JP3881730B2 - Heat sink and heat dissipation sheet - Google Patents

Heat sink and heat dissipation sheet Download PDF

Info

Publication number
JP3881730B2
JP3881730B2 JP26543896A JP26543896A JP3881730B2 JP 3881730 B2 JP3881730 B2 JP 3881730B2 JP 26543896 A JP26543896 A JP 26543896A JP 26543896 A JP26543896 A JP 26543896A JP 3881730 B2 JP3881730 B2 JP 3881730B2
Authority
JP
Japan
Prior art keywords
heat
composite magnetic
magnetic body
heat sink
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26543896A
Other languages
Japanese (ja)
Other versions
JPH1092988A (en
Inventor
光晴 佐藤
栄吉 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP26543896A priority Critical patent/JP3881730B2/en
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to DE1997627207 priority patent/DE69727207T2/en
Priority to US09/074,012 priority patent/US6962753B1/en
Priority to CNB97191222XA priority patent/CN1179619C/en
Priority to PCT/JP1997/003175 priority patent/WO1998010632A1/en
Priority to EP97939237A priority patent/EP0866649B1/en
Priority to KR10-1998-0703424A priority patent/KR100510921B1/en
Priority to TW086113017A priority patent/TW345667B/en
Publication of JPH1092988A publication Critical patent/JPH1092988A/en
Application granted granted Critical
Publication of JP3881730B2 publication Critical patent/JP3881730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートシンク及び放熱シートに関し、特に、IC、ダイオード等の半導体素子に用いられるヒートシンク及び、ヒートシンクと組み合わせて用いられる放熱シートに関する。
【0002】
【従来の技術】
IC、ダイオード等の半導体素子は、使用中に温度が上昇すると、性能が低下したり、ひどいときには、破壊したりしていた。
【0003】
そこで、図2に示すように、冷却手段として、ヒートシンク21等を用い、接着テープ2を介して、ICパッケージ3に接着させて、発生する熱を放熱し、半導体素子を冷却していた。
【0004】
又、さらに放熱の効果を上げるため、図5に示すように、ヒートシンク41とICパッケージ3の間に放熱シート7を挿入していた。
【0005】
ところで、近年の情報処理の高速デジタル化や信号周波数の高周波化によって、IC等からの放射ノイズ(輻射ノイズ)が問題となっている。さらに、小型、軽量化によって、部品間の実装密度が高まり、上記の放射ノイズによる電磁干渉が問題となっている。
【0006】
又、上記のように、放熱にアルミニウム等のヒートシンクを用いているため、これがアンテナとして働き、半導体素子からの放射ノイズ、及び近接する他の部品からの放射ノイズの授受を行い、悪影響を及ぼしていた。
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題を解決し、半導体素子からの発熱を効率よく放熱でき、その上、放射ノイズを抑制できるヒートシンク及び放熱シートを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、個々の素子に適用され尚且該素子の一面で接し、該素子から発生するノイズを吸収する複合磁性体であって、該複合磁性体は前記素子の前記一面で接する部分を除く部分に形成した放熱フィンを有し、該放熱フィンを有する前記複合磁性体の全体が熱処理を施した軟磁性体粉末と、有機結合剤とからなることを特徴とするヒートシンクである。
【0009】
又、本発明は、個々の素子に適用され尚且該素子の一面で接し、該素子から発生するノイズを吸収する複合磁性体であって、該複合磁性体は熱処理を施した軟磁性体粉末と、有機結合剤からなり、さらに前記複合磁性体はヒートパイプを挿入するための挿入孔を有していることを特徴とするヒートシンクである。
【0010】
又、本発明は、前記複合磁性体は、熱伝導性粉末をさらに含み、該熱伝導性粉末は、アルミナ、窒化アルミニウム、立方晶窒化硼素、酸化ベリリウム、絶縁性炭化珪素、熱伝導性強化材のいずれか一種であることを特徴とするヒートシンクである。
【0011】
又、本発明は、個々の素子に適用され尚且該素子の一面で接し、ヒートシンクと前記素子との間に設置され、該素子から発生するノイズを吸収する複合磁性体であり、前記複合磁性体は熱処理を施した軟磁性体粉末と、有機結合剤からなり、さらに前記複合磁性体は前記ヒートシンクに設けられている放熱用のピンを挿入するための貫通穴を有し、該貫通穴は前記ピンを設けた前記ヒートシンク側から前記複合磁性体が前記素子の前記一面へ接する面への方向へ貫通していることを特徴とする放熱シートである。
【0012】
又、本発明は、前記複合磁性体は、熱伝導性粉末をさらに含み、該熱伝導性粉末は、アルミナ、窒化アルミニウム、立方晶窒化硼素、酸化ベリリウム、絶縁性炭化珪素、熱伝導性強化材のいずれか一種であることを特徴とする請求項4に記載の放熱シートである。
【0018】
従って、本発明により、半導体素子から発生した熱を消散し、さらに半導体素子から発生した輻射ノイズを吸収し、かつ、近傍の他の部品からのノイズを吸収するため、熱による素子の性能低下、破壊がなくなり、その上、放射ノイズによる電磁干渉がなくなる。
【0019】
【発明の実施の形態】
本発明は、軟磁性体粉末、有機結合剤及び熱伝導性粉末からなる複合磁性体を、ヒートシンク及び放熱シートに用いたものである。実施の形態は、次のようなものがある。
(1)ヒートシンク又は放熱シート自体を複合磁性体で形成する。必要に応じて貫通孔を設ける。
(2)ヒートシンク又は放熱シートの表面に複合磁性体を設ける。
(3)放熱器のヒートパイプを複合磁性体に埋め込む。
(4)ヒートシンクと半導体素子の間に複合磁性体を挿入する。
【0020】
本発明のヒートシンク及び放熱シートの形状としては、図1(a)、図1(b)及び図1(c)に示すように、板状、コ字状、皿状等のものが使用できる。又、構造としては、図3(a)に示すように、複合磁性体のみからなるもの、又は銅板等の導電板6の表裏面に、一対の複合磁性体5,5を形成したものが使用できる。
【0021】
軟磁性体粉末には、Fe−Al−Si系合金、Fe−Ni系合金が使用できる。
有機結合剤には、ポリエチレン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリビニルブチラール樹脂、ポリウレタン樹脂、セルロース系樹脂、ニトリル−ブタジエン系ゴム等の熱可塑性樹脂あるいはそれらの共重合体、エポキシ樹脂、フェノール樹脂、アミド系樹脂、イミド系樹脂等が使用できる。
熱伝導性粉末には、Al23、AlN、立方晶BN、BeO、絶縁性SiCの他、熱伝導性強化材(カプトン)等が使用できる。
【0022】
【実施例】
本発明の実施例を以下に詳細に説明する。
【0023】
(実施例1)
まず、表1の配合比の軟磁性体粉末、有機結合剤及び熱伝導性粉末からなる複合磁性体の層を有する図1(a)の形状、図3(a)の構造のヒートシンクを作製した。大きさは、3.8×10.2(cm)とした。
【0024】

Figure 0003881730
【0025】
即ち、まず、カップリング処理を施した軟磁性体粉末、有機結合剤及び熱伝導性粉末をニーダーで混練し、平行に配置したロールで圧延し、厚さ0.5mmのシート状の複合磁性体を作製した。次に、得られたシートを2枚張り合わせ、図3(a)に示すような構造の厚さ1mmのヒートシンク1a(試料1)を得た。
【0026】
なお、得られた試料を振動試料型磁力計及び走査型電子顕微鏡を用いて解析したところ、磁化容易軸及び磁性粒子の配向方向は、いずれもこの層の面内方向であった。
【0027】
又、ここで用いた軟磁性体粉末は、O2分圧20%のN2−O2混合ガス雰囲気中で気相酸化し、Ar雰囲気中、650℃で2時間アニール処理したもので、表面に酸化皮膜が形成されている。
【0028】
又、同様にして、図3(b)の構造のヒートシンク1b(試料2)を作製した。厚さ0.18mmの極薄の銅板6の表裏面を、一対の複合磁性体5のシートで挟んで積層して、ロールで圧延して得た。全体の厚さを1mmとした。
【0029】
又、比較例として、図3(c)の構造のヒートシンク1c(試料3)を作製した。厚さ0.18mmの極薄の銅板6の表裏面を、ポリフッ化ビニルからなる絶縁体18のシートを積層して得た。全体の厚さを0.3mmとした。
【0030】
次に、試料1〜3について、表面抵抗率、透過減衰量、結合減衰量及び放熱量を評価した。
【0031】
透過減衰量、結合減衰量の測定には、図9に示すように、電磁界波源用発振器12と電磁界強度測定器13のそれぞれに電磁界送信用微小ループアンテナ22、電磁界受信用微小ループアンテナ23を接続した装置を用いた。透過減衰量は、図9(a)に示すように、電磁界送信用微小ループアンテナ22、電磁界受信用微小ループアンテナ23との間に試料を位置させて測定した。結合減衰量は、図9(b)に示すように、試料の同一面で、電磁界送信用微小ループアンテナ22、電磁界受信用微小ループアンテナ23とを対向させて測定した。電磁界強度測定器13には、図示しないスペクトラムアナライザ接続されている。周波数100〜1000MHzにおいて、試料が存在しない状態での電磁界強度を基準として測定した。
【0032】
放熱量は、シリコン系熱伝導性接着テープ(太陽金網社製サームアタッチ)を用い、試料1〜3を半導体素子上に接着し、試料が存在しない状態を基準として、試料温度との差(ΔT)で表した。従って、数値が大きいと効果がある。条件は、エアフローなしとした。なお、周囲温度は、21〜24℃であった。
【0033】
Figure 0003881730
【0034】
表2より、本発明のヒートシンク(試料1、2)は、従来(試料3)と比べ、同等以上の特性が得られていることがわかる。又、試料1と2を比べると、試料1は結合減衰量の点で優れ、試料2は、放熱量の点で優れていることがわかる。
【0035】
以上、図1(a)に示すような形状のヒートシンクの例を取り上げたが、形状はこれに限定されず、図1(b)、図1(c)に示した形状のヒートシンク1b、1cも使用できる。ヒートシンク1cをICパッケージに実装すると、図2のようになる。
【0036】
この実施例のヒートシンクは、厚さがないので、電子機器の小型化に寄与することができる。
【0037】
この実施例では、ヒートシンク自体を複合磁性体で形成したが、アルミニウム製のヒートシンクの表面に、板状あるいはシート状の複合磁性体を貼付する等の手段により設けてもよい。
【0038】
(実施例2)
実施例1と同様な化合物、配合比で図4に示すような形状のヒートシンクを作製した。構造は、図3(a)の構造とした。ヒートシンク31には、熱が逃げやすいように千鳥状に貫通孔4が設けられている。又、ICパッケージ3の上部を覆うことができる凹部が設けられている。このヒートシンク31をICパッケージ3上に実装すると、図4(a)の状態となる。
【0039】
この実施例のヒートシンクは、実装高さがあまりとれないような場合に、有効である。
【0040】
なお、この実施例では、千鳥状に、断面が円状の貫通孔を設けたが、これに限定されない。例えば、格子状に設けてもよいし、断面が角状でもよい。又、図1(a)の形状のヒートシンクも使用できる。
【0041】
(実施例3)
実施例1と同様な化合物、配合比で図5に示すような形状の放熱シートを作製した。構造は、図3(a)の構造とした。
【0042】
図5に示すように、この実施例の放熱シート7は、ICパッケージ3上に、ICパッケージ3とヒートシンク41の間に挟まれるように、設置して使用する。
【0043】
この実施例では、放熱シート自体を複合磁性体で形成したが、Al23等の熱伝導性の基板に、シート状の複合磁性体を貼付する等の手段により設けてもよい。又、図1(b)の形状の放熱シートも使用できる。
【0044】
(実施例4)
この実施例では、ヒートシンクと一体に組み合わせることができる複合磁性体の例を示す。実施例1と同様な化合物、配合比で図6に示すような形状の複合磁性体を作製した。構造は、図3(a)の構造とした。図6に示すように、複合磁性体15には、ヒートシンク51の放熱用のピンが挿入できる、断面が円状の貫通孔14が設けられている。
【0045】
図6(a)に示すように、複合磁性体15は、ヒートシンク51と組み合せ、ICパッケージ3とヒートシンク51との間になるように、ICパッケージ3上に設置して使用する。
【0046】
又、この実施例では、図1(a)の形状の複合磁性体を使用したが、図1(b)の形状も使用できる。
【0047】
(実施例5)
この実施例では、放熱器と一体に組み合わせることができる複合磁性体の例を示す。実施例1と同様な化合物、配合比で図7に示すような複合磁性体を作製した。図7に示すように、複合磁性体25には、放熱器8のヒートパイプ9が挿入できるような貫通しない孔を設けた。
【0048】
図7に示すように、この実施例の放熱器8は、ヒートパイプ9を複合磁性体25の孔に挿入し、ICパッケージ3上に設置して使用する。
【0049】
(実施例6)
この実施例では、スイッチング素子に用いられる放熱シート及びヒートシンクの例について示す。実施例1と同様な化合物、配合比で図8(a)に示すような放熱シートを作製した。
【0050】
図8(a)に示すように、放熱シート17は、スイッチング素子10とともにフィン16を有するヒートシンク61にねじ止めして使用する。
【0051】
又、図8(b)に示すように、ヒートシンク61の全体を複合磁性体で構成することもできる。
【0052】
なお、実施例2〜8において、ヒートシンク等を図3(a)の構造としたが、図3(b)の構造としても同様の効果が得られる。
【0053】
【発明の効果】
本発明によれば、半導体素子からの発熱を効率よく放熱でき、その上、放射ノイズを抑制できるヒートシンク及び放熱シートを提供できた。
【図面の簡単な説明】
【図1】本発明及び従来のヒートシンクの形状を示す斜視図。図1(a)は、板状のヒートシンクの斜視図。図1(b)は、コ字状のヒートシンクの斜視図。図1(c)は、皿状のヒートシンクの斜視図。
【図2】図1(c)のヒートシンクをICパッケージ上に取り付けた状態を示す側面図。
【図3】本発明及び従来のヒートシンクの構造を示す側面図。図3(a)は、複合磁性体のみからなる本発明のヒートシンクの側面図。図3(b)銅板と、その両側が複合磁性体からなる本発明のヒートシンクの側面図。図3(c)は、銅板と、その両側にコーティングされた絶縁体からなる従来のヒートシンクの側面図。
【図4】本発明のヒートシンクをICパッケージ上に取り付けた状態を示す側面図及びヒートシンクの平面図。図4(a)は、ヒートシンクをICパッケージ上に取り付けた状態を示す側面図。図4(b)は、ヒートシンクの平面図。
【図5】本発明及び従来の放熱シートをICパッケージ上に取り付けた状態を示す側面図。
【図6】ヒートシンクを複合磁性体とともにICパッケージ上に取り付けた状態を示す側面図及び複合磁性体の平面図。図6(a)は、ヒートシンクを複合磁性体とともにICパッケージ上に取り付けた状態を示す側面図。図6(b)は、複合磁性体の平面図。
【図7】ヒートパイプの周囲に複合磁性体を設け、ICパッケージ上に取り付けた状態を示す側面図。
【図8】放熱シート及びヒートシンクをスイッチング素子に取り付けた状態を示す斜視図。図8(a)は、放熱シートをスイッチング素子に取り付けた状態を示す斜視図。図8(b)は、ヒートシンクをスイッチング素子に取り付けた状態を示す斜視図。
【図9】透過減衰量及び結合減衰量の測定方法を示す説明図。図9(a)は、透過減衰量の測定方法を示す説明図。図9(b)は、結合減衰量の測定方法を示す説明図。
【符号の説明】
1、1a、1b、1c、11、21、31、41、51、61 ヒートシンク
2 接着テープ
3 ICパッケージ
4、14 貫通孔
5、15、25 複合磁性体
6 銅板
7、17 放熱シート
8 放熱器
9 ヒートパイプ
10 スイッチング素子
12 電磁界波源用発振器
13 電磁界強度測定器
16 フィン
18 絶縁体
22 電磁界送信用微小ループアンテナ
23 電磁界受信用微小ループアンテナ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat sink and a heat dissipation sheet, and more particularly to a heat sink used for a semiconductor element such as an IC or a diode and a heat dissipation sheet used in combination with the heat sink.
[0002]
[Prior art]
Semiconductor elements such as ICs and diodes have deteriorated in performance when the temperature rises during use, or have been destroyed when severe.
[0003]
Therefore, as shown in FIG. 2, a heat sink 21 or the like is used as a cooling means, and is adhered to the IC package 3 via the adhesive tape 2 to dissipate the generated heat, thereby cooling the semiconductor element.
[0004]
Further, in order to further increase the heat radiation effect, a heat radiation sheet 7 is inserted between the heat sink 41 and the IC package 3 as shown in FIG.
[0005]
By the way, with recent high-speed digital information processing and high signal frequency, radiation noise (radiation noise) from an IC or the like has become a problem. Furthermore, due to the small size and light weight, the mounting density between components is increased, and electromagnetic interference due to the radiation noise is a problem.
[0006]
In addition, as described above, since a heat sink such as aluminum is used for heat dissipation, this acts as an antenna, giving and receiving radiated noise from semiconductor elements and radiated noise from other nearby components, and has an adverse effect. It was.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a heat sink and a heat radiating sheet that can solve the above-described problems and can efficiently dissipate heat generated from a semiconductor element, and can further suppress radiation noise.
[0008]
[Means for Solving the Problems]
The present invention is a composite magnetic body that is applied to an individual element and that is in contact with one surface of the element and absorbs noise generated from the element, the composite magnetic body being a portion excluding a portion that is in contact with the one surface of the element The heat sink is characterized in that the composite magnetic body having the heat radiating fins is composed of a soft magnetic powder subjected to heat treatment and an organic binder.
[0009]
Further, the present invention is a composite magnetic material that is applied to each element and that is in contact with one surface of the element and absorbs noise generated from the element, the composite magnetic body comprising a heat-treated soft magnetic powder and The heat sink is characterized by comprising an organic binder, and the composite magnetic body has an insertion hole for inserting a heat pipe.
[0010]
In the present invention, the composite magnetic material further includes a heat conductive powder, and the heat conductive powder includes alumina, aluminum nitride, cubic boron nitride, beryllium oxide, insulating silicon carbide, and a heat conductive reinforcing material. It is a heat sink characterized by being any one of these .
[0011]
Further, the present invention is a composite magnetic body that is applied to an individual element and that is in contact with one surface of the element , is installed between a heat sink and the element, and absorbs noise generated from the element. Comprises a heat-treated soft magnetic powder and an organic binder, and the composite magnetic body further has a through hole for inserting a heat dissipation pin provided in the heat sink. The heat dissipation sheet is characterized in that the composite magnetic body penetrates in a direction from the heat sink side provided with the pins to a surface in contact with the one surface of the element .
[0012]
In the present invention, the composite magnetic material further includes a heat conductive powder, and the heat conductive powder includes alumina, aluminum nitride, cubic boron nitride, beryllium oxide, insulating silicon carbide, and a heat conductive reinforcing material. It is any one of these, The heat-radiation sheet of Claim 4 characterized by the above-mentioned .
[0018]
Therefore, the present invention dissipates heat generated from the semiconductor element, further absorbs radiation noise generated from the semiconductor element, and absorbs noise from other nearby components. There is no destruction, and electromagnetic interference due to radiation noise is eliminated.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a composite magnetic body made of a soft magnetic powder, an organic binder, and a heat conductive powder is used for a heat sink and a heat dissipation sheet. Embodiments include the following.
(1) The heat sink or the heat dissipation sheet itself is formed of a composite magnetic material. A through hole is provided if necessary.
(2) A composite magnetic body is provided on the surface of the heat sink or heat dissipation sheet.
(3) The heat pipe of the radiator is embedded in the composite magnetic body.
(4) Insert a composite magnetic body between the heat sink and the semiconductor element.
[0020]
As the shape of the heat sink and heat dissipation sheet of the present invention, as shown in FIGS. 1 (a), 1 (b), and 1 (c) , a plate shape, a U shape, a dish shape, or the like can be used. As the structure, as shown in FIG. 3 (a), consist solely of composite magnetic body 5, or the front and back surfaces of the conductive plate 6 such the copper plate, it is obtained by forming a pair of composite magnetic body 5,5 Can be used.
[0021]
As the soft magnetic powder, an Fe—Al—Si alloy or an Fe—Ni alloy can be used.
Organic binders include polyethylene resins, polyester resins, polystyrene resins, polyvinyl chloride resins, polyvinyl butyral resins, polyurethane resins, cellulose resins, nitrile-butadiene rubber and other thermoplastic resins or their co-polymers. A coalescence, an epoxy resin, a phenol resin, an amide resin, an imide resin, or the like can be used.
As the heat conductive powder, in addition to Al 2 O 3 , AlN, cubic BN, BeO, insulating SiC, a heat conductive reinforcing material (Kapton) or the like can be used.
[0022]
【Example】
Examples of the present invention are described in detail below.
[0023]
Example 1
First, a heat sink having the shape shown in FIG. 1A and the structure shown in FIG. 3A having a composite magnetic material layer composed of a soft magnetic powder, an organic binder, and a thermally conductive powder having a blending ratio shown in Table 1 was prepared. . The size was 3.8 × 10.2 (cm).
[0024]
Figure 0003881730
[0025]
That is, first, a soft magnetic material powder subjected to a coupling treatment, an organic binder and a heat conductive powder are kneaded by a kneader, rolled with a roll arranged in parallel, and a sheet-like composite magnetic material having a thickness of 0.5 mm. Was made. Next, two sheets obtained were laminated to obtain a heat sink 1a (sample 1) having a structure as shown in FIG.
[0026]
When the obtained sample was analyzed using a vibrating sample magnetometer and a scanning electron microscope, the easy axis of magnetization and the orientation direction of the magnetic particles were both in-plane directions of this layer.
[0027]
The soft magnetic powder used here was vapor-phase oxidized in an N 2 —O 2 mixed gas atmosphere with an O 2 partial pressure of 20% and annealed at 650 ° C. for 2 hours in an Ar atmosphere. An oxide film is formed on the surface.
[0028]
Similarly, a heat sink 1b (sample 2) having the structure of FIG. The ultra-thin copper plate 6 with a thickness of 0.18 mm was laminated by sandwiching the front and back surfaces between a pair of sheets of the composite magnetic body 5 and rolling with a roll. The total thickness was 1 mm.
[0029]
As a comparative example, a heat sink 1c (sample 3) having a structure shown in FIG. The front and back surfaces of a very thin copper plate 6 having a thickness of 0.18 mm were obtained by laminating sheets of an insulator 18 made of polyvinyl fluoride. The overall thickness was 0.3 mm.
[0030]
Next, for the samples 1 to 3, the surface resistivity, transmission attenuation amount, coupling attenuation amount, and heat release amount were evaluated.
[0031]
For measurement of transmission attenuation and coupling attenuation, as shown in FIG. 9, the electromagnetic wave transmitting oscillator 12 and the electromagnetic field intensity measuring device 13 are respectively provided with an electromagnetic field transmitting micro loop antenna 22 and an electromagnetic field receiving micro loop. A device connected to the antenna 23 was used. As shown in FIG. 9A, the transmission attenuation was measured by placing a sample between the electromagnetic field transmitting minute loop antenna 22 and the electromagnetic field receiving minute loop antenna 23. As shown in FIG. 9B, the coupling attenuation was measured with the electromagnetic field transmitting micro loop antenna 22 and the electromagnetic field receiving micro loop antenna 23 facing each other on the same surface of the sample. A spectrum analyzer (not shown) is connected to the electromagnetic field intensity measuring device 13. The measurement was performed based on the electromagnetic field strength in the state where no sample was present at a frequency of 100 to 1000 MHz.
[0032]
The amount of heat release was determined by using a silicon-based thermally conductive adhesive tape (Therm Wire manufactured by Taiyo Wire Mesh Co., Ltd.), bonding samples 1 to 3 on the semiconductor element, and the difference from the sample temperature (ΔT based on the state where no sample was present) ) Therefore, a large numerical value is effective. The condition was no air flow. The ambient temperature was 21 to 24 ° C.
[0033]
Figure 0003881730
[0034]
From Table 2, it can be seen that the heat sinks (Samples 1 and 2) of the present invention have the same or better characteristics than the conventional (Sample 3). Further, comparing Samples 1 and 2, it can be seen that Sample 1 is excellent in terms of coupling attenuation, and Sample 2 is excellent in terms of heat dissipation.
[0035]
The example of the heat sink having the shape as shown in FIG. 1A has been taken up, but the shape is not limited to this, and the heat sinks 1b and 1c having the shapes shown in FIG. 1B and FIG. Can be used. When the heat sink 1c is mounted on the IC package, it is as shown in FIG.
[0036]
Since the heat sink of this embodiment has no thickness, it can contribute to downsizing of electronic equipment.
[0037]
In this embodiment, the heat sink itself is formed of a composite magnetic material, but it may be provided by means such as attaching a plate-like or sheet-like composite magnetic material to the surface of an aluminum heat sink.
[0038]
(Example 2)
A heat sink having a shape as shown in FIG. 4 was prepared with the same compound and mixing ratio as in Example 1. The structure is the structure shown in FIG. The heat sink 31 is provided with through holes 4 in a staggered manner so that heat can easily escape. In addition, a recess that can cover the top of the IC package 3 is provided. When the heat sink 31 is mounted on the IC package 3, the state shown in FIG.
[0039]
The heat sink of this embodiment is effective when the mounting height cannot be taken much.
[0040]
In this embodiment, the through holes having a circular cross section are provided in a staggered manner, but the present invention is not limited to this. For example, it may be provided in a lattice shape, or the cross section may be square. A heat sink having the shape shown in FIG. 1A can also be used.
[0041]
(Example 3)
A heat radiating sheet having the same shape as shown in FIG. The structure is the structure shown in FIG.
[0042]
As shown in FIG. 5, the heat dissipation sheet 7 of this embodiment is installed and used on the IC package 3 so as to be sandwiched between the IC package 3 and the heat sink 41.
[0043]
In this embodiment, the heat radiating sheet itself is formed of a composite magnetic material, but it may be provided by means such as attaching a sheet-shaped composite magnetic material to a heat conductive substrate such as Al 2 O 3 . Further, a heat radiation sheet having the shape shown in FIG.
[0044]
Example 4
In this embodiment, an example of a composite magnetic body that can be combined with a heat sink is shown. A composite magnetic body having a shape as shown in FIG. 6 was prepared with the same compound and blending ratio as in Example 1. The structure is the structure shown in FIG. As shown in FIG. 6, the composite magnetic body 15 is provided with a through hole 14 having a circular cross section through which a heat dissipation pin of the heat sink 51 can be inserted.
[0045]
As shown in FIG. 6A, the composite magnetic body 15 is combined with the heat sink 51 and used on the IC package 3 so as to be between the IC package 3 and the heat sink 51.
[0046]
In this embodiment, the composite magnetic body having the shape shown in FIG. 1A is used, but the shape shown in FIG. 1B can also be used.
[0047]
(Example 5)
In this embodiment, an example of a composite magnetic body that can be combined with a radiator is shown. A composite magnetic material as shown in FIG. 7 was prepared with the same compound and mixing ratio as in Example 1. As shown in FIG. 7, the composite magnetic body 25 was provided with a non-penetrating hole through which the heat pipe 9 of the radiator 8 can be inserted.
[0048]
As shown in FIG. 7, the radiator 8 of this embodiment is used by inserting the heat pipe 9 into the hole of the composite magnetic body 25 and installing it on the IC package 3.
[0049]
(Example 6)
In this embodiment, an example of a heat dissipation sheet and a heat sink used for the switching element will be described. A heat-dissipating sheet as shown in FIG. 8A was produced with the same compound and blending ratio as in Example 1.
[0050]
As shown in FIG. 8A, the heat radiation sheet 17 is used by screwing to the heat sink 61 having the fins 16 together with the switching element 10.
[0051]
Further, as shown in FIG. 8B, the entire heat sink 61 may be composed of a composite magnetic material.
[0052]
In Examples 2 to 8, the heat sink and the like have the structure shown in FIG. 3A, but the same effect can be obtained with the structure shown in FIG.
[0053]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the heat sink from which a heat_generation | fever from a semiconductor element can be thermally radiated efficiently, and also the radiation noise can be suppressed has been provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the shape of a heat sink according to the present invention and a conventional one. FIG. 1A is a perspective view of a plate-shaped heat sink. FIG. 1B is a perspective view of a U-shaped heat sink. FIG. 1C is a perspective view of a dish-shaped heat sink.
FIG. 2 is a side view showing a state in which the heat sink of FIG. 1C is mounted on an IC package.
FIG. 3 is a side view showing the structure of the present invention and a conventional heat sink. Fig.3 (a) is a side view of the heat sink of this invention which consists only of composite magnetic bodies. FIG. 3B is a side view of the heat sink of the present invention in which the copper plate and both sides thereof are composed of a composite magnetic material. FIG.3 (c) is a side view of the conventional heat sink which consists of a copper plate and the insulator coated on the both sides.
FIGS. 4A and 4B are a side view and a plan view of a heat sink showing a state where the heat sink of the present invention is mounted on an IC package. FIGS. FIG. 4A is a side view showing a state in which the heat sink is mounted on the IC package. FIG. 4B is a plan view of the heat sink.
FIG. 5 is a side view showing a state in which the present invention and a conventional heat dissipation sheet are mounted on an IC package.
FIG. 6 is a side view showing a state in which a heat sink is mounted on an IC package together with a composite magnetic body, and a plan view of the composite magnetic body. FIG. 6A is a side view showing a state where the heat sink is mounted on the IC package together with the composite magnetic body. FIG. 6B is a plan view of the composite magnetic body.
FIG. 7 is a side view showing a state in which a composite magnetic body is provided around a heat pipe and mounted on an IC package.
FIG. 8 is a perspective view showing a state in which a heat dissipation sheet and a heat sink are attached to a switching element. Fig.8 (a) is a perspective view which shows the state which attached the thermal radiation sheet | seat to the switching element. FIG.8 (b) is a perspective view which shows the state which attached the heat sink to the switching element.
FIG. 9 is an explanatory diagram showing a method for measuring transmission attenuation and coupling attenuation. FIG. 9A is an explanatory diagram showing a method for measuring transmission attenuation. FIG. 9B is an explanatory diagram showing a method for measuring the coupling attenuation.
[Explanation of symbols]
1, 1a, 1b, 1c, 11, 21, 31, 41, 51, 61 Heat sink 2 Adhesive tape 3 IC package 4, 14 Through hole 5, 15, 25 Composite magnetic body 6 Copper plate 7, 17 Heat radiation sheet 8 Heat radiator 9 Heat pipe 10 Switching element 12 Oscillator for electromagnetic field source 13 Electromagnetic field strength measuring device 16 Fin 18 Insulator 22 Micro loop antenna for electromagnetic field transmission 23 Micro loop antenna for electromagnetic field reception

Claims (5)

個々の素子に適用され尚且該素子の一面で接し、該素子から発生するノイズを吸収する複合磁性体であって、該複合磁性体は前記素子の前記一面で接する部分を除く部分に形成した放熱フィンを有し、該放熱フィンを有する前記複合磁性体の全体が熱処理を施した軟磁性体粉末と、有機結合剤とからなることを特徴とするヒートシンク。A composite magnetic body that is applied to an individual element and that is in contact with one surface of the element and absorbs noise generated from the element, wherein the composite magnetic body is formed in a portion excluding the portion that contacts the one surface of the element. A heat sink comprising fins, wherein the composite magnetic body having the heat radiating fins is composed of a soft magnetic powder subjected to heat treatment and an organic binder. 個々の素子に適用され尚且該素子の一面で接し、該素子から発生するノイズを吸収する複合磁性体であって、該複合磁性体は熱処理を施した軟磁性体粉末と、有機結合剤からなり、さらに前記複合磁性体はヒートパイプを挿入するための挿入孔を有していることを特徴とするヒートシンク。 Contact with one surface of the applied Note且該elements the individual elements, from a composite magnetic body for absorbing the noise generated from the element, the composite magnetic body and the soft magnetic material powder that has been subjected to the heat treatment, the organic binder Further, the composite magnetic body has an insertion hole for inserting a heat pipe. 前記複合磁性体は、熱伝導性粉末をさらに含み、該熱伝導性粉末は、アルミナ、窒化アルミニウム、立方晶窒化硼素、酸化ベリリウム、絶縁性炭化珪素、熱伝導性強化材のいずれか一種であることを特徴とする請求項1又は2に記載のヒートシンク。  The composite magnetic material further includes a heat conductive powder, and the heat conductive powder is any one of alumina, aluminum nitride, cubic boron nitride, beryllium oxide, insulating silicon carbide, and a heat conductive reinforcing material. The heat sink according to claim 1 or 2, characterized in that. 個々の素子に適用され尚且該素子の一面で接し、ヒートシンクと前記素子との間に設置され、該素子から発生するノイズを吸収する複合磁性体であり、前記複合磁性体は熱処理を施した軟磁性体粉末と、有機結合剤からなり、さらに前記複合磁性体は前記ヒートシンクに設けられている放熱用のピンを挿入するための貫通穴を有し、該貫通穴は前記ピンを設けた前記ヒートシンク側から前記複合磁性体が前記素子の前記一面へ接する面への方向へ貫通していることを特徴とする放熱シート。 Contact with one surface of the applied Note且該elements into individual elements, is disposed between the heat sink and the device is a composite magnetic body for absorbing the noise generated from the element, soft said composite magnetic body that has been subjected to the heat treatment The composite magnetic body is composed of a magnetic powder and an organic binder, and the composite magnetic body has a through hole for inserting a heat dissipation pin provided in the heat sink, and the through hole is provided with the pin. The heat dissipation sheet, wherein the composite magnetic body penetrates from a heat sink side to a surface in contact with the one surface of the element . 前記複合磁性体は、熱伝導性粉末をさらに含み、該熱伝導性粉末は、アルミナ、窒化アルミニウム、立方晶窒化硼素、酸化ベリリウム、絶縁性炭化珪素、熱伝導性強化材のいずれか一種であることを特徴とする請求項4に記載の放熱シート。  The composite magnetic material further includes a heat conductive powder, and the heat conductive powder is any one of alumina, aluminum nitride, cubic boron nitride, beryllium oxide, insulating silicon carbide, and a heat conductive reinforcing material. The heat dissipation sheet according to claim 4, wherein
JP26543896A 1996-09-09 1996-09-12 Heat sink and heat dissipation sheet Expired - Fee Related JP3881730B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP26543896A JP3881730B2 (en) 1996-09-12 1996-09-12 Heat sink and heat dissipation sheet
US09/074,012 US6962753B1 (en) 1996-09-09 1997-09-09 Highly heat-conductive composite magnetic material
CNB97191222XA CN1179619C (en) 1996-09-09 1997-09-09 Highly heat-conductive composite magnetic material
PCT/JP1997/003175 WO1998010632A1 (en) 1996-09-09 1997-09-09 Highly heat-conductive composite magnetic material
DE1997627207 DE69727207T2 (en) 1996-09-09 1997-09-09 HIGHLY CONDUCTING MAGNETIC MIXING MATERIAL
EP97939237A EP0866649B1 (en) 1996-09-09 1997-09-09 Highly heat-conductive composite magnetic material
KR10-1998-0703424A KR100510921B1 (en) 1996-09-09 1997-09-09 Highly heat-conductive composite magnetic material
TW086113017A TW345667B (en) 1996-09-09 1997-09-09 High thermal conductivity composite magnetic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26543896A JP3881730B2 (en) 1996-09-12 1996-09-12 Heat sink and heat dissipation sheet

Publications (2)

Publication Number Publication Date
JPH1092988A JPH1092988A (en) 1998-04-10
JP3881730B2 true JP3881730B2 (en) 2007-02-14

Family

ID=17417159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26543896A Expired - Fee Related JP3881730B2 (en) 1996-09-09 1996-09-12 Heat sink and heat dissipation sheet

Country Status (1)

Country Link
JP (1) JP3881730B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349481A (en) * 1999-03-31 2000-12-15 Internatl Business Mach Corp <Ibm> Computer, cooling device therefor and computer assembly
JP4631877B2 (en) * 2007-07-02 2011-02-16 スターライト工業株式会社 Resin heat sink
JP2009158658A (en) * 2007-12-26 2009-07-16 Murata Mfg Co Ltd Heat dissipater
JP6645487B2 (en) 2017-10-30 2020-02-14 セイコーエプソン株式会社 Printed circuit board
JP7199624B1 (en) * 2022-06-06 2023-01-05 三菱電機株式会社 power wiring structure

Also Published As

Publication number Publication date
JPH1092988A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
US6962753B1 (en) Highly heat-conductive composite magnetic material
US7994435B2 (en) Electromagnetic-wave suppressing radiator sheet and electronic apparatus
JP3336090B2 (en) Apparatus and method for dissipating heat in integrated circuits
JP3969618B2 (en) Electromagnetic wave absorbing heat conductive silicone gel molded sheet and method for producing the same
JP2002374092A (en) Heat dissipating radio wave absorber
US20050039879A1 (en) Heat transmission member and an electronics device using the member
JP3068613B1 (en) Heat radiator for electronic components
JPH1197870A (en) Electronic apparatus
JP2009099753A (en) Heat sink
JPH1070383A (en) Mounting structure for heat sink
JP3881730B2 (en) Heat sink and heat dissipation sheet
KR20000064288A (en) EMI protection parts and active elements
JP2005150249A (en) Heat conductive member and heat radiating structure using the same
US20170374770A1 (en) Laser weldable brackets for attachment of heat sinks to board level shields
JP3528455B2 (en) Electromagnetic interference suppressor
JPH07162177A (en) Radiator
US20050199368A1 (en) Laminated fin heat sink for electronic devices
JP2007214350A (en) Semiconductor apparatus
JP2005159318A (en) Heat conductor
JP2003198173A (en) Electromagnetic wave shielding sheet which functions as thermal radiator and electromagnetic wave suppressing sheet which functions as thermal radiator
JP2003060140A (en) Heat sink and heat radiation device
JP2004023065A (en) Metal-graphite sheet composite and electronic apparatus
JP2807198B2 (en) Heat radiator
JP4543864B2 (en) Heat dissipation component and manufacturing method thereof
JP4447155B2 (en) Electromagnetic wave suppression heat conduction sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees