【0008】
【発明の実施の形態】
本発明の実施の形態を添付図面を参照して説明する。図1は本発明の底吹き羽ロの構成を示す断面図である。図1で示す本発明の底吹き羽ロの構成は、先に図で説明した従来技術の2重管の底吹き羽口の外管の更に外側に、外管の過冷却を防止する断熱管を設けたものである。
すなわち、転炉鉄皮13にライニングされた永久れんが14および炉底れんが15には、羽口内管16と羽口外管18の2重構造の羽口が設けられ、羽口の外側には羽口れんが20が設けられており、羽口内管16からは精錬用ガスとして主として純酸素を吹込み、羽口外管18と羽口内管16との間隙19からは羽口の保護冷却用ガスとして主としてプロパンが吹込まれることは従来と同一である。
【0009】
本発明は羽口外管18および羽口れんが20が冷却ガス、プロパン、により過冷却されるのを防止するため、羽口外管の更に外側に断熱管22を設けたのが大きな特徴である。
羽口外管18と断熱管22との間の間隙24は一定に保ち、設置することにより、2重管羽口の外管18と、周囲の羽口れんが20との断熱化を図ることができ、羽口れんが20の温度変化を抑制し、羽口外管18の損耗速度を低減する作用を有している。
断熱管22の内面と羽口外管18の外面との間に形成される間隙24には、溶銑もしくは溶鋼26が侵入し閉塞するのを防止するため最低流量のガスを吹込む。このガスは羽口冷却ガスのように熱分解して吸熱冷却効果を有せず、また溶銑、溶鋼26と反応して発熱しない不活性ガス、例えば、アルゴンガス(Ar)、もしくは窒素ガス(N2ガス)を用いるのが望ましい。本発明では、このガスを断熱管保護ガスと呼ぶこととする。
【0010】
断熱管22には、その長手方向の適当な箇所に温度センサー28を設け、この温度センサー28より得られる温度情報に基づいて、断熱管保護ガス30の流量を制御する。具体的には該羽口れんが20の温度変化が小さくなるように断熱管保護ガス30の流量の増減を行う。
温度センサー28の設置位置は、必ずしも断熱管22の長手方向の位置でなくてもよい。すなわち、羽口れんが20の中の適当な位置に埋没して設けてもよい。
また、断熱管22の材料としては、溶融温度が高く、かつ高温強度の大なる材料の使用が望ましく、具体的にはステンレス鋼もしくは耐熱鋼が望ましい。
【0011】
【実施例】
250tのK−BOPと称される上底吹き転炉に本発明を適用し底吹き羽口の損耗速度を調査した。すなわち、図1において、底吹き羽口は2重管羽口で羽口内管16からは酸素ガスに希釈ガスとしてAr、N2を混入し、羽口外管18と内管16との間隙19から冷却ガスとしてプロパンに少量の希釈ガスAr、N2を吹込み、更に外管18の外側に本発明の断熱管22を組込み実吹錬した。
断熱管22と外管18との間の間隙24はほぼ1mmとし、その間隙を均一に維持するために外管18の外面に管長手方向に連続した突起のスプラインを数本設けた。この間隙24に流すガス、すなわち、断熱管保護ガス30は、ArもしくはN2とし、鋼種により適宜選択した。断熱管保護ガスの流量は吹錬中は最低流量を1Nm3/min(羽口1本当り)とし、断熱管22に設けた温度センサー28の値が適切な温度になるように、間隙24に流す不活性ガス流量を制御した。
【0012】
非吹錬中に間隙24が溶鋼16の侵入により閉塞するおそれがない場合には、保護ガス30の流量をゼロとし、それ以外の場合には羽口1本当り0.1Nm3/minまで減少して操業を行った。この試験操業の結果を従来法と比較して、羽口れんがの吹錬中および非吹錬中の温度変化量(最大値)および従来法における羽口損耗速度を1とした場合の本発明実施例の値を表1に示した。
なお、吹錬操業条件は従来法および本実施例ともほとんど同一とした。また羽口先端のマッシュルームも目視観察では両者ともにほとんど差異は認められなかった。
【0013】
【表1】

Figure 0003882260
【0014】
【発明の効果】
本発明は従来の2重管羽口の外側に1mm程度の間隙をもって断熱管を設け、その間隙24に不活性ガスを流し、この断熱管22の長手方向に温度センサー28を設けて該温度センサーが適正な温度値になるように不活性ガス流量を制御したので次の効果を挙げることができた。
(イ)羽口先端に生成するマッシュルーム31を縮少させることなく、羽口れんが20の吹錬時および非吹錬時の最大温度変化量を従来の500℃から約50℃に1/10に激減させ、かつ羽口損耗指数を従来法の1から0.32まで低減させることができ、羽口寿命の延長を低コストで実現させることができた。
(ロ)(イ)の結果、底吹き、上底吹き転炉の炉寿命を向上でき、生産性の向上、コスト低減に大きく寄与できた。
【図面の簡単な説明】
【図1】本発明による底吹き羽口の実施例の構成を示す断面図である。
【図2】従来の底吹き羽口の構成を示す断面図である。
【符号の説明】
2、13 転炉鉄皮
4、15 炉底れんが
6 内管
8 外管
10 間隙
14 永久れんが
16 羽口内管
18 羽口外管
19 間隙
20 羽口れんが
22 断熱管
24 間隙
26 溶鋼
28 温度センサー
30 断熱管保護ガス
31 マッシュルーム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bottom blowing tuyere and a converter operating method , and more particularly, to a pure oxygen bottom blowing converter or a multi-structure bottom blowing tuyer used for a pure oxygen top bottom blowing converter and a converter operating method using the same. About.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a bottom blowing tuyere of a pure oxygen bottom blowing converter or a pure oxygen top bottom blowing converter, a bottom blowing tuyere as shown in FIG. 2 is used. The permanent brick 3 and the furnace bottom brick 4 lined on the iron skin 2 are provided with tuyere of a double pipe structure of an inner pipe 6 and an outer pipe 8 fixed on the tuyere mounting flange 12, and from the inner pipe 6 Puffs pure oxygen, nitrogen, argon, carbon dioxide as refining gas, and blows propane, nitrogen, argon, carbon dioxide, etc. as protective cooling gas for tuyere from the gap 10 between the outer tube 8 and the inner tube 6 In order to prevent damage to the furnace bottom tuyere.
In a tuyere with a double pipe structure as described above, it is important to stably produce and present solidified iron, so-called mushrooms, produced at the tip of the tuyere by a protective cooling gas. However, during operation, the temperature fluctuates greatly due to heating and cooling, and the mushroom has a tuyere protection effect due to differences in the heat content (specific heat), thermal conductivity, and linear expansion coefficient between the bottom refractory and the mushroom. In the past, there may be cases where it cannot be sufficiently mentioned.
[0003]
The metallurgical advantages and advantages of the above converter with bottom blowing function are well known, but the bottom blowing tuyere affects stable operation and the life of the furnace. This is one of the biggest challenges of the furnace. In response to this problem, various countermeasures and technical developments have been made as follows.
(1) Development of tuyere bricks with excellent spalling resistance (2) Development of slag coating technology (3) Improvement of operation method (Q, D, T method; Quick Direct Tapping)
(4) Optimization of tuyere cooling (a) Proper control of the flow rate of cooling gas such as propane (b) Mixing of diluted cooling gas such as Ar, N 2 and CO 2 into oxygen gas
All of the above-described conventional techniques have shown great effects in improving the tuyere life and suppressing wear, and have achieved some success.
However, from the viewpoint of the tuyere wear phenomenon, problems still remain in the following points.
That is, a technology that is satisfactory in the following technology has not been developed as a means for suppressing a large temperature change between the blowing and non-blowing of tuyere bricks and optimizing tuyere cooling.
(1) Decrease the flow rate of tuyere cooling gas such as propane to prevent tuyere outer tube temperature and tuyere brick overcooling during blowing.
{Circle around (2)} Diluting gas (Ar, N 2 , CO 2, etc.) is mixed with tuyere cooling gas (propane) to prevent overcooling of tuyere outer tube temperature and tuyere brick during blowing.
In combination with ( 3 ), ( 1 ), and ( 2 ), a dilution gas (Ar, N 2 , CO 2 ) is mixed with pure oxygen gas blown from the tuyere inner tube to reduce the required cooling amount by the cooling gas.
[0005]
The above methods and means prevent overcooling of the tuyere outer tube and can suppress the temperature change of the tuyere brick, but the mushroom formed at the tip of the tuyere also shrinks, and the tuyere brick Even if crack generation and brick loss can be suppressed, wear from the tip of the tuyere cannot be suppressed because the protective layer on the surface in contact with the molten steel becomes small. The method (3) reduces the amount of heat given to the mushroom and is effective for maintaining and protecting the mushroom, but mixing the dilution gas with the inner pipe gas that occupies most of the bottom blown gas increases the refining gas cost. Result.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to suppress problems with the prior art of the above-mentioned bottom-blown tuyere, particularly a large temperature change between blowing and non-blowing of tuyere bricks, optimizing tuyere cooling, and mushroom It is intended to provide a bottom-blown tuyere structure that effectively protects the air.
[0007]
[Means for Solving the Problems]
The inventor found that the bottom tuyere structure, in particular, the tuyere outer tube was cracked in the tuyere brick due to excessive cooling due to supercooling during blowing and temperature rise during non-blowing, lack of brick -When the flow rate of the cooling gas at the tuyere is lowered, the protective layer of the mushroom on the surface in contact with the molten steel becomes smaller, and in view of the current situation where the wear from the tip of the tuyere is severe, the outermost of the outer tube is further reduced. Focusing on the provision of a heat insulating tube that flows an inert gas by providing an outer tube, and further discovering that the temperature change of tuyere bricks can be reduced by adjusting the flow rate of the inert gas flowing through the heat insulating tube. The present invention has been completed . The gist is as follows.
(1) Bottom blowing of pure oxygen bottom blowing or pure oxygen top bottom blowing converter having a double pipe structure of an inner pipe for blowing refining gas and an outer pipe for blowing tuyere protective cooling gas in tuyere, the outer tube further Rutotomoni provided a heat-insulating tube for flowing an inert gas to the outside of the inner tube in order to control the amount of inert gas flowing through the heat insulating tube consists of an outer tube and the heat-insulated pipe tuyere A bottom-blown tuyere having a temperature sensor buried in a surrounding refractory or in contact with the outer surface of the heat insulating tube .
(2) The bottom-blown tuyere according to claim 1, wherein the heat insulating pipe is made of stainless steel or heat-resisting steel having high temperature strength.
(3) The bottom blowing tuyere according to claim 1 or 2 is used, and the flow rate of the insulating tube protective gas is reduced so that the temperature change of the tuyere brick becomes small based on the temperature information obtained from the temperature sensor. A method for operating a pure oxygen bottom blown or pure oxygen top bottom blown converter, characterized by performing control to increase or decrease the value.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing the configuration of the bottom blowing blade of the present invention. Bottom-blown feather Hollow structure of the present invention shown in Figure 1, prevents previously to the outside of the outer tube of the bottom tuyeres of a double tube of the prior art described in FIG. 2, the subcooling of the outer pipe insulation A tube is provided.
In other words, the permanent brick 14 and the bottom brick 15 lined on the converter core 13 are provided with a tuyere having a tuyere inner pipe 16 and a tuyere outer pipe 18 and the tuyere outside the tuyere. Brick 20 is provided, and pure oxygen is mainly blown from the tuyere inner pipe 16 as a refining gas, and from the gap 19 between the tuyere outer pipe 18 and the tuyere inner pipe 16, propane is mainly used as a protective cooling gas for the tuyere. It is the same as before.
[0009]
The present invention is characterized in that a heat insulating tube 22 is provided on the outer side of the tuyere outer tube in order to prevent the tuyere outer tube 18 and tuyere brick 20 from being supercooled by the cooling gas, propane.
By keeping the gap 24 between the tuyere outer pipe 18 and the heat insulating pipe 22 constant, it is possible to achieve insulation between the outer pipe 18 of the double pipe tuyere and the surrounding tuyere brick 20. The tuyere brick 20 has the effect of suppressing the temperature change of the tuyere 20 and reducing the wear rate of the tuyere outer tube 18.
A gap 24 formed between the inner surface of the heat insulating tube 22 and the outer surface of the tuyere outer tube 18 is blown with a gas having a minimum flow rate to prevent molten iron or molten steel 26 from entering and closing. This gas is thermally decomposed like a tuyere cooling gas and does not have an endothermic cooling effect, and also reacts with hot metal, molten steel 26 and does not generate heat, such as argon gas (Ar) or nitrogen gas (N It is desirable to use 2 gas). In the present invention, this gas is referred to as a heat insulating tube protective gas.
[0010]
The heat insulating tube 22 is provided with a temperature sensor 28 at an appropriate position in the longitudinal direction, and the flow rate of the heat insulating tube protective gas 30 is controlled based on temperature information obtained from the temperature sensor 28. Specifically, the flow rate of the heat insulating tube protection gas 30 is increased or decreased so that the temperature change of the tuyere brick 20 becomes small.
The installation position of the temperature sensor 28 is not necessarily the position in the longitudinal direction of the heat insulating tube 22. That is, the tuyere brick may be buried in an appropriate position in the 20.
Further, as the material of the heat insulating tube 22, it is desirable to use a material having a high melting temperature and a high temperature strength, and specifically, stainless steel or heat resistant steel is desirable.
[0011]
【Example】
The present invention was applied to an upper bottom blowing converter called a 250-ton K-BOP, and the wear rate of the bottom blowing tuyere was investigated. That is, in FIG. 1, the bottom blowing tuyere is a double pipe tuyere, and Ar and N 2 are mixed as oxygen and dilution gas from the tuyere inner pipe 16, and from the gap 19 between the tuyere outer pipe 18 and the inner pipe 16. A small amount of dilution gas Ar, N 2 was blown into propane as a cooling gas, and the heat insulating pipe 22 of the present invention was incorporated outside the outer pipe 18 for actual blowing.
The gap 24 between the heat insulation pipe 22 and the outer pipe 18 was set to about 1 mm, and several splines having continuous projections in the longitudinal direction of the pipe were provided on the outer surface of the outer pipe 18 in order to keep the gap uniform. The gas flowing through the gap 24, that is, the heat insulating tube protective gas 30, was Ar or N 2 and was appropriately selected depending on the steel type. The flow rate of the heat insulation pipe protective gas is 1 Nm 3 / min (per tuyere) during blowing, and the gap 24 is adjusted so that the value of the temperature sensor 28 provided in the heat insulation pipe 22 becomes an appropriate temperature. The flow rate of inert gas was controlled.
[0012]
If there is no possibility that the gap 24 is blocked by the intrusion of the molten steel 16 during non-blowing, the flow rate of the protective gas 30 is set to zero, otherwise it is reduced to 0.1 Nm 3 / min per tuyere. And operated. Comparing the results of this test operation with the conventional method, the present invention was implemented when the amount of temperature change (maximum value) during blowing and non-blowing of tuyere bricks and tuyere wear rate in the conventional method was 1. Example values are shown in Table 1.
The blowing operation conditions were almost the same for the conventional method and this example. The muzzle at the tip of the tuyere also showed little difference in visual observation.
[0013]
[Table 1]
Figure 0003882260
[0014]
【The invention's effect】
In the present invention, a heat insulation pipe is provided outside the conventional double pipe tuyere with a gap of about 1 mm, an inert gas is allowed to flow through the gap 24, and a temperature sensor 28 is provided in the longitudinal direction of the heat insulation pipe 22 to provide the temperature sensor. Since the flow rate of the inert gas was controlled so that the temperature became an appropriate temperature value, the following effects could be obtained.
(I) Without reducing the mushroom 31 produced at the tip of the tuyere, the maximum temperature change during blowing and non-blowing of tuyere brick 20 is reduced to 1/10 from about 500 ° C. to about 50 ° C. The tuyere wear index could be reduced from 1 to 0.32 of the conventional method, and the tuyere life could be extended at a low cost.
(B) As a result of (a), it was possible to improve the life of bottom blowing and top-bottom blowing converters, greatly contributing to productivity improvement and cost reduction.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of an embodiment of a bottom blow tuyer according to the present invention.
FIG. 2 is a cross-sectional view showing a configuration of a conventional bottom blowing tuyere.
[Explanation of symbols]
2, 13 Converter core 4, 15 Furnace bottom brick 6 Inner pipe 8 Outer pipe 10 Gap 14 Permanent brick 16 Tuyere inner pipe 18 Tuyere outer pipe 19 Gap 20 Tuyere brick 22 Thermal insulation pipe 24 Gap 26 Molten steel 28 Temperature sensor 30 Thermal insulation Tube protective gas 31 mushroom

Claims (3)

精錬用ガスを吹込む内管と羽口の保護冷却用ガスを吹込む外管との2重管構造を有して成る純酸素底吹きもしくは純酸素上底吹き転炉の底吹き羽口において、前記外管の更に外側に不活性ガスを流す断熱管を設けるとともに、該断熱管に流す不活性ガス量を制御するために前記内管、外管および断熱管より成る羽口周辺の耐火物中に埋没して、もしくは前記断熱管の外面に接して温度センサーを設けたことを特徴とする底吹き羽口。In the bottom blowing tuyere of a pure oxygen bottom blowing or pure oxygen top bottom blowing converter having a double pipe structure of an inner pipe for blowing a refining gas and an outer pipe for blowing a protective cooling gas for the tuyere , said outer tube further heat-insulated pipe for flowing an inert gas to the outside of the provided Rutotomoni, the inner pipe in order to control the amount of inert gas flowing through the heat insulating tube, surrounding the tuyere consisting outer tube and the heat-insulated pipe refractory A bottom-blown tuyere having a temperature sensor embedded in an object or in contact with an outer surface of the heat insulating tube . 前記断熱管は高温強度の大なるステンレス鋼もしくは耐熱鋼より成ることを特徴とする請求項1記載の底吹き羽口。  The bottom-blown tuyere according to claim 1, wherein the heat insulating pipe is made of stainless steel or heat-resistant steel having a high temperature strength. 請求項1又は2記載の底吹き羽口を用い、温度センサーより得られる温度情報に基づいて断熱管保護ガス流量を羽口れんがの温度変化が小さくなるように断熱管保護ガスの流量を増減する制御を行うことを特徴とする純酸素底吹きもしくは純酸素上底吹き転炉の操業方法。Using the bottom-blown tuyere according to claim 1 or 2, the heat-insulating tube protective gas flow rate is increased or decreased based on the temperature information obtained from the temperature sensor so that the temperature change of the tuyere brick is reduced. A method of operating a pure oxygen bottom blown or pure oxygen top bottom blown converter characterized by performing control.
JP09497597A 1997-03-28 1997-03-28 Bottom-blown tuyere and converter operation method Expired - Fee Related JP3882260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09497597A JP3882260B2 (en) 1997-03-28 1997-03-28 Bottom-blown tuyere and converter operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09497597A JP3882260B2 (en) 1997-03-28 1997-03-28 Bottom-blown tuyere and converter operation method

Publications (2)

Publication Number Publication Date
JPH10273714A JPH10273714A (en) 1998-10-13
JP3882260B2 true JP3882260B2 (en) 2007-02-14

Family

ID=14124920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09497597A Expired - Fee Related JP3882260B2 (en) 1997-03-28 1997-03-28 Bottom-blown tuyere and converter operation method

Country Status (1)

Country Link
JP (1) JP3882260B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829403B2 (en) * 2000-11-28 2011-12-07 東邦チタニウム株式会社 High temperature melt discharge pipe
JP6399067B2 (en) * 2015-10-05 2018-10-03 Jfeスチール株式会社 Gas blowing method with bottom blow tuyere and steel refining method

Also Published As

Publication number Publication date
JPH10273714A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP3882260B2 (en) Bottom-blown tuyere and converter operation method
CN207987279U (en) A kind of converter spherical shape bottom construction
CN101539367A (en) Small furnace cover of electric furnace and preparation method thereof
CA1217336A (en) Annular tuyere and method
CA1147957A (en) Shaft furnace, particularly the refractory construction of the bottom thereof
US4477279A (en) Annular tuyere and method
JP3007264B2 (en) Blast furnace taphole brick structure
JP3662094B2 (en) Alumina-plug for carbonaceous gas injection
CN101784859A (en) Iron bath type smelting reduction furnace
JP4385924B2 (en) Cooling gas supply method for molten metal refining furnace
JP3706429B2 (en) Method of injecting gas into molten metal
JPH10183233A (en) Heat insulating skid pipe
JPH017704Y2 (en)
JPH0543924A (en) Secondary combustion blow-refining method
CN201407904Y (en) Small furnace cover of electric furnace
JP2932977B2 (en) Stave cooler
JPH0421819Y2 (en)
JPS5959820A (en) Metal refining furnace and its operating method
JPH05306405A (en) Furnace protecting wall provided with slow-cooling type stave cooler
JP2000017313A (en) Trough for molten metal
JPS6039728B2 (en) How to manufacture stainless steel
JPH01191723A (en) Iron bath type smelting reduction furnace
JP3909589B2 (en) Method for protecting bottom blown double pipe tuyere of molten metal refining furnace
JPH0639613B2 (en) Bottom blowing tuyere
JPH10273713A (en) Bottom blowing tuyere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees