JP3881854B2 - Charged particle energy control method and charged particle accelerator - Google Patents

Charged particle energy control method and charged particle accelerator Download PDF

Info

Publication number
JP3881854B2
JP3881854B2 JP2001127374A JP2001127374A JP3881854B2 JP 3881854 B2 JP3881854 B2 JP 3881854B2 JP 2001127374 A JP2001127374 A JP 2001127374A JP 2001127374 A JP2001127374 A JP 2001127374A JP 3881854 B2 JP3881854 B2 JP 3881854B2
Authority
JP
Japan
Prior art keywords
superconducting
charged particle
accelerator
charged particles
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001127374A
Other languages
Japanese (ja)
Other versions
JP2002324700A (en
Inventor
英介 峰原
英司 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHV Corp
Original Assignee
NHV Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHV Corp filed Critical NHV Corp
Priority to JP2001127374A priority Critical patent/JP3881854B2/en
Publication of JP2002324700A publication Critical patent/JP2002324700A/en
Application granted granted Critical
Publication of JP3881854B2 publication Critical patent/JP3881854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高周波形の線形加速器(Linac:ライナック。リニアックとも呼ばれる。)を用いて電子、イオン等の荷電粒子を加速して、電子線照射による架橋、改質、殺菌、減菌、殺虫等、あるいはイオン照射によるイオン注入、改質等に用いられる荷電粒子加速装置および荷電粒子エネルギーの制御方法に関し、より具体的には、線形加速器として超伝導加速器を用いることによって、荷電粒子エネルギーの制御を容易にする手段に関する。
【0002】
【従来の技術】
電子、イオン等の荷電粒子を発生する荷電粒子源と、この荷電粒子源から与えられる荷電粒子を加速空洞における高周波電界によって加速する線形加速器と、この線形加速器に加速用の高周波電力を供給する高周波発振器とを備える荷電粒子加速装置は、高周波ライナック等と呼ばれて、既に各種分野において利用されている。
【0003】
【発明が解決しようとする課題】
コッククロフト形のような静電界による加速器と違って、従来の上記のような高周波電界による線形加速器によって加速される荷電粒子のエネルギーを制御するのは非常に難しい。
【0004】
これは、従来の線形加速器は常伝導タイプの加速空洞を用いるものであり、入力された高周波電力の内の大部分は加速空洞におけるジュール熱損となって消費され、この熱によって加速空洞に不均一でしかも大きな歪みが発生して、容易に動作不安定が発生するからである。この不安定発生を抑えるのが非常に難しく、あるエネルギーで不安定発生を抑えても、他のエネルギーでは容易に不安定発生が起こる。
【0005】
また、加速後の荷電粒子のエネルギーが幾らになっているのかを知ることも容易ではない。これは、上記のように、入力された高周波電力の内の大部分は加速空洞におけるジュール熱損となって消費され、残りの幾らが荷電粒子のエネルギーに変換されるかが正確には分からないからである。このエネルギー変換の割合は、機器構成、高周波電力の周波数、パワー、入力調整等に依って変化し、一定ではない。
【0006】
従来は、加速後の荷電粒子のエネルギーを求めるために、(a)加速空洞内に生じる高周波電界の強さをアンテナ等を用いて計測して加速電界強度を推測してエネルギーを推測したり、(b)線形加速器から加速されて出て来た荷電粒子を偏向電磁石で曲げてその曲がり具合からエネルギーを計算したり、(c)核反応等のエネルギーの分かっている事象を用いて必要なパラメータをエネルギー校正し、その間は内挿で適宜決める、等の手段を用いていた。
【0007】
しかし、上記(a)の手段は、推測に推測を重ねるものであり、信頼性に欠ける。上記(b)の手段は、偏向電磁石が必要であり、構成が大がかりになる。しかも、荷電粒子を曲げると、大きなスペースを必要とする。偏向電磁石を用いて荷電粒子を曲げる機器配置を採ることが困難な場合もある。上記(c)の手段も、校正グラフ等の校正システムを用いるため、手間がかかる。しかも、その校正が経時変化していないかを定期的にチェックする必要がある。
【0008】
そこでこの発明は、加速後の荷電粒子のエネルギーを、簡単にしかも高い信頼性で正確に制御することのできる方法および装置を提供することを主たる目的とする。
【0009】
【課題を解決するための手段】
この発明に係る荷電粒子エネルギーの制御方法は、前記線形加速器として、超伝導状態に保たれて前記荷電粒子を高周波電界によって加速する超伝導加速空洞を有する超伝導加速器を用い、この超伝導加速器内の超伝導加速空洞からの高周波の反射を実質的に零に調整し、前記高周波発振器から出力する高周波電力の出力Pおよび前記超伝導加速器で加速する荷電粒子の実質的に全部の電流値iを用いて、前記超伝導加速器で加速された後の荷電粒子のエネルギーEをE=P/iなる関係に基づいて制御することを特徴としている。
【0010】
この発明に係る荷電粒子加速装置は、前記線形加速器として、超伝導状態に保たれて前記荷電粒子を高周波電界によって加速する超伝導加速空洞を有する超伝導加速器を備えており、更に、この超伝導加速器内の超伝導加速空洞からの高周波の反射を実質的に零に調整する反射調整機構と、前記高周波発振器から出力する高周波の出力Pを計測する出力計測器と、前記超伝導加速器で加速する荷電粒子の実質的に全部の電流値iを計測する電流計測器と、前記出力計測器で計測した出力Pおよび前記電流計測器で計測した電流値iを用いて、前記超伝導加速器で加速された後の荷電粒子のエネルギーEをE=P/iなる関係に基づいて制御するエネルギー制御装置とを備えていることを特徴としている。
【0011】
上記構成によれば、高周波発振器から出力された高周波電力は、超伝導加速空洞からの高周波の反射を実質的に零に調整するので、全て超伝導加速空洞に供給される。
【0012】
この超伝導加速空洞では、超伝導であるが故に、ジュール熱損が実質的に零であり、即ち加速空洞でロスすることはなく、供給された高周波電力は全て荷電粒子の加速に使用され、荷電粒子のパワーに変換される。
【0013】
従って、高周波発振器から出力される高周波電力の出力Pと、超伝導加速器で加速される荷電粒子のパワーWとの間には、次式の関係が成立する。
【0014】
【数1】
P=W
【0015】
一方、加速後の荷電粒子のパワーWは、荷電粒子のエネルギーEと当該荷電粒子の電流値iとの積であり、次式で表される。
【0016】
【数2】
W=E・i
【0017】
上記数1および数2より、次式の関係が得られる。
【0018】
【数3】
E=P/i
【0019】
本願の発明者達は、超伝導加速空洞を用いることにより、かつそれからの高周波を無反射状態に調整することにより、荷電粒子加速装置において上記数3の関係が成立することを見い出した。
【0020】
上記高周波発振器の出力Pは、高周波電力計等の公知の技術によって、簡単にかつ正確に計測することができる。
【0021】
上記荷電粒子の電流値iも、変流器等の公知の技術によって、簡単にかつ正確に計測することができる。
【0022】
この発明は、このように簡単にかつ正確に計測することのできる出力Pおよび電流値iを用いて、上記数3の関係に基づいて、荷電粒子のエネルギーEを制御するものであり、これによって、加速後の荷電粒子のエネルギーを、簡単にしかも高い信頼性で正確に制御することができる。
【0023】
【発明の実施の形態】
図1は、この発明に係るエネルギー制御方法を実施する荷電粒子加速装置の一例を示す概略図である。図2は、図1中の超伝導加速器周りの一例を示す概略断面図である。
【0024】
この荷電粒子加速装置は、荷電粒子4を発生(射出)する荷電粒子源2と、超伝導状態に保たれてこの荷電粒子源2から供給される荷電粒子4を高周波電界によって加速する超伝導加速空洞14(図2参照)を有する超伝導加速器6と、この超伝導加速器6に(より具体的にはその内部の超伝導加速空洞14に)荷電粒子加速用の高周波電力を供給する高周波発振器16と、超伝導加速器6からの(より具体的にはその内部の超伝導加速空洞14からの)高周波の反射を実質的に零に調整する反射調整機構30と、上記数3に基づいて加速後の荷電粒子4のエネルギーEを制御するエネルギー制御装置36とを備えている。
【0025】
荷電粒子4は、例えば、電子またはイオン等である。
【0026】
荷電粒子4が電子の場合は、荷電粒子源2は例えば電子銃である。荷電粒子4がイオンの場合は、荷電粒子源2は例えばイオン源である。
【0027】
高周波発振器16は、この例では、それから出力する高周波電力の出力Pを計測する出力計測器18と、超伝導加速器6からの(より具体的にはその内部の超伝導加速空洞14からの)高周波の反射Rを計測する反射計測器20とを備えている。出力計測器18は、例えば、高周波電力計である。反射計測器20は、例えば、反射電力計である。
【0028】
この高周波発振器16から出力された高周波電力は、この例では同軸管22を経由して、超伝導加速器6内の超伝導加速空洞14に供給される。但し、同軸管22の代わりに、導波管等を用いても良い。なお、この明細書において「高周波」は、マイクロ波を含む広い概念で用いている。
【0029】
超伝導加速器6は、高周波形の線形加速器の一種であり、この例では、図2に示すような構造をしている。
【0030】
即ち、この超伝導加速器6は、液体ヘリウム12が満たされる液体ヘリウム容器10内に、複数個(この例では5個)直列に接続された超伝導加速空洞14を収納し、更にこの液体ヘリウム容器10を真空容器8内に収納した構造をしている。即ちこの超伝導加速空洞14は、5セル構造をしている。
【0031】
液体ヘリウム容器10に液体ヘリウム12を供給するヘリウム冷凍機を備えているが、ここではその図示を省略している。また、液体ヘリウム容器10と真空容器8との間には、通常は、窒素温度シールド等が設けられているが、これも図示を省略している。
【0032】
各超伝導加速空洞14は、この例では、ニオブ(Nb )で形成されており、液体ヘリウム12の温度4.2Kで超伝導状態に保たれる。但し、この超伝導加速空洞14には、ニオブ以外の超伝導材料を用いても良く、またその材料に応じて、それを超伝導状態に保つ冷却温度や冷却媒体を定めれば良い。
【0033】
この各超伝導加速空洞14には、前記高周波発振器16から、この例では同軸管22およびアンテナ26を経由して、荷電粒子加速用の高周波電力が供給される。これによって、各超伝導加速空洞14において高周波電界が生じ、当該高周波電界によって荷電粒子4を加速することができる。
【0034】
超伝導加速空洞14の数(セル数)および高周波電力の周波数等によって、荷電粒子4の最大の加速エネルギーは概ね定まる。例えば、電子を加速する場合、500MHzで5セルとすれば、最大で10MeV程度のエネルギーを得ることができる。これ以下の範囲内において、この発明によれば、上記数3の関係に従って、エネルギーEを簡単に調整することができる。
【0035】
反射調整機構30は、この例では、図2に示すように、同軸管22に接続されていて超伝導加速空洞14に高周波電力を供給するアンテナ26と、当該アンテナ26を矢印Bに示すように出し入れする駆動部28とを備えている。この駆動部28は、モータを有している。アンテナ26の貫通部は、セラミックス等から成る仕切板24によって、内側の真空雰囲気と外側の大気とが仕切られている。
【0036】
この反射調整機構30によってアンテナ26を出し入れすることによって、超伝導加速空洞14との高周波の結合状態を調整して、超伝導加速空洞14からの反射Rを実質的に零に(即ち零または零と見なせる程度に)調整することができる。この反射Rは、この例では、前述した反射計測器20によってモニタすることができる。
【0037】
この例では更に、反射計測器20で計測する反射Rに応じて駆動部28を制御して、超伝導加速空洞14からの反射Rを自動で実質的に零に調整する反射制御装置32を設けている。但し、反射Rの上記のような調整は、反射計測器20を見ながら手動で行っても良い。その場合は、反射制御装置32は不要であり、また、駆動部28を手動機構にしても良い。
【0038】
この荷電粒子加速装置は、更に、超伝導加速器6で加速する荷電粒子4の電流値iを計測する電流計測器34を備えている。
【0039】
この電流計測器34は、この例では、超伝導加速器6の出口部に設けられていて、加速後の荷電粒子4が中を通ることによって流れる電流を計測する巻線であり、これは変流器と呼ぶこともできる。この電流計測器34は、超伝導加速器6の入口部に設けて、超伝導加速器6に入射する直前の荷電粒子4の電流値iを計測しても良いし、荷電粒子源2から出た直後の荷電粒子4の電流値iを計測しても良い。あるいは、荷電粒子源2が電子銃のような場合は、上記のような電流計測器34の代わりに、カソード電流を計測する電流計測器を用いても良い。この装置では、荷電粒子源2から出力された荷電粒子4は途中でロスすることなく全て加速されると考えることができるので、上記いずれの箇所で荷電粒子4の電流値iを計測しても良い。
【0040】
エネルギー制御装置36は、出力計測器18で計測した前記出力Pおよび電流計測器34で計測した前記電流値iを用いて、前記数3の演算を行って、超伝導加速器6から出力する荷電粒子4のエネルギーEを求めて、当該エネルギーEを所望の(目的の)値に制御する機能を有している。例えば、高周波発振器16から出力する出力Pを一定に保ちながら、目的とするエネルギーEになるように、荷電粒子源2を制御してそれから出力する荷電粒子4の電流値iを制御することができる。あるいは、目的とするエネルギーEおよび電流値iが得られるように、高周波発振器16から出力する高周波電力の出力Pおよび荷電粒子源2から出力する荷電粒子4の電流値iを制御することができる。
【0041】
このエネルギー制御装置36と上記反射制御装置32とを、一つの制御装置内に組み込んでも良い。即ち、両者32、36の上記機能を有する統合された制御装置を設けても良い。
【0042】
なお、超伝導加速器6の下流側に、この例のように、超伝導加速器6から出力された荷電粒子4を走査する走査器(図示例では走査コイル)38および末広がりの走査管40を設けて、走査管40の先端部に設けた窓箔42を透過させて、走査された荷電粒子4を照射雰囲気中(例えば大気中)へ取り出して被照射物44に照射するように構成しても良い。この場合、荷電粒子4を電子とすれば、この装置は走査形の電子線照射装置となる。これによって、被照射物44に、例えば、架橋、改質、殺菌、滅菌、殺虫等の処理を施すことができる。
【0043】
前述したように、従来の高周波形の線形加速器は常伝導タイプの加速空洞を用いるものであり、入力された高周波電力の内の大部分はジュール熱損となるので、しかもその割合は一定でないので、前記数1の関係を得ることはできない。
【0044】
これに対して、この超伝導加速器6では、前述したように、超伝導加速空洞14を用いていて、そこでのジュール熱損が実質的に零である(即ち零または無視し得る程度に小さい)ので、入力された高周波電力の全てが荷電粒子4のパワーに変換される。しかも、反射調整機構30によって無反射の状態に調整する。その結果、この荷電粒子加速装置では上記数3の関係が成立する。
【0045】
しかも、高周波発振器16の出力Pは、例えば出力計測器18によって簡単にかつ正確に計測することができる。荷電粒子4の電流値iも、例えば電流計測器34によって簡単にかつ正確に計測することができる。
【0046】
この荷電粒子加速装置では、このように簡単にかつ正確に計測することのできる高周波発振器16の出力Pおよび荷電粒子4の電流値iを用いて、上記数3の関係に基づいて、荷電粒子4のエネルギーEを制御するものであり、これによって、超伝導加速器6による加速後の荷電粒子のエネルギーEを、所望の値に、簡単にしかも高い信頼性で正確に制御することができる。そのエネルギーEの再現性も非常に良い。
【0047】
また、従来のエネルギー計測用に偏向電磁石を用いる場合と違って、荷電粒子4を曲げる必要がなく、荷電粒子4の軌道を直線状に保つことができ、しかも加速後にすぐに荷電粒子4を目的の処理に用いることができるので、機器構成が容易になると共に省スペースにもなる。
【0048】
しかも、上記数1から分かるように高周波発振器16の出力Pを一定に保つことによって超伝導加速器6から出力する荷電粒子4のパワーWを一定に保つことができ、このパワーWを一定に保ったままで、荷電粒子4の電流値iを変えることによって、上記数3から分かるように、荷電粒子4のエネルギーEを簡単に変えることができるのも大きな特徴である。例えば、超伝導加速器6から出力する荷電粒子4のパワーWを100kWの一定に保ちながら、エネルギーEが10MeVで電流値iが10mAの荷電粒子4を出力することも、あるいはエネルギーEが5MeVで電流値iが20mAの荷電粒子4を出力することも、簡単に実現することができる。
【0049】
このことは、加速された荷電粒子4を、例えば前述した電子線照射装置のように、被照射物の処理に用いる場合に特に便利である。というのも、荷電粒子4のパワーWは、被照射物の処理能力に直結するものであり、その処理能力を変えずに、荷電粒子4のエネルギーEだけを変えたい場合がある。例えば、高さの異なる被照射物を同一のコンベアで搬送しながら当該被照射物に電子線を照射して殺菌処理を施すような場合、電子線のパワーは変えずに電子線のエネルギーEを被照射物の高さに応じて変えて電子線の透過力(即ち殺菌処理の深さ)を変えるのが好ましく、それに簡単に対応することができる。
【0050】
従来の常伝導形の加速空洞を用いた線形加速器では、前述したように加速エネルギーを変えるのは非常に難しく、またエネルギー調整後の加速エネルギーの再現性も悪いので、上記のような場合に簡単にエネルギーを変えて対応する等ということは到底できない。
【0051】
また、従来の常伝導形の加速空洞を用いた線形加速器では、加速空洞におけるジュール熱損が非常に大きくて加速空洞の冷却が難しいので、デューティ比が極めて小さい(例えば1%以下の)パルス運転しかできなかったのに対して、上記超伝導加速器6では、超伝導加速空洞14におけるジュール熱損による発熱の問題が殆どないので、加速された荷電粒子4を連続的に取り出す連続運転を行うことができる。あるいは、従来に比べてデューティ比の遙かに大きい(例えば25%とか50%等の)間欠運転も勿論可能である。従って、荷電粒子4の利用効率が従来に比べて飛躍的に向上する。従って例えば、このような荷電粒子4を被照射物の処理に用いることによって、処理効率を飛躍的に高めることができる。
【0052】
【発明の効果】
以上のようにこの発明は、超伝導加速空洞を用い、かつ当該超伝導加速空洞からの高周波の反射を実質的に零に調整することにより、供給された高周波電力が全て荷電粒子のパワーに変換されることを利用して、荷電粒子のエネルギーEをE=P/iなる関係に基づいて制御するものであり、これによって、加速後の荷電粒子のエネルギーを、簡単にしかも高い信頼性で正確に制御することができる。そのエネルギーの再現性も非常に良い。
また、従来のようにエネルギー計測用に偏向電磁石を用いる場合と違って、荷電粒子を曲げる必要がなく、荷電粒子の軌道を直線状に保つことができ、しかも加速後にすぐに荷電粒子を目的の処理に用いることができるので、機器構成が容易になると共に省スペースにもなる。
しかも、高周波発振器の出力Pを一定に保つことによって超伝導加速器から出力する荷電粒子のパワーを一定に保つことができ、このパワーを一定に保ったままで、荷電粒子の電流値iを変えることによって、上記式E=P/iから分かるように、荷電粒子のエネルギーEを簡単に変えることができるのも大きな特徴である。
【0053】
しかも、超伝導加速空洞を用いていてジュール熱損による発熱の問題が殆どないので、加速された荷電粒子を連続的に取り出す連続運転や、従来に比べてデューティ比が遙かに大きい間欠運転も可能になる。
【図面の簡単な説明】
【図1】この発明に係るエネルギー制御方法を実施する荷電粒子加速装置の一例を示す概略図である。
【図2】図1中の超伝導加速器周りの一例を示す概略断面図である。
【符号の説明】
2 荷電粒子源
4 荷電粒子
6 超伝導加速器
14 超伝導加速空洞
16 高周波発振器
18 出力計測器
20 反射計測器
30 反射調整機構
32 反射制御装置
34 電流計測器
36 エネルギー制御装置
[0001]
BACKGROUND OF THE INVENTION
In the present invention, charged particles such as electrons and ions are accelerated using a high-frequency linear accelerator (Linac, also called linac), and crosslinking, modification, sterilization, sterilization, insecticide, etc. by electron beam irradiation are performed. In particular, the present invention relates to a charged particle accelerator used for ion implantation and modification by ion irradiation, and a method for controlling charged particle energy. More specifically, by using a superconducting accelerator as a linear accelerator, the charged particle energy is controlled. It relates to means to facilitate.
[0002]
[Prior art]
A charged particle source that generates charged particles such as electrons and ions, a linear accelerator that accelerates charged particles given from the charged particle source by a high frequency electric field in an acceleration cavity, and a high frequency that supplies high frequency power for acceleration to the linear accelerator A charged particle acceleration device including an oscillator is called a high-frequency linac or the like and has already been used in various fields.
[0003]
[Problems to be solved by the invention]
Unlike an accelerator using an electrostatic field such as a cockcroft type, it is very difficult to control the energy of charged particles accelerated by a conventional linear accelerator using a high-frequency electric field as described above.
[0004]
This is because conventional linear accelerators use normal-type acceleration cavities, and most of the input high-frequency power is consumed as Joule heat loss in the accelerating cavities. This is because uniform and large distortion occurs and operation instability easily occurs. It is very difficult to suppress the occurrence of instability, and even if the generation of instability is suppressed at a certain energy, the generation of instability occurs easily at other energy.
[0005]
In addition, it is not easy to know how much energy the charged particles have after acceleration. This is because, as described above, most of the input high-frequency power is consumed as Joule heat loss in the acceleration cavity, and it is not precisely known how much of the rest is converted into charged particle energy. Because. The rate of energy conversion varies depending on the device configuration, the frequency of high-frequency power, power, input adjustment, and the like, and is not constant.
[0006]
Conventionally, in order to obtain the energy of the charged particles after acceleration, (a) the intensity of the high-frequency electric field generated in the acceleration cavity is measured using an antenna or the like, and the acceleration electric field strength is estimated to estimate the energy, (B) Bending charged particles emitted from a linear accelerator with a bending electromagnet and calculating the energy from the bending state, or (c) Necessary parameters using a known energy event such as a nuclear reaction Was calibrated with energy, and during that time, it was determined appropriately by interpolation.
[0007]
However, the means (a) above is a guess and is not reliable. The means (b) requires a deflecting electromagnet, and the configuration becomes large. In addition, bending charged particles requires a large space. In some cases, it is difficult to adopt a device arrangement that bends charged particles using a deflecting electromagnet. The means (c) also takes time since a calibration system such as a calibration graph is used. Moreover, it is necessary to periodically check whether the calibration has changed over time.
[0008]
SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a method and an apparatus that can easily and accurately control the energy of charged particles after acceleration.
[0009]
[Means for Solving the Problems]
The charged particle energy control method according to the present invention uses, as the linear accelerator, a superconducting accelerator having a superconducting acceleration cavity that is maintained in a superconducting state and accelerates the charged particles by a high-frequency electric field. The reflection of the high frequency from the superconducting acceleration cavity is adjusted to substantially zero, and the output P of the high frequency power output from the high frequency oscillator and substantially all the current values i of the charged particles accelerated by the superconducting accelerator are obtained. And the energy E of the charged particles after being accelerated by the superconducting accelerator is controlled based on the relationship E = P / i.
[0010]
The charged particle accelerator according to the present invention includes, as the linear accelerator, a superconducting accelerator having a superconducting acceleration cavity that is maintained in a superconducting state and accelerates the charged particles by a high-frequency electric field. A reflection adjustment mechanism that adjusts the high-frequency reflection from the superconducting acceleration cavity in the accelerator to substantially zero, an output measuring instrument that measures the high-frequency output P output from the high-frequency oscillator, and acceleration with the superconducting accelerator Accelerated by the superconducting accelerator using a current measuring device that measures substantially all current values i of charged particles, an output P measured by the output measuring device, and a current value i measured by the current measuring device. And an energy control device that controls the energy E of the charged particles after that based on the relationship E = P / i.
[0011]
According to the above configuration, the high-frequency power output from the high-frequency oscillator adjusts the high-frequency reflection from the superconducting acceleration cavity to substantially zero, and is thus supplied to the superconducting acceleration cavity.
[0012]
In this superconducting accelerating cavity, because of superconductivity, Joule heat loss is substantially zero, i.e., no loss is caused in the accelerating cavity, and all supplied high-frequency power is used to accelerate charged particles, Converted to the power of charged particles.
[0013]
Therefore, the relationship of the following equation is established between the output P of the high frequency power output from the high frequency oscillator and the power W of the charged particles accelerated by the superconducting accelerator.
[0014]
[Expression 1]
P = W
[0015]
On the other hand, the power W of the charged particle after acceleration is the product of the energy E of the charged particle and the current value i of the charged particle, and is expressed by the following equation.
[0016]
[Expression 2]
W = E ・ i
[0017]
From the above equations 1 and 2, the following relationship is obtained.
[0018]
[Equation 3]
E = P / i
[0019]
The inventors of the present application have found that the relationship of the above formula 3 is established in the charged particle accelerator by using the superconducting acceleration cavity and adjusting the high frequency from it to a non-reflective state.
[0020]
The output P of the high frequency oscillator can be easily and accurately measured by a known technique such as a high frequency power meter.
[0021]
The current value i of the charged particles can also be easily and accurately measured by a known technique such as a current transformer.
[0022]
The present invention controls the energy E of charged particles based on the relationship of the above equation 3 using the output P and the current value i that can be measured easily and accurately in this way. The energy of the charged particles after acceleration can be easily and accurately controlled with high reliability.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic diagram showing an example of a charged particle acceleration apparatus that implements the energy control method according to the present invention. FIG. 2 is a schematic cross-sectional view showing an example around the superconducting accelerator in FIG.
[0024]
This charged particle acceleration device includes a charged particle source 2 that generates (emits) charged particles 4 and a superconducting acceleration that accelerates charged particles 4 that are supplied from the charged particle source 2 while being kept in a superconducting state by a high-frequency electric field. A superconducting accelerator 6 having a cavity 14 (see FIG. 2) and a high-frequency oscillator 16 for supplying high-frequency power for accelerating charged particles to the superconducting accelerator 6 (more specifically, to the superconducting accelerating cavity 14 therein). A reflection adjusting mechanism 30 for adjusting the high-frequency reflection from the superconducting accelerator 6 (more specifically, from the superconducting acceleration cavity 14 inside the superconducting accelerator 6) to zero, and after acceleration based on the above equation (3) And an energy control device 36 for controlling the energy E of the charged particles 4.
[0025]
The charged particles 4 are, for example, electrons or ions.
[0026]
When the charged particle 4 is an electron, the charged particle source 2 is, for example, an electron gun. When the charged particles 4 are ions, the charged particle source 2 is, for example, an ion source.
[0027]
In this example, the high-frequency oscillator 16 is a high-frequency output from an output measuring instrument 18 that measures the output P of high-frequency power that is output therefrom, and the superconducting accelerator 6 (more specifically, from the superconducting acceleration cavity 14 inside it). And a reflection measuring instrument 20 for measuring the reflection R of the light. The output measuring instrument 18 is, for example, a high frequency wattmeter. The reflection measuring instrument 20 is, for example, a reflection wattmeter.
[0028]
The high-frequency power output from the high-frequency oscillator 16 is supplied to the superconducting acceleration cavity 14 in the superconducting accelerator 6 via the coaxial tube 22 in this example. However, a waveguide or the like may be used instead of the coaxial tube 22. In this specification, “high frequency” is used in a broad concept including microwaves.
[0029]
The superconducting accelerator 6 is a kind of high-frequency linear accelerator, and in this example, has a structure as shown in FIG.
[0030]
That is, the superconducting accelerator 6 accommodates a plurality (5 in this example) of superconducting accelerating cavities 14 connected in series in a liquid helium container 10 filled with liquid helium 12, and further this liquid helium container. 10 is housed in a vacuum vessel 8. That is, the superconducting acceleration cavity 14 has a five-cell structure.
[0031]
Although a helium refrigerator for supplying liquid helium 12 to the liquid helium container 10 is provided, the illustration thereof is omitted here. In addition, a nitrogen temperature shield or the like is usually provided between the liquid helium vessel 10 and the vacuum vessel 8, but this is also omitted from the drawing.
[0032]
Each superconducting accelerating cavity 14 is made of niobium (Nb) in this example, and is kept in a superconducting state at a temperature of 4.2 K of liquid helium 12. However, a superconducting material other than niobium may be used for the superconducting accelerating cavity 14, and a cooling temperature and a cooling medium for keeping it in a superconducting state may be determined according to the material.
[0033]
Each superconducting accelerating cavity 14 is supplied with high-frequency power for accelerating charged particles from the high-frequency oscillator 16 via a coaxial tube 22 and an antenna 26 in this example. Thereby, a high-frequency electric field is generated in each superconducting acceleration cavity 14, and the charged particles 4 can be accelerated by the high-frequency electric field.
[0034]
The maximum acceleration energy of the charged particles 4 is generally determined by the number of superconducting acceleration cavities 14 (number of cells), the frequency of the high frequency power, and the like. For example, when accelerating electrons, if 5 cells are used at 500 MHz, energy of about 10 MeV can be obtained at the maximum. Within this range, according to the present invention, the energy E can be easily adjusted according to the relationship of the above formula 3.
[0035]
In this example, as shown in FIG. 2, the reflection adjusting mechanism 30 is connected to the coaxial tube 22 and supplies high-frequency power to the superconducting acceleration cavity 14, and the antenna 26 is indicated by an arrow B. And a drive unit 28 for taking in and out. The drive unit 28 has a motor. In the penetration portion of the antenna 26, an inner vacuum atmosphere and an outer atmosphere are partitioned by a partition plate 24 made of ceramics or the like.
[0036]
The reflection adjustment mechanism 30 moves the antenna 26 in and out to adjust the high-frequency coupling state with the superconducting acceleration cavity 14 so that the reflection R from the superconducting acceleration cavity 14 is substantially zero (that is, zero or zero). Can be adjusted). In this example, the reflection R can be monitored by the reflection measuring instrument 20 described above.
[0037]
In this example, there is further provided a reflection control device 32 that automatically controls the reflection R from the superconducting acceleration cavity 14 to substantially zero by controlling the drive unit 28 according to the reflection R measured by the reflection measuring instrument 20. ing. However, the adjustment of the reflection R as described above may be performed manually while viewing the reflection measuring instrument 20. In that case, the reflection control device 32 is unnecessary, and the drive unit 28 may be a manual mechanism.
[0038]
The charged particle accelerator further includes a current measuring device 34 that measures a current value i of the charged particle 4 accelerated by the superconducting accelerator 6.
[0039]
In this example, the current measuring device 34 is provided at the exit of the superconducting accelerator 6 and is a winding that measures the current that flows when the accelerated charged particles 4 pass through. It can also be called a vessel. The current measuring device 34 may be provided at the entrance of the superconducting accelerator 6 to measure the current value i of the charged particles 4 immediately before entering the superconducting accelerator 6 or immediately after leaving the charged particle source 2. The current value i of the charged particle 4 may be measured. Alternatively, when the charged particle source 2 is an electron gun, a current measuring device that measures the cathode current may be used instead of the current measuring device 34 described above. In this apparatus, it can be considered that all the charged particles 4 output from the charged particle source 2 are accelerated without any loss on the way, so even if the current value i of the charged particles 4 is measured at any of the above points. good.
[0040]
The energy control device 36 performs the calculation of Equation 3 using the output P measured by the output measuring instrument 18 and the current value i measured by the current measuring instrument 34, and outputs charged particles output from the superconducting accelerator 6. 4 is obtained, and the energy E is controlled to a desired (target) value. For example, while maintaining the output P output from the high-frequency oscillator 16, the charged particle source 2 can be controlled to control the current value i of the charged particle 4 output from the target so as to achieve the target energy E. . Alternatively, the output value P of the high-frequency power output from the high-frequency oscillator 16 and the current value i of the charged particles 4 output from the charged particle source 2 can be controlled so that the target energy E and current value i can be obtained.
[0041]
The energy control device 36 and the reflection control device 32 may be incorporated in one control device. That is, an integrated control device having the functions of both 32 and 36 may be provided.
[0042]
As shown in this example, a scanner (scanning coil in the illustrated example) 38 that scans the charged particles 4 output from the superconducting accelerator 6 and a scanning tube 40 that spreads toward the end are provided on the downstream side of the superconducting accelerator 6. Further, it may be configured such that the window foil 42 provided at the tip of the scanning tube 40 is transmitted, the scanned charged particles 4 are taken out in an irradiation atmosphere (for example, in the air) and irradiated on the irradiated object 44. . In this case, if the charged particle 4 is an electron, this device becomes a scanning electron beam irradiation device. As a result, the irradiated object 44 can be subjected to processing such as crosslinking, modification, sterilization, sterilization, and insecticidal treatment.
[0043]
As described above, a conventional high-frequency linear accelerator uses a normal-type acceleration cavity, and most of the input high-frequency power is Joule heat loss, and the ratio is not constant. , The relationship of Equation 1 cannot be obtained.
[0044]
In contrast, the superconducting accelerator 6 uses the superconducting accelerating cavity 14 as described above, and its Joule heat loss is substantially zero (that is, zero or negligibly small). Therefore, all of the input high frequency power is converted into the power of the charged particles 4. In addition, the reflection adjusting mechanism 30 adjusts to a non-reflecting state. As a result, in this charged particle accelerator, the relationship of the above formula 3 is established.
[0045]
Moreover, the output P of the high-frequency oscillator 16 can be easily and accurately measured by the output measuring instrument 18, for example. The current value i of the charged particle 4 can also be easily and accurately measured by the current measuring device 34, for example.
[0046]
In this charged particle acceleration device, the charged particle 4 based on the relationship of the above equation 3 using the output P of the high-frequency oscillator 16 and the current value i of the charged particle 4 that can be measured easily and accurately as described above. Thus, the energy E of the charged particles after being accelerated by the superconducting accelerator 6 can be controlled to a desired value easily and accurately with high reliability. The reproducibility of the energy E is also very good.
[0047]
Unlike the case of using a deflecting electromagnet for conventional energy measurement, the charged particles 4 need not be bent, and the trajectory of the charged particles 4 can be kept linear, and the charged particles 4 can be used immediately after acceleration. Therefore, the apparatus configuration is simplified and the space is saved.
[0048]
Moreover, as can be seen from the above equation 1, the power W of the charged particles 4 output from the superconducting accelerator 6 can be kept constant by keeping the output P of the high-frequency oscillator 16 constant, and this power W can be kept constant. Up to now, it is also a great feature that the energy E of the charged particle 4 can be easily changed by changing the current value i of the charged particle 4 as can be seen from the above equation (3). For example, while maintaining the power W of the charged particle 4 output from the superconducting accelerator 6 at a constant value of 100 kW, the charged particle 4 with an energy E of 10 MeV and a current value i of 10 mA is output, or the current E with an energy E of 5 MeV. Output of charged particles 4 having a value i of 20 mA can also be easily realized.
[0049]
This is particularly convenient when the accelerated charged particles 4 are used for the treatment of an object to be irradiated, such as the electron beam irradiation apparatus described above. This is because the power W of the charged particles 4 is directly related to the processing capability of the irradiated object, and there are cases where it is desired to change only the energy E of the charged particles 4 without changing the processing capability. For example, when irradiating an irradiated object with an electron beam while carrying irradiated objects of different heights on the same conveyor, the energy E of the electron beam is changed without changing the power of the electron beam. It is preferable to change the transmission power of the electron beam (that is, the depth of the sterilization treatment) according to the height of the object to be irradiated, and this can be easily dealt with.
[0050]
In conventional linear accelerators using normal-conducting accelerating cavities, it is very difficult to change the acceleration energy as described above, and the reproducibility of the acceleration energy after energy adjustment is also poor. It is impossible to respond by changing energy.
[0051]
Further, in the conventional linear accelerator using the normal conduction type accelerating cavity, the Joule heat loss in the accelerating cavity is very large and it is difficult to cool the accelerating cavity, so that the duty ratio is extremely small (for example, 1% or less). In contrast, in the superconducting accelerator 6, there is almost no problem of heat generation due to Joule heat loss in the superconducting acceleration cavity 14. Therefore, continuous operation for continuously taking out the accelerated charged particles 4 is performed. Can do. Or, of course, intermittent operation with a much larger duty ratio (for example, 25% or 50%, etc.) is also possible. Therefore, the utilization efficiency of the charged particles 4 is dramatically improved as compared with the conventional case. Therefore, for example, by using such charged particles 4 for processing the irradiated object, the processing efficiency can be dramatically increased.
[0052]
【The invention's effect】
As described above, the present invention uses a superconducting accelerating cavity and adjusts high-frequency reflection from the superconducting accelerating cavity to substantially zero, thereby converting all the supplied high-frequency power into the power of charged particles. In this way, the energy E of the charged particles is controlled based on the relationship E = P / i, and the energy of the charged particles after acceleration can be easily and accurately determined. Can be controlled. The reproducibility of the energy is very good.
In addition, unlike the conventional case of using a deflecting electromagnet for energy measurement, it is not necessary to bend the charged particles, the charged particle trajectory can be kept straight, and the charged particles can be used immediately after acceleration. Since it can be used for processing, the equipment configuration is simplified and the space is saved.
Moreover, the power of the charged particles output from the superconducting accelerator can be kept constant by keeping the output P of the high-frequency oscillator constant, and by changing the current value i of the charged particles while keeping this power constant. As can be seen from the above equation E = P / i, it is also a great feature that the energy E of the charged particles can be easily changed.
[0053]
Moreover, since the superconducting accelerating cavity is used and there is almost no problem of heat generation due to Joule heat loss, continuous operation in which accelerated charged particles are continuously extracted, and intermittent operation with a much higher duty ratio than conventional ones are also possible. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a charged particle acceleration apparatus that implements an energy control method according to the present invention.
2 is a schematic cross-sectional view showing an example around a superconducting accelerator in FIG. 1. FIG.
[Explanation of symbols]
2 charged particle source 4 charged particle 6 superconducting accelerator 14 superconducting acceleration cavity 16 high frequency oscillator 18 output measuring instrument 20 reflection measuring instrument 30 reflection adjusting mechanism 32 reflection control device 34 current measuring instrument 36 energy control device

Claims (2)

荷電粒子を発生する荷電粒子源と、この荷電粒子源から与えられる荷電粒子を加速空洞における高周波電界によって加速して出力する線形加速器と、この線形加速器内の加速空洞に加速用の高周波電力を供給する高周波発振器とを備える荷電粒子加速装置において、
前記線形加速器として、超伝導状態に保たれて前記荷電粒子を高周波電界によって加速する超伝導加速空洞を有する超伝導加速器を用い、この超伝導加速器内の超伝導加速空洞からの高周波の反射を実質的に零に調整し、前記高周波発振器から出力する高周波電力の出力Pおよび前記超伝導加速器で加速する荷電粒子の実質的に全部の電流値iを用いて、前記超伝導加速器で加速された後の荷電粒子のエネルギーEをE=P/iなる関係に基づいて制御することを特徴とする荷電粒子エネルギーの制御方法。
A charged particle source that generates charged particles, a linear accelerator that accelerates and outputs charged particles given from the charged particle source by a high-frequency electric field in the acceleration cavity, and supplies acceleration high-frequency power to the acceleration cavity in the linear accelerator In a charged particle acceleration device comprising a high-frequency oscillator that
As the linear accelerator, a superconducting accelerator having a superconducting accelerating cavity that is kept in a superconducting state and accelerates the charged particles by a high-frequency electric field is used. After being accelerated by the superconducting accelerator using the output P of the high-frequency power output from the high-frequency oscillator and substantially all the current values i of the charged particles accelerated by the superconducting accelerator. The charged particle energy control method is characterized in that the charged particle energy E is controlled based on the relationship E = P / i.
荷電粒子を発生する荷電粒子源と、この荷電粒子源から与えられる荷電粒子を加速空洞における高周波電界によって加速して出力する線形加速器と、この線形加速器内の加速空洞に加速用の高周波電力を供給する高周波発振器とを備える荷電粒子加速装置において、
前記線形加速器として、超伝導状態に保たれて前記荷電粒子を高周波電界によって加速する超伝導加速空洞を有する超伝導加速器を備えており、更に、この超伝導加速器内の超伝導加速空洞からの高周波の反射を実質的に零に調整する反射調整機構と、前記高周波発振器から出力する高周波の出力Pを計測する出力計測器と、前記超伝導加速器で加速する荷電粒子の実質的に全部の電流値iを計測する電流計測器と、前記出力計測器で計測した出力Pおよび前記電流計測器で計測した電流値iを用いて、前記超伝導加速器で加速された後の荷電粒子のエネルギーEをE=P/iなる関係に基づいて制御するエネルギー制御装置とを備えていることを特徴とする荷電粒子加速装置。
A charged particle source that generates charged particles, a linear accelerator that accelerates and outputs charged particles given from the charged particle source by a high-frequency electric field in the acceleration cavity, and supplies acceleration high-frequency power to the acceleration cavity in the linear accelerator In a charged particle acceleration device comprising a high-frequency oscillator that
The linear accelerator includes a superconducting accelerator having a superconducting acceleration cavity that is maintained in a superconducting state and accelerates the charged particles by a high-frequency electric field, and further includes a high-frequency from the superconducting acceleration cavity in the superconducting accelerator. A reflection adjustment mechanism for adjusting the reflection of the light to substantially zero, an output measuring instrument for measuring the high-frequency output P output from the high-frequency oscillator, and substantially all current values of the charged particles accelerated by the superconducting accelerator Using the current measuring instrument for measuring i, the output P measured by the output measuring instrument and the current value i measured by the current measuring instrument, the energy E of the charged particle after being accelerated by the superconducting accelerator is expressed as E A charged particle acceleration device comprising: an energy control device that performs control based on a relationship = P / i.
JP2001127374A 2001-04-25 2001-04-25 Charged particle energy control method and charged particle accelerator Expired - Fee Related JP3881854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127374A JP3881854B2 (en) 2001-04-25 2001-04-25 Charged particle energy control method and charged particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127374A JP3881854B2 (en) 2001-04-25 2001-04-25 Charged particle energy control method and charged particle accelerator

Publications (2)

Publication Number Publication Date
JP2002324700A JP2002324700A (en) 2002-11-08
JP3881854B2 true JP3881854B2 (en) 2007-02-14

Family

ID=18976249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127374A Expired - Fee Related JP3881854B2 (en) 2001-04-25 2001-04-25 Charged particle energy control method and charged particle accelerator

Country Status (1)

Country Link
JP (1) JP3881854B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105050308A (en) * 2015-08-04 2015-11-11 北京无线电测量研究所 Device and method for modulating hyper-stable high power pulse

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277942A (en) * 2009-06-01 2010-12-09 Mitsubishi Electric Corp H-mode drift tube linac, and method of adjusting electric field distribution therein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105050308A (en) * 2015-08-04 2015-11-11 北京无线电测量研究所 Device and method for modulating hyper-stable high power pulse
CN105050308B (en) * 2015-08-04 2017-10-24 北京无线电测量研究所 A kind of apparatus and method of overstable highpowerpulse modulation

Also Published As

Publication number Publication date
JP2002324700A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
US8942351B2 (en) Systems and methods for cargo scanning and radiotherapy using a traveling wave linear accelerator based X-ray source using pulse width to modulate pulse-to-pulse dosage
US9258876B2 (en) Traveling wave linear accelerator based x-ray source using pulse width to modulate pulse-to-pulse dosage
US8836250B2 (en) Systems and methods for cargo scanning and radiotherapy using a traveling wave linear accelerator based x-ray source using current to modulate pulse-to-pulse dosage
US9167681B2 (en) Traveling wave linear accelerator based x-ray source using current to modulate pulse-to-pulse dosage
Kou et al. High-power harmonic gyro-TWT's. I. Linear theory and oscillation study
US20100188027A1 (en) Traveling wave linear accelerator comprising a frequency controller for interleaved multi-energy operation
EP2427901B1 (en) Multiple output cavities in sheet beam klystron
US6646382B2 (en) Microminiature microwave electron source
JP2012234653A (en) Circular accelerator, and method for operating circular accelerator
RU2452143C2 (en) Method of generating deceleration radiation with pulse-by-pulse energy switching and radiation source for realising said method
US7005809B2 (en) Energy switch for particle accelerator
CN101573157A (en) Method and apparatus for stabilizing an energy source in a radiation delivery device
LaPointe et al. Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration
JP3881854B2 (en) Charged particle energy control method and charged particle accelerator
Hirshfield et al. Multimegawatt cyclotron autoresonance accelerator
US5363054A (en) Double beam cyclotron maser
KR20180078884A (en) Rf photo-injector for electron beam accelerator
JP3968463B2 (en) Charged particle accelerator and operating method thereof
WO2012044949A1 (en) Traveling wave linear accelerator for an x-ray source using current to modulate pulse -to- pulse dosage
JPH0822786A (en) Electron linear accelerator and its energy stabilizing method
Labrie et al. AECL IMPELA electron beam industrial irradiators
Gantenbein et al. Experimental results on high-power gyrotrons for the stellarator W7-X
KR20240066553A (en) Precise Automatic Control Method of Linear Accelerator System
Liu et al. Harmonic millimeter radiation from a microwave free-electron-laser amplifier
Warren et al. The Los Alamos free electron laser: Accelerator performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees