JP2002324700A - Control method of charged particle energy and charged particle accelerator - Google Patents

Control method of charged particle energy and charged particle accelerator

Info

Publication number
JP2002324700A
JP2002324700A JP2001127374A JP2001127374A JP2002324700A JP 2002324700 A JP2002324700 A JP 2002324700A JP 2001127374 A JP2001127374 A JP 2001127374A JP 2001127374 A JP2001127374 A JP 2001127374A JP 2002324700 A JP2002324700 A JP 2002324700A
Authority
JP
Japan
Prior art keywords
superconducting
accelerator
charged particles
energy
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001127374A
Other languages
Japanese (ja)
Other versions
JP3881854B2 (en
Inventor
Eisuke Minehara
英介 峰原
Eiji Iwamoto
英司 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Nissin High Voltage Co Ltd
Original Assignee
Japan Atomic Energy Research Institute
Nissin High Voltage Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nissin High Voltage Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP2001127374A priority Critical patent/JP3881854B2/en
Publication of JP2002324700A publication Critical patent/JP2002324700A/en
Application granted granted Critical
Publication of JP3881854B2 publication Critical patent/JP3881854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device which can control accelerated charged particle energy simply and surely with high reliability. SOLUTION: A superconducting accelerator 6 having a superconducting accelerating cavity accelerating charged particles 4 maintained in a superconductive condition by high frequency electric field is used as a linear accelerator accelerating the charged particles 4 given from a charged particle source 2. Then, high frequency reflection from the superconducting accelerator 6 is adjusted substantially to zero, and energy E of the charged particle 4 after accelerated at the superconductive accelerator 6 is controlled based on the relation of E=P/i using output P of high frequency power output from a high frequency oscillator 16 and current value i of the charge particles 4 after being accelerated at the superconductive accelerator 6. An energy control device 36 has a function processing above control.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高周波形の線形
加速器(Linac:ライナック。リニアックとも呼ば
れる。)を用いて電子、イオン等の荷電粒子を加速し
て、電子線照射による架橋、改質、殺菌、減菌、殺虫
等、あるいはイオン照射によるイオン注入、改質等に用
いられる荷電粒子加速装置および荷電粒子エネルギーの
制御方法に関し、より具体的には、線形加速器として超
伝導加速器を用いることによって、荷電粒子エネルギー
の制御を容易にする手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency linear accelerator (Linac; also called a linac), which accelerates charged particles such as electrons and ions, and performs crosslinking, modification, and the like by electron beam irradiation. Sterilization, sterilization, insecticide, etc., or ion implantation by ion irradiation, related to charged particle accelerator and charged particle energy control method used for reforming, more specifically, by using a superconducting accelerator as a linear accelerator And means for facilitating control of charged particle energy.

【0002】[0002]

【従来の技術】電子、イオン等の荷電粒子を発生する荷
電粒子源と、この荷電粒子源から与えられる荷電粒子を
加速空洞における高周波電界によって加速する線形加速
器と、この線形加速器に加速用の高周波電力を供給する
高周波発振器とを備える荷電粒子加速装置は、高周波ラ
イナック等と呼ばれて、既に各種分野において利用され
ている。
2. Description of the Related Art A charged particle source for generating charged particles such as electrons and ions, a linear accelerator for accelerating charged particles provided from the charged particle source by a high-frequency electric field in an acceleration cavity, and a high-frequency A charged particle accelerator including a high-frequency oscillator for supplying electric power is called a high-frequency linac or the like and has already been used in various fields.

【0003】[0003]

【発明が解決しようとする課題】コッククロフト形のよ
うな静電界による加速器と違って、従来の上記のような
高周波電界による線形加速器によって加速される荷電粒
子のエネルギーを制御するのは非常に難しい。
Unlike an accelerator using a static electric field such as a Cockcroft type, it is very difficult to control the energy of charged particles accelerated by a conventional linear accelerator using a high-frequency electric field as described above.

【0004】これは、従来の線形加速器は常伝導タイプ
の加速空洞を用いるものであり、入力された高周波電力
の内の大部分は加速空洞におけるジュール熱損となって
消費され、この熱によって加速空洞に不均一でしかも大
きな歪みが発生して、容易に動作不安定が発生するから
である。この不安定発生を抑えるのが非常に難しく、あ
るエネルギーで不安定発生を抑えても、他のエネルギー
では容易に不安定発生が起こる。
The conventional linear accelerator uses a normal conduction type accelerating cavity, and most of the input high-frequency power is consumed as Joule heat loss in the accelerating cavity, and this heat causes the acceleration. This is because unevenness and large distortion are generated in the cavity, and unstable operation easily occurs. It is very difficult to suppress the occurrence of instability. Even if the occurrence of instability is suppressed with a certain energy, the occurrence of instability easily occurs with another energy.

【0005】また、加速後の荷電粒子のエネルギーが幾
らになっているのかを知ることも容易ではない。これ
は、上記のように、入力された高周波電力の内の大部分
は加速空洞におけるジュール熱損となって消費され、残
りの幾らが荷電粒子のエネルギーに変換されるかが正確
には分からないからである。このエネルギー変換の割合
は、機器構成、高周波電力の周波数、パワー、入力調整
等に依って変化し、一定ではない。
[0005] It is not easy to know the energy of charged particles after acceleration. This is because, as described above, most of the input high-frequency power is consumed as Joule heat loss in the accelerating cavity, and it is not exactly known how much of the remaining is converted to charged particle energy. Because. The rate of this energy conversion varies depending on the device configuration, the frequency of high-frequency power, power, input adjustment, and the like, and is not constant.

【0006】従来は、加速後の荷電粒子のエネルギーを
求めるために、(a)加速空洞内に生じる高周波電界の
強さをアンテナ等を用いて計測して加速電界強度を推測
してエネルギーを推測したり、(b)線形加速器から加
速されて出て来た荷電粒子を偏向電磁石で曲げてその曲
がり具合からエネルギーを計算したり、(c)核反応等
のエネルギーの分かっている事象を用いて必要なパラメ
ータをエネルギー校正し、その間は内挿で適宜決める、
等の手段を用いていた。
Conventionally, in order to obtain the energy of charged particles after acceleration, (a) the intensity of a high-frequency electric field generated in an acceleration cavity is measured using an antenna or the like to estimate the acceleration electric field intensity, and the energy is estimated. (B) calculating the energy from the degree of bending by bending a charged particle that has emerged from the linear accelerator by a bending electromagnet, and (c) using an event whose energy is known, such as a nuclear reaction. The necessary parameters are calibrated with energy, and the interval is determined appropriately by interpolation.
And other means.

【0007】しかし、上記(a)の手段は、推測に推測
を重ねるものであり、信頼性に欠ける。上記(b)の手
段は、偏向電磁石が必要であり、構成が大がかりにな
る。しかも、荷電粒子を曲げると、大きなスペースを必
要とする。偏向電磁石を用いて荷電粒子を曲げる機器配
置を採ることが困難な場合もある。上記(c)の手段
も、校正グラフ等の校正システムを用いるため、手間が
かかる。しかも、その校正が経時変化していないかを定
期的にチェックする必要がある。
However, the above-mentioned means (a) repeats guesswork, and lacks reliability. The means (b) requires a deflecting electromagnet and requires a large configuration. Moreover, bending the charged particles requires a large space. In some cases, it is difficult to adopt a device arrangement for bending charged particles using a bending electromagnet. Since the means (c) uses a calibration system such as a calibration graph, it takes time and effort. In addition, it is necessary to periodically check whether the calibration has changed over time.

【0008】そこでこの発明は、加速後の荷電粒子のエ
ネルギーを、簡単にしかも高い信頼性で正確に制御する
ことのできる方法および装置を提供することを主たる目
的とする。
Accordingly, an object of the present invention is to provide a method and an apparatus capable of controlling the energy of charged particles after acceleration simply and accurately with high reliability.

【0009】[0009]

【課題を解決するための手段】この発明に係る荷電粒子
エネルギーの制御方法は、前記線形加速器として、超伝
導状態に保たれて前記荷電粒子を高周波電界によって加
速する超伝導加速空洞を有する超伝導加速器を用い、こ
の超伝導加速器内の超伝導加速空洞からの高周波の反射
を実質的に零に調整し、前記高周波発振器から出力する
高周波電力の出力Pおよび前記超伝導加速器で加速する
荷電粒子の電流値iを用いて、前記超伝導加速器で加速
された後の荷電粒子のエネルギーEをE=P/iなる関
係に基づいて制御することを特徴としている。
According to the present invention, there is provided a method for controlling charged particle energy, comprising a superconducting accelerating cavity which is maintained in a superconducting state and accelerates the charged particles by a high-frequency electric field. Using an accelerator, the high-frequency reflection from the superconducting accelerating cavity in the superconducting accelerator is adjusted to substantially zero, the output P of the high-frequency power output from the high-frequency oscillator and the charged particles accelerated by the superconducting accelerator. It is characterized in that the energy E of the charged particles after being accelerated by the superconducting accelerator is controlled based on the relationship of E = P / i using the current value i.

【0010】この発明に係る荷電粒子加速装置は、前記
線形加速器として、超伝導状態に保たれて前記荷電粒子
を高周波電界によって加速する超伝導加速空洞を有する
超伝導加速器を備えており、更に、この超伝導加速器内
の超伝導加速空洞からの高周波の反射を実質的に零に調
整する反射調整機構と、前記高周波発振器から出力する
高周波の出力Pを計測する出力計測器と、前記超伝導加
速器で加速する荷電粒子の電流値iを計測する電流計測
器と、前記出力計測器で計測した出力Pおよび前記電流
計測器で計測した電流値iを用いて、前記超伝導加速器
で加速された後の荷電粒子のエネルギーEをE=P/i
なる関係に基づいて制御するエネルギー制御装置とを備
えていることを特徴としている。
[0010] The charged particle accelerator according to the present invention includes, as the linear accelerator, a superconducting accelerator having a superconducting accelerating cavity which is maintained in a superconducting state and accelerates the charged particles by a high-frequency electric field. A reflection adjusting mechanism for adjusting the reflection of high frequency from a superconducting acceleration cavity in the superconducting accelerator to substantially zero, an output measuring device for measuring a high-frequency output P output from the high-frequency oscillator, and the superconducting accelerator A current measuring device for measuring the current value i of the charged particle accelerated by the above, and using the output P measured by the output measuring device and the current value i measured by the current measuring device, after being accelerated by the superconducting accelerator. The energy E of the charged particles of E = P / i
And an energy control device that performs control based on the following relationship.

【0011】上記構成によれば、高周波発振器から出力
された高周波電力は、超伝導加速空洞からの高周波の反
射を実質的に零に調整するので、全て超伝導加速空洞に
供給される。
According to the above configuration, the high-frequency power output from the high-frequency oscillator adjusts the reflection of the high-frequency wave from the superconducting acceleration cavity to substantially zero, and is therefore all supplied to the superconducting acceleration cavity.

【0012】この超伝導加速空洞では、超伝導であるが
故に、ジュール熱損が実質的に零であり、即ち加速空洞
でロスすることはなく、供給された高周波電力は全て荷
電粒子の加速に使用され、荷電粒子のパワーに変換され
る。
In this superconducting accelerating cavity, since it is superconducting, Joule heat loss is substantially zero, that is, there is no loss in the accelerating cavity, and all supplied high frequency power is used to accelerate charged particles. Used and converted to charged particle power.

【0013】従って、高周波発振器から出力される高周
波電力の出力Pと、超伝導加速器で加速される荷電粒子
のパワーWとの間には、次式の関係が成立する。
Therefore, the following relationship is established between the output P of the high-frequency power output from the high-frequency oscillator and the power W of the charged particles accelerated by the superconducting accelerator.

【0014】[0014]

【数1】P=W## EQU1 ## P = W

【0015】一方、加速後の荷電粒子のパワーWは、荷
電粒子のエネルギーEと当該荷電粒子の電流値iとの積
であり、次式で表される。
On the other hand, the power W of the charged particle after acceleration is the product of the energy E of the charged particle and the current value i of the charged particle, and is expressed by the following equation.

【0016】[0016]

【数2】W=E・i## EQU2 ## W = E · i

【0017】上記数1および数2より、次式の関係が得
られる。
From the above equations (1) and (2), the following equation is obtained.

【0018】[0018]

【数3】E=P/iE = P / i

【0019】本願の発明者達は、超伝導加速空洞を用い
ることにより、かつそれからの高周波を無反射状態に調
整することにより、荷電粒子加速装置において上記数3
の関係が成立することを見い出した。
By using a superconducting accelerating cavity and adjusting a high frequency wave from the superconducting cavity to a non-reflection state, the inventors of the present application have realized the above equation (3) in a charged particle accelerator.
Was found to hold.

【0020】上記高周波発振器の出力Pは、高周波電力
計等の公知の技術によって、簡単にかつ正確に計測する
ことができる。
The output P of the high-frequency oscillator can be easily and accurately measured by a known technique such as a high-frequency power meter.

【0021】上記荷電粒子の電流値iも、変流器等の公
知の技術によって、簡単にかつ正確に計測することがで
きる。
The current value i of the charged particles can be easily and accurately measured by a known technique such as a current transformer.

【0022】この発明は、このように簡単にかつ正確に
計測することのできる出力Pおよび電流値iを用いて、
上記数3の関係に基づいて、荷電粒子のエネルギーEを
制御するものであり、これによって、加速後の荷電粒子
のエネルギーを、簡単にしかも高い信頼性で正確に制御
することができる。
The present invention uses the output P and the current value i which can be measured simply and accurately as described above.
The energy E of the charged particles is controlled based on the relationship of the above Expression 3, whereby the energy of the charged particles after acceleration can be easily and accurately controlled with high reliability.

【0023】[0023]

【発明の実施の形態】図1は、この発明に係るエネルギ
ー制御方法を実施する荷電粒子加速装置の一例を示す概
略図である。図2は、図1中の超伝導加速器周りの一例
を示す概略断面図である。
FIG. 1 is a schematic diagram showing an example of a charged particle accelerator for implementing an energy control method according to the present invention. FIG. 2 is a schematic cross-sectional view showing an example around the superconducting accelerator in FIG.

【0024】この荷電粒子加速装置は、荷電粒子4を発
生(射出)する荷電粒子源2と、超伝導状態に保たれて
この荷電粒子源2から供給される荷電粒子4を高周波電
界によって加速する超伝導加速空洞14(図2参照)を
有する超伝導加速器6と、この超伝導加速器6に(より
具体的にはその内部の超伝導加速空洞14に)荷電粒子
加速用の高周波電力を供給する高周波発振器16と、超
伝導加速器6からの(より具体的にはその内部の超伝導
加速空洞14からの)高周波の反射を実質的に零に調整
する反射調整機構30と、上記数3に基づいて加速後の
荷電粒子4のエネルギーEを制御するエネルギー制御装
置36とを備えている。
This charged particle accelerator accelerates a charged particle source 2 for generating (ejecting) charged particles 4 and a charged particle 4 supplied from the charged particle source 2 maintained in a superconducting state by a high-frequency electric field. A superconducting accelerator 6 having a superconducting acceleration cavity 14 (see FIG. 2), and a high-frequency power for charged particle acceleration is supplied to the superconducting accelerator 6 (more specifically, to the superconducting acceleration cavity 14 therein). A high-frequency oscillator 16, a reflection adjusting mechanism 30 for adjusting the reflection of high-frequency waves from the superconducting accelerator 6 (more specifically, from the superconducting accelerating cavity 14 therein) to substantially zero, and And an energy control device 36 for controlling the energy E of the charged particles 4 after acceleration.

【0025】荷電粒子4は、例えば、電子またはイオン
等である。
The charged particles 4 are, for example, electrons or ions.

【0026】荷電粒子4が電子の場合は、荷電粒子源2
は例えば電子銃である。荷電粒子4がイオンの場合は、
荷電粒子源2は例えばイオン源である。
When the charged particles 4 are electrons, the charged particle source 2
Is, for example, an electron gun. When the charged particles 4 are ions,
The charged particle source 2 is, for example, an ion source.

【0027】高周波発振器16は、この例では、それか
ら出力する高周波電力の出力Pを計測する出力計測器1
8と、超伝導加速器6からの(より具体的にはその内部
の超伝導加速空洞14からの)高周波の反射Rを計測す
る反射計測器20とを備えている。出力計測器18は、
例えば、高周波電力計である。反射計測器20は、例え
ば、反射電力計である。
In this example, the high-frequency oscillator 16 is an output measuring device 1 for measuring the output P of the high-frequency power output therefrom.
8 and a reflection measuring device 20 for measuring a high frequency reflection R from the superconducting accelerator 6 (more specifically, from the superconducting accelerating cavity 14 therein). The output measuring device 18
For example, a high-frequency power meter. The reflection measuring device 20 is, for example, a reflection power meter.

【0028】この高周波発振器16から出力された高周
波電力は、この例では同軸管22を経由して、超伝導加
速器6内の超伝導加速空洞14に供給される。但し、同
軸管22の代わりに、導波管等を用いても良い。なお、
この明細書において「高周波」は、マイクロ波を含む広
い概念で用いている。
The high-frequency power output from the high-frequency oscillator 16 is supplied to the superconducting acceleration cavity 14 in the superconducting accelerator 6 via the coaxial tube 22 in this example. However, instead of the coaxial waveguide 22, a waveguide or the like may be used. In addition,
In this specification, "high frequency" is used in a broad concept including microwaves.

【0029】超伝導加速器6は、高周波形の線形加速器
の一種であり、この例では、図2に示すような構造をし
ている。
The superconducting accelerator 6 is a kind of high-frequency linear accelerator, and has a structure as shown in FIG. 2 in this example.

【0030】即ち、この超伝導加速器6は、液体ヘリウ
ム12が満たされる液体ヘリウム容器10内に、複数個
(この例では5個)直列に接続された超伝導加速空洞1
4を収納し、更にこの液体ヘリウム容器10を真空容器
8内に収納した構造をしている。即ちこの超伝導加速空
洞14は、5セル構造をしている。
That is, the superconducting accelerator 6 includes a plurality (five in this example) of superconducting acceleration cavities 1 connected in series in a liquid helium container 10 filled with liquid helium 12.
4 and the liquid helium container 10 is further housed in a vacuum container 8. That is, the superconducting acceleration cavity 14 has a five-cell structure.

【0031】液体ヘリウム容器10に液体ヘリウム12
を供給するヘリウム冷凍機を備えているが、ここではそ
の図示を省略している。また、液体ヘリウム容器10と
真空容器8との間には、通常は、窒素温度シールド等が
設けられているが、これも図示を省略している。
The liquid helium container 10 contains the liquid helium 12
Is provided, but is not shown here. Further, a nitrogen temperature shield or the like is usually provided between the liquid helium container 10 and the vacuum container 8, but this is also not shown.

【0032】各超伝導加速空洞14は、この例では、ニ
オブ(Nb )で形成されており、液体ヘリウム12の温
度4.2Kで超伝導状態に保たれる。但し、この超伝導
加速空洞14には、ニオブ以外の超伝導材料を用いても
良く、またその材料に応じて、それを超伝導状態に保つ
冷却温度や冷却媒体を定めれば良い。
In this example, each superconducting acceleration cavity 14 is formed of niobium (Nb), and is kept in a superconducting state at a temperature of 4.2 K of the liquid helium 12. However, a superconducting material other than niobium may be used for the superconducting accelerating cavity 14, and a cooling temperature and a cooling medium for keeping the superconducting state may be determined according to the material.

【0033】この各超伝導加速空洞14には、前記高周
波発振器16から、この例では同軸管22およびアンテ
ナ26を経由して、荷電粒子加速用の高周波電力が供給
される。これによって、各超伝導加速空洞14において
高周波電界が生じ、当該高周波電界によって荷電粒子4
を加速することができる。
Each of the superconducting accelerating cavities 14 is supplied with high frequency power for accelerating charged particles from the high frequency oscillator 16 via the coaxial tube 22 and the antenna 26 in this example. As a result, a high-frequency electric field is generated in each superconducting acceleration cavity 14, and the charged particles 4 are generated by the high-frequency electric field.
Can be accelerated.

【0034】超伝導加速空洞14の数(セル数)および
高周波電力の周波数等によって、荷電粒子4の最大の加
速エネルギーは概ね定まる。例えば、電子を加速する場
合、500MHzで5セルとすれば、最大で10MeV
程度のエネルギーを得ることができる。これ以下の範囲
内において、この発明によれば、上記数3の関係に従っ
て、エネルギーEを簡単に調整することができる。
The maximum acceleration energy of the charged particles 4 is generally determined by the number of superconducting accelerating cavities 14 (the number of cells) and the frequency of the high-frequency power. For example, when accelerating electrons, if 5 cells are used at 500 MHz, a maximum of 10 MeV
Energy can be obtained. According to the present invention, the energy E can be easily adjusted within the range below this range according to the relationship of the above equation (3).

【0035】反射調整機構30は、この例では、図2に
示すように、同軸管22に接続されていて超伝導加速空
洞14に高周波電力を供給するアンテナ26と、当該ア
ンテナ26を矢印Bに示すように出し入れする駆動部2
8とを備えている。この駆動部28は、モータを有して
いる。アンテナ26の貫通部は、セラミックス等から成
る仕切板24によって、内側の真空雰囲気と外側の大気
とが仕切られている。
In this example, as shown in FIG. 2, the reflection adjusting mechanism 30 includes an antenna 26 connected to the coaxial tube 22 for supplying high-frequency power to the superconducting accelerating cavity 14, and the antenna 26 is indicated by an arrow B. Driving unit 2 that moves in and out as shown
8 is provided. The drive unit 28 has a motor. The through portion of the antenna 26 is separated from the inner vacuum atmosphere and the outer atmosphere by a partition plate 24 made of ceramics or the like.

【0036】この反射調整機構30によってアンテナ2
6を出し入れすることによって、超伝導加速空洞14と
の高周波の結合状態を調整して、超伝導加速空洞14か
らの反射Rを実質的に零に(即ち零または零と見なせる
程度に)調整することができる。この反射Rは、この例
では、前述した反射計測器20によってモニタすること
ができる。
The antenna 2 is controlled by the reflection adjusting mechanism 30.
By moving in and out 6, the state of high-frequency coupling with the superconducting accelerating cavity 14 is adjusted to adjust the reflection R from the superconducting accelerating cavity 14 to substantially zero (that is, to the extent that it can be regarded as zero or zero). be able to. In this example, the reflection R can be monitored by the reflection measuring device 20 described above.

【0037】この例では更に、反射計測器20で計測す
る反射Rに応じて駆動部28を制御して、超伝導加速空
洞14からの反射Rを自動で実質的に零に調整する反射
制御装置32を設けている。但し、反射Rの上記のよう
な調整は、反射計測器20を見ながら手動で行っても良
い。その場合は、反射制御装置32は不要であり、ま
た、駆動部28を手動機構にしても良い。
Further, in this example, a reflection control device which controls the drive unit 28 in accordance with the reflection R measured by the reflection measuring device 20 and automatically adjusts the reflection R from the superconducting acceleration cavity 14 to substantially zero. 32 are provided. However, the above adjustment of the reflection R may be performed manually while looking at the reflection measuring device 20. In that case, the reflection control device 32 is unnecessary, and the drive unit 28 may be a manual mechanism.

【0038】この荷電粒子加速装置は、更に、超伝導加
速器6で加速する荷電粒子4の電流値iを計測する電流
計測器34を備えている。
The charged particle accelerator further includes a current measuring device 34 for measuring a current value i of the charged particles 4 accelerated by the superconducting accelerator 6.

【0039】この電流計測器34は、この例では、超伝
導加速器6の出口部に設けられていて、加速後の荷電粒
子4が中を通ることによって流れる電流を計測する巻線
であり、これは変流器と呼ぶこともできる。この電流計
測器34は、超伝導加速器6の入口部に設けて、超伝導
加速器6に入射する直前の荷電粒子4の電流値iを計測
しても良いし、荷電粒子源2から出た直後の荷電粒子4
の電流値iを計測しても良い。あるいは、荷電粒子源2
が電子銃のような場合は、上記のような電流計測器34
の代わりに、カソード電流を計測する電流計測器を用い
ても良い。この装置では、荷電粒子源2から出力された
荷電粒子4は途中でロスすることなく全て加速されると
考えることができるので、上記いずれの箇所で荷電粒子
4の電流値iを計測しても良い。
In this example, the current measuring device 34 is provided at the outlet of the superconducting accelerator 6, and is a winding for measuring a current flowing when the charged particles 4 after acceleration pass through the inside. Can also be called a current transformer. The current measuring device 34 may be provided at the entrance of the superconducting accelerator 6 to measure the current value i of the charged particle 4 immediately before entering the superconducting accelerator 6, or immediately after leaving the charged particle source 2. Charged particles 4
May be measured. Alternatively, the charged particle source 2
Is an electron gun, the current measuring device 34 described above is used.
Instead, a current measuring device for measuring the cathode current may be used. In this apparatus, it can be considered that the charged particles 4 output from the charged particle source 2 are all accelerated without any loss on the way. Therefore, even if the current value i of the charged particles 4 is measured at any of the above points, good.

【0040】エネルギー制御装置36は、出力計測器1
8で計測した前記出力Pおよび電流計測器34で計測し
た前記電流値iを用いて、前記数3の演算を行って、超
伝導加速器6から出力する荷電粒子4のエネルギーEを
求めて、当該エネルギーEを所望の(目的の)値に制御
する機能を有している。例えば、高周波発振器16から
出力する出力Pを一定に保ちながら、目的とするエネル
ギーEになるように、荷電粒子源2を制御してそれから
出力する荷電粒子4の電流値iを制御することができ
る。あるいは、目的とするエネルギーEおよび電流値i
が得られるように、高周波発振器16から出力する高周
波電力の出力Pおよび荷電粒子源2から出力する荷電粒
子4の電流値iを制御することができる。
The energy control device 36 is provided with the output measuring device 1
Using the output P measured at 8 and the current value i measured at the current measuring device 34, the calculation of the formula 3 is performed to obtain the energy E of the charged particles 4 output from the superconducting accelerator 6, and It has a function of controlling the energy E to a desired (target) value. For example, while maintaining the output P output from the high-frequency oscillator 16 constant, the charged particle source 2 can be controlled so that the target energy E is obtained, and the current value i of the charged particles 4 output therefrom can be controlled. . Alternatively, target energy E and current value i
Is obtained, the output P of the high-frequency power output from the high-frequency oscillator 16 and the current value i of the charged particles 4 output from the charged particle source 2 can be controlled.

【0041】このエネルギー制御装置36と上記反射制
御装置32とを、一つの制御装置内に組み込んでも良
い。即ち、両者32、36の上記機能を有する統合され
た制御装置を設けても良い。
The energy control device 36 and the reflection control device 32 may be incorporated in one control device. That is, an integrated control device having the above functions of the two 32 and 36 may be provided.

【0042】なお、超伝導加速器6の下流側に、この例
のように、超伝導加速器6から出力された荷電粒子4を
走査する走査器(図示例では走査コイル)38および末
広がりの走査管40を設けて、走査管40の先端部に設
けた窓箔42を透過させて、走査された荷電粒子4を照
射雰囲気中(例えば大気中)へ取り出して被照射物44
に照射するように構成しても良い。この場合、荷電粒子
4を電子とすれば、この装置は走査形の電子線照射装置
となる。これによって、被照射物44に、例えば、架
橋、改質、殺菌、滅菌、殺虫等の処理を施すことができ
る。
A scanner (scanning coil in the illustrated example) 38 for scanning charged particles 4 output from the superconducting accelerator 6 and a diverging scanning tube 40 are provided downstream of the superconducting accelerator 6 as in this example. Is provided, and the charged particles 4 scanned through the window foil 42 provided at the distal end of the scanning tube 40 are taken out into an irradiation atmosphere (for example, the atmosphere), and the object 44 to be irradiated is provided.
May be configured to be irradiated. In this case, if the charged particles 4 are electrons, this device becomes a scanning type electron beam irradiation device. As a result, the irradiation target 44 can be subjected to, for example, processing such as crosslinking, modification, sterilization, sterilization, and insecticide.

【0043】前述したように、従来の高周波形の線形加
速器は常伝導タイプの加速空洞を用いるものであり、入
力された高周波電力の内の大部分はジュール熱損となる
ので、しかもその割合は一定でないので、前記数1の関
係を得ることはできない。
As described above, the conventional high-frequency linear accelerator uses a normal conduction type acceleration cavity, and most of the input high-frequency power is caused by Joule heat loss. Since it is not constant, it is impossible to obtain the relationship of the above equation (1).

【0044】これに対して、この超伝導加速器6では、
前述したように、超伝導加速空洞14を用いていて、そ
こでのジュール熱損が実質的に零である(即ち零または
無視し得る程度に小さい)ので、入力された高周波電力
の全てが荷電粒子4のパワーに変換される。しかも、反
射調整機構30によって無反射の状態に調整する。その
結果、この荷電粒子加速装置では上記数3の関係が成立
する。
On the other hand, in this superconducting accelerator 6,
As described above, since the superconducting accelerating cavity 14 is used and the Joule heat loss there is substantially zero (ie, zero or negligibly small), all of the input high-frequency power is charged particles. 4 power. In addition, the reflection adjusting mechanism 30 adjusts the state to no reflection. As a result, in the charged particle accelerator, the relationship of the above Equation 3 is established.

【0045】しかも、高周波発振器16の出力Pは、例
えば出力計測器18によって簡単にかつ正確に計測する
ことができる。荷電粒子4の電流値iも、例えば電流計
測器34によって簡単にかつ正確に計測することができ
る。
Moreover, the output P of the high-frequency oscillator 16 can be easily and accurately measured by the output measuring device 18, for example. The current value i of the charged particles 4 can also be easily and accurately measured by the current measuring device 34, for example.

【0046】この荷電粒子加速装置では、このように簡
単にかつ正確に計測することのできる高周波発振器16
の出力Pおよび荷電粒子4の電流値iを用いて、上記数
3の関係に基づいて、荷電粒子4のエネルギーEを制御
するものであり、これによって、超伝導加速器6による
加速後の荷電粒子のエネルギーEを、所望の値に、簡単
にしかも高い信頼性で正確に制御することができる。そ
のエネルギーEの再現性も非常に良い。
In this charged particle accelerator, the high-frequency oscillator 16 capable of easily and accurately measuring is provided.
Is used to control the energy E of the charged particles 4 based on the relationship of the above Equation 3 using the output P of the charged particles 4 and the current value i of the charged particles 4, whereby the charged particles after acceleration by the superconducting accelerator 6 Can be easily and accurately controlled to a desired value. The reproducibility of the energy E is also very good.

【0047】また、従来のエネルギー計測用に偏向電磁
石を用いる場合と違って、荷電粒子4を曲げる必要がな
く、荷電粒子4の軌道を直線状に保つことができ、しか
も加速後にすぐに荷電粒子4を目的の処理に用いること
ができるので、機器構成が容易になると共に省スペース
にもなる。
Further, unlike the case of using the bending electromagnet for the conventional energy measurement, the charged particles 4 do not need to be bent, and the trajectory of the charged particles 4 can be maintained in a straight line. 4 can be used for the intended processing, so that the device configuration is simplified and the space is saved.

【0048】しかも、上記数1から分かるように高周波
発振器16の出力Pを一定に保つことによって超伝導加
速器6から出力する荷電粒子4のパワーWを一定に保つ
ことができ、このパワーWを一定に保ったままで、荷電
粒子4の電流値iを変えることによって、上記数3から
分かるように、荷電粒子4のエネルギーEを簡単に変え
ることができるのも大きな特徴である。例えば、超伝導
加速器6から出力する荷電粒子4のパワーWを100k
Wの一定に保ちながら、エネルギーEが10MeVで電
流値iが10mAの荷電粒子4を出力することも、ある
いはエネルギーEが5MeVで電流値iが20mAの荷
電粒子4を出力することも、簡単に実現することができ
る。
Further, as can be seen from the above equation (1), by keeping the output P of the high-frequency oscillator 16 constant, the power W of the charged particles 4 output from the superconducting accelerator 6 can be kept constant. As can be seen from the above equation 3, the energy E of the charged particles 4 can be easily changed by changing the current value i of the charged particles 4 while maintaining the value as described above. For example, the power W of the charged particles 4 output from the superconducting accelerator 6 is set to 100 k
It is easy to output the charged particles 4 with the energy E of 10 MeV and the current value i of 10 mA while maintaining the constant W, or to output the charged particles 4 with the energy E of 5 MeV and the current value i of 20 mA. Can be realized.

【0049】このことは、加速された荷電粒子4を、例
えば前述した電子線照射装置のように、被照射物の処理
に用いる場合に特に便利である。というのも、荷電粒子
4のパワーWは、被照射物の処理能力に直結するもので
あり、その処理能力を変えずに、荷電粒子4のエネルギ
ーEだけを変えたい場合がある。例えば、高さの異なる
被照射物を同一のコンベアで搬送しながら当該被照射物
に電子線を照射して殺菌処理を施すような場合、電子線
のパワーは変えずに電子線のエネルギーEを被照射物の
高さに応じて変えて電子線の透過力(即ち殺菌処理の深
さ)を変えるのが好ましく、それに簡単に対応すること
ができる。
This is particularly convenient when the accelerated charged particles 4 are used for processing an object to be irradiated, for example, as in the electron beam irradiation apparatus described above. This is because the power W of the charged particles 4 is directly related to the processing capability of the irradiation object, and there is a case where it is desired to change only the energy E of the charged particles 4 without changing the processing capability. For example, in a case where an irradiation target having different heights is conveyed on the same conveyor and the target is irradiated with an electron beam to perform a sterilization process, the energy E of the electron beam is changed without changing the power of the electron beam. It is preferable to change the penetrating power of the electron beam (that is, the depth of the sterilization treatment) by changing according to the height of the irradiation object, and this can be easily coped with.

【0050】従来の常伝導形の加速空洞を用いた線形加
速器では、前述したように加速エネルギーを変えるのは
非常に難しく、またエネルギー調整後の加速エネルギー
の再現性も悪いので、上記のような場合に簡単にエネル
ギーを変えて対応する等ということは到底できない。
In a conventional linear accelerator using a normal conduction type acceleration cavity, it is very difficult to change the acceleration energy as described above, and the reproducibility of the acceleration energy after energy adjustment is poor. In such a case, it is hardly possible to easily change the energy and respond.

【0051】また、従来の常伝導形の加速空洞を用いた
線形加速器では、加速空洞におけるジュール熱損が非常
に大きくて加速空洞の冷却が難しいので、デューティ比
が極めて小さい(例えば1%以下の)パルス運転しかで
きなかったのに対して、上記超伝導加速器6では、超伝
導加速空洞14におけるジュール熱損による発熱の問題
が殆どないので、加速された荷電粒子4を連続的に取り
出す連続運転を行うことができる。あるいは、従来に比
べてデューティ比の遙かに大きい(例えば25%とか5
0%等の)間欠運転も勿論可能である。従って、荷電粒
子4の利用効率が従来に比べて飛躍的に向上する。従っ
て例えば、このような荷電粒子4を被照射物の処理に用
いることによって、処理効率を飛躍的に高めることがで
きる。
In a conventional linear accelerator using a normal conduction type acceleration cavity, since the Joule heat loss in the acceleration cavity is very large and it is difficult to cool the acceleration cavity, the duty ratio is extremely small (for example, 1% or less). In contrast to the pulse operation, only the pulse operation was performed. In the superconducting accelerator 6, since there was almost no problem of heat generation due to Joule heat loss in the superconducting acceleration cavity 14, the continuous operation for continuously extracting the charged particles 4 accelerated was performed. It can be performed. Alternatively, the duty ratio is much larger than the conventional one (for example, 25% or 5%).
Intermittent operation (such as 0%) is of course also possible. Therefore, the utilization efficiency of the charged particles 4 is dramatically improved as compared with the related art. Therefore, for example, by using such charged particles 4 for processing an object to be irradiated, the processing efficiency can be dramatically increased.

【0052】[0052]

【発明の効果】以上のようにこの発明は、超伝導の特徴
として入力された高周波電力が全て荷電粒子のパワーに
変換されることを利用して、荷電粒子のエネルギーEを
E=P/iなる関係に基づいて制御するものであり、こ
れによって、加速後の荷電粒子のエネルギーを、簡単に
しかも高い信頼性で正確に制御することができる。
As described above, according to the present invention, the energy E of the charged particles is converted to E = P / i by utilizing the fact that all the input high frequency power is converted into the power of the charged particles as a feature of superconductivity. The control is performed based on the following relationship, whereby the energy of the charged particles after acceleration can be accurately and simply controlled with high reliability.

【0053】しかも、超伝導加速空洞を用いていてジュ
ール熱損による発熱の問題が殆どないので、加速された
荷電粒子を連続的に取り出す連続運転や、従来に比べて
デューティ比が遙かに大きい間欠運転も可能になる。
Moreover, since the superconducting accelerating cavity is used and there is almost no problem of heat generation due to Joule heat loss, the continuous operation for continuously extracting the charged particles accelerated and the duty ratio is much larger than the conventional one. Intermittent operation is also possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るエネルギー制御方法を実施する
荷電粒子加速装置の一例を示す概略図である。
FIG. 1 is a schematic diagram showing an example of a charged particle accelerator for implementing an energy control method according to the present invention.

【図2】図1中の超伝導加速器周りの一例を示す概略断
面図である。
FIG. 2 is a schematic cross-sectional view showing an example around a superconducting accelerator in FIG.

【符号の説明】[Explanation of symbols]

2 荷電粒子源 4 荷電粒子 6 超伝導加速器 14 超伝導加速空洞 16 高周波発振器 18 出力計測器 20 反射計測器 30 反射調整機構 32 反射制御装置 34 電流計測器 36 エネルギー制御装置 Reference Signs List 2 charged particle source 4 charged particle 6 superconducting accelerator 14 superconducting accelerating cavity 16 high frequency oscillator 18 output measuring device 20 reflection measuring device 30 reflection adjusting mechanism 32 reflection control device 34 current measuring device 36 energy control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩本 英司 京都府京都市右京区梅津高畝町47番地 日 新ハイボルテージ株式会社内 Fターム(参考) 2G085 AA03 BA05 BA08 BA19 BB17 BE02 BE03 BE05 CA02 CA06 CA12 CA15 CA21 CA22 CA26 EA02 EA08 4C058 AA01 BB06 DD03 DD07 KK03 KK32 5C034 CC01 CD02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Eiji Iwamoto, Inventor F-term (reference) 2G085 AA03 BA05 BA08 BA19 BB17 BE02 BE03 BE05 CA02 CA06 CA12 CA15 CA21 in Nisshin High Voltage Co., Ltd. CA22 CA26 EA02 EA08 4C058 AA01 BB06 DD03 DD07 KK03 KK32 5C034 CC01 CD02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子を発生する荷電粒子源と、この
荷電粒子源から与えられる荷電粒子を加速空洞における
高周波電界によって加速して出力する線形加速器と、こ
の線形加速器内の加速空洞に加速用の高周波電力を供給
する高周波発振器とを備える荷電粒子加速装置におい
て、 前記線形加速器として、超伝導状態に保たれて前記荷電
粒子を高周波電界によって加速する超伝導加速空洞を有
する超伝導加速器を用い、この超伝導加速器内の超伝導
加速空洞からの高周波の反射を実質的に零に調整し、前
記高周波発振器から出力する高周波電力の出力Pおよび
前記超伝導加速器で加速する荷電粒子の電流値iを用い
て、前記超伝導加速器で加速された後の荷電粒子のエネ
ルギーEをE=P/iなる関係に基づいて制御すること
を特徴とする荷電粒子エネルギーの制御方法。
1. A charged particle source for generating charged particles, a linear accelerator for accelerating and outputting charged particles supplied from the charged particle source by a high-frequency electric field in an acceleration cavity, and an accelerating cavity in the linear accelerator for acceleration. A high-frequency oscillator that supplies high-frequency power of a charged particle accelerator, wherein as the linear accelerator, a superconducting accelerator having a superconducting acceleration cavity that is maintained in a superconducting state and accelerates the charged particles by a high-frequency electric field is used; The reflection of the high frequency from the superconducting acceleration cavity in the superconducting accelerator is adjusted to substantially zero, and the output P of the high-frequency power output from the high-frequency oscillator and the current value i of the charged particles accelerated by the superconducting accelerator are adjusted. And controlling the energy E of the charged particles after being accelerated by the superconducting accelerator based on a relationship of E = P / i. Method of controlling the particle energy.
【請求項2】 荷電粒子を発生する荷電粒子源と、この
荷電粒子源から与えられる荷電粒子を加速空洞における
高周波電界によって加速して出力する線形加速器と、こ
の線形加速器内の加速空洞に加速用の高周波電力を供給
する高周波発振器とを備える荷電粒子加速装置におい
て、 前記線形加速器として、超伝導状態に保たれて前記荷電
粒子を高周波電界によって加速する超伝導加速空洞を有
する超伝導加速器を備えており、更に、この超伝導加速
器内の超伝導加速空洞からの高周波の反射を実質的に零
に調整する反射調整機構と、前記高周波発振器から出力
する高周波の出力Pを計測する出力計測器と、前記超伝
導加速器で加速する荷電粒子の電流値iを計測する電流
計測器と、前記出力計測器で計測した出力Pおよび前記
電流計測器で計測した電流値iを用いて、前記超伝導加
速器で加速された後の荷電粒子のエネルギーEをE=P
/iなる関係に基づいて制御するエネルギー制御装置と
を備えていることを特徴とする荷電粒子加速装置。
2. A charged particle source for generating charged particles, a linear accelerator for accelerating and outputting charged particles supplied from the charged particle source by a high-frequency electric field in an acceleration cavity, and an acceleration cavity in the linear accelerator for acceleration. And a high-frequency oscillator that supplies high-frequency power of the charged particle accelerator, comprising, as the linear accelerator, a superconducting accelerator having a superconducting acceleration cavity that is maintained in a superconducting state and accelerates the charged particles by a high-frequency electric field. A reflection adjusting mechanism for adjusting the reflection of high frequency from the superconducting acceleration cavity in the superconducting accelerator to substantially zero; an output measuring device for measuring a high-frequency output P output from the high-frequency oscillator; A current measuring device for measuring a current value i of the charged particles accelerated by the superconducting accelerator; and an output P measured by the output measuring device and a current measured by the current measuring device. With the current value i, the energy E of the charged particles after the accelerated superconducting accelerator E = P
/ I, an energy control device for controlling based on the relationship of / i.
JP2001127374A 2001-04-25 2001-04-25 Charged particle energy control method and charged particle accelerator Expired - Fee Related JP3881854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127374A JP3881854B2 (en) 2001-04-25 2001-04-25 Charged particle energy control method and charged particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127374A JP3881854B2 (en) 2001-04-25 2001-04-25 Charged particle energy control method and charged particle accelerator

Publications (2)

Publication Number Publication Date
JP2002324700A true JP2002324700A (en) 2002-11-08
JP3881854B2 JP3881854B2 (en) 2007-02-14

Family

ID=18976249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127374A Expired - Fee Related JP3881854B2 (en) 2001-04-25 2001-04-25 Charged particle energy control method and charged particle accelerator

Country Status (1)

Country Link
JP (1) JP3881854B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277942A (en) * 2009-06-01 2010-12-09 Mitsubishi Electric Corp H-mode drift tube linac, and method of adjusting electric field distribution therein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105050308B (en) * 2015-08-04 2017-10-24 北京无线电测量研究所 A kind of apparatus and method of overstable highpowerpulse modulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277942A (en) * 2009-06-01 2010-12-09 Mitsubishi Electric Corp H-mode drift tube linac, and method of adjusting electric field distribution therein
US8421379B2 (en) 2009-06-01 2013-04-16 Mitsubishi Electric Corporation H-mode drift tube linac, and method of adjusting electric field distribution in H-mode drift tube linac

Also Published As

Publication number Publication date
JP3881854B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
Felch et al. Cerenkov radiation in dielectric‐lined waveguides
US7112924B2 (en) Electronic energy switch for particle accelerator
US20120081041A1 (en) Traveling wave linear accelerator based x-ray source using pulse width to modulate pulse-to-pulse dosage
US20040202272A1 (en) Multi-energy particle accelerator
US7005809B2 (en) Energy switch for particle accelerator
LaPointe et al. Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration
Blank et al. Experimental demonstration of a W-band (94 GHz) gyrotwystron amplifier
JP2002324700A (en) Control method of charged particle energy and charged particle accelerator
Hirshfield et al. Multimegawatt cyclotron autoresonance accelerator
US2913619A (en) Particle accelerators
JP3968463B2 (en) Charged particle accelerator and operating method thereof
Blank et al. An investigation of X-band gyrotwystron amplifiers
Didenko et al. Generation of high power rf pulses in the magnetron and reflex triode systems
JP2001052900A (en) Method of generating high-speed electric pulse train and method of applying the same to particle acceleration
Bruinsma et al. EVA, the 85 MeV linear electron accelerator (versneller) at Amsterdam
Xu et al. Measurement of internal dark current in a 17 GHz accelerator structure with an elliptical sidewall
Min et al. Low-level RF control of a klystron for medical linear accelerator applications
Liu et al. Harmonic millimeter radiation from a microwave free-electron-laser amplifier
Lim et al. Compact integration and RF commissioning of the C-band 9-MeV electron linear accelerator at the Dongnam Institute of radiological & medical sciences
Rickel et al. Experimental progress on a microsecond pulse-length relativistic klystron amplifier
WO2023085646A1 (en) Linear accelerator having precise radiation dose control function
Le Sage et al. A high brightness, X-band photoinjector for the production of coherent synchrotron radiation
Gantenbein et al. Experimental results on high-power gyrotrons for the stellarator W7-X
Sethi et al. Design & development of 10 MeV RF electron linac for applied research and industrial applications
PATERSON et al. MA ALLEN, RS CALLIN, H. DERUYTER, KR EPPLEY, WR FOWKES, WB HERRMANNSFELDT, T. HIGO; HA HOAG, TL LAVINE, TG LEE, GA LOEW, RH MILLER, PL MORTON, RB PALMER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees