JP3881391B2 - Manufacturing method of polarizing glass - Google Patents

Manufacturing method of polarizing glass Download PDF

Info

Publication number
JP3881391B2
JP3881391B2 JP24734095A JP24734095A JP3881391B2 JP 3881391 B2 JP3881391 B2 JP 3881391B2 JP 24734095 A JP24734095 A JP 24734095A JP 24734095 A JP24734095 A JP 24734095A JP 3881391 B2 JP3881391 B2 JP 3881391B2
Authority
JP
Japan
Prior art keywords
glass
particles
copper
copper halide
polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24734095A
Other languages
Japanese (ja)
Other versions
JPH0986956A (en
Inventor
英身 田島
岳志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP24734095A priority Critical patent/JP3881391B2/en
Publication of JPH0986956A publication Critical patent/JPH0986956A/en
Application granted granted Critical
Publication of JP3881391B2 publication Critical patent/JP3881391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザーと光ファイバーを用いた光通信において利用される小型光アイソレーターに用いられる偏光ガラスの製造方法に関する。
【0002】
【従来の技術】
小型光アイソレーターに用いられる偏光子としては、小型薄肉のほか波長1.31μあるいは1.55μにて高い消光比・低い挿入損が求められ、偏光ガラスが多用されている。このような偏光ガラスの一例として、特開平5−208844号に開示される銅含有偏光ガラスがある。このガラスの作成方法は、(1)ハロゲン化銅含有ガラスを通常の溶融法で溶解する、(2)ハロゲン化銅含有ガラスを熱処理してガラス中にハロゲン化銅微粒子を析出させ、(3)そのガラスを高温下で引っ張るかあるいは押し出すことによりハロゲン化銅微粒子を伸長し、(4)還元雰囲気下で熱処理するものである。この方法によりガラスの表面層にアスペクト比が2:1〜15:1である金属銅粒子を含有する偏光ガラスを作成できる。これはガラスの消光方向の吸収ピーク波長が約1.3〜1.7μになるような条件であり、波長1.31μあるいは1.55μにおいて高い消光比が望める。
【0003】
【発明が解決しようとする課題】
このような小型光アイソレーターの分野では、偏光子の挿入損の低下が強く望まれている。銅含有偏光ガラスにおいて挿入損を低減するには、ハロゲン化銅粒子および金属銅粒子の散乱ロスを小さくすることが有効である。偏光ガラス中に含まれるハロゲン化銅粒子および金属銅粒子の粒子径が小さいことが望ましい。ところが、ハロゲン化銅粒子および金属銅粒子の粒子径を小さくすると、偏光ガラス製造の際に、より小さなハロゲン化銅微粒子を伸長して異方性の粒子とする必要がある。偏光ガラスの挿入損は0.06dB以下にすることが望ましく、そのためには、伸長前のハロゲン化銅粒子を、例えば、平均粒子径を100nm以下にする必要がある。しかし、ハロゲン化銅微粒子を小さくすると、伸長のためには大きな応力が必要となる。
【0004】
異方性粒子を得るためのガラスの伸長工程で印加し得る実際の最大応力は、引っ張り法や線引き法ではガラスの破損しない範囲内、また、押し出し法ではダイス(カーボンや窒化硼素製)の磨耗・破損が起こり憎い範囲内で決められる。例えば、特開平5−208844号には、約70nm径のハロゲン化銅微粒子を含有するガラスを引っ張り法により延伸した例(実施例6)が記載されている。しかし、ガラスの延伸には39.2MPa( 400 kgf/cm 2 )の荷重を必要とし、100nmを越える径のハロゲン化銅微粒子を含有するガラスの1.5〜2倍の荷重を必要としている。そして、このような条件では、延伸途中でガラスが破損し易く、実験室レベルでは偏光ガラスを得られても、安定的な操業という観点から、実生産に移すことは困難である。即ち、偏光子の挿入損の低下のために、偏光ガラスに含まれるハロゲン化銅粒子および/または金属銅粒子の粒子径はより小さいことが望ましい。しかし、粒子径が100nm以下のハロゲン化銅微粒子を含むガラスの破損等の問題を起こすことなく延伸することは困難であった。
【0005】
そこで本発明の目的は、挿入損の低い銅含有偏光ガラスを安定的に製造する方法であって、より小さな(100nm以下)粒子径のハロゲン化銅微粒子を含むガラスでも、ガラスを破損することなく延伸できる工程を含む前記製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく種々検討した。その結果、ガラスに含まれるハロゲン化銅の濃度が一定の低い範囲内であれば、ガラスに含まれるハロゲン化銅微粒子の粒子径が100nm以下であっても、ガラスの破損を起こすことなく容易に延伸でき、さらには従来と同等の偏光特性を有し、かつ挿入損失の低い偏光ガラスが得られることを見出して本発明を完成した。この方法によれば、延伸中のガラスの破損や、押し出しのダイスの磨耗・破損を実質的に起こすことなく偏光ガラスを作製することができる。
【0007】
即ち、本発明は、形状異方性を有する金属銅粒子がガラス中に配向して分散されている偏光ガラスの製造方法であって、ハロゲン化銅の含有量が、重量%で表示して、0.3以上0.5%未満であり、SnOの含有量が0.01〜0.12%であるホウケイ酸塩系ガラスを熱処理してガラス中にハロゲン化銅を析出させる工程、得られたガラスをガラスの粘度が1×106 〜1×1011ポアズに相当する温度で加熱して、ガラス中のハロゲン化銅粒子を伸長する工程、および得られたガラス中のハロゲン化銅粒子の一部又は全部を還元して金属銅粒子を析出させる工程、を含む前記製造方法に関する。
【0008】
以下、本発明について説明する。本発明の偏光ガラスの製造方法には、ハロゲン化銅の含有量が、重量%で表示して、0.3以上0.5%未満であるホウケイ酸塩系ガラスを用いる。銅を一価で含み易く、熱処理によりハロゲン化銅粒子を析出しやすいことから、ホウケイ酸塩系ガラスであることが適当である。ハロゲン化銅の含有量が0.3%未満では、熱処理によりハロゲン化銅粒子を析出させることができない。また、ハロゲン化銅の含有量が0.5%以上では、ハロゲン化銅粒子を含有するガラスを伸長するのにより大きな力が必要となり、ガラスの破損やダイスの磨耗等の問題を生じる。
【0009】
上記ホウケイ酸塩系ガラスは、例えば、重量%で表示して、SiO2 ;48〜65%、B23;13〜33%、Al23;6〜13%、AlF3;0〜5%、R2O(但し、Rはアルカリ金属である);0〜5%、RCl;0〜5%、アルカリ土類酸化物;0〜5%、ハロゲン化銅0.3以上0.5%未満、SnO;0.01〜0.12%、As23;0〜5%の組成を有するガラスであることができる。ここで、SnOは還元剤であり、2価の銅を1価にする働きがある。その量は銅の添加量・溶解スケジュールに応じて0.01〜0.12%の範囲で加える。
【0010】
上記組成のガラスを作るには、酸化物、炭酸塩、水酸化物、ハロゲン化物を原料として用いることができる。上記組成に基づくガラスバッチを作り、これを溶融しキャストした後に、室温までに除冷することにより所望のガラスを得ることができる。次にこのガラスを適当なサイズに切り出し、熱処理をするとにより、ガラス中にハロゲン化銅粒子の微粒子を析出させることができる。加熱温度は、例えば、650℃〜750℃の範囲とすることが適当である。650℃より低くなると析出時間が長くなりすぎる傾向があり、750℃より高いと短時間で粒子が成長して、粒子径をコントロールしにくくなる傾向がある。粒子径を小さくコントロールすることで、得られる偏光ガラスの散乱ロスを小さくすることができる。偏光ガラスの挿入損を0.06dB以下にするには、ハロゲン化銅粒子の平均粒子径を100nm以下にすることが適当である。
【0011】
次いで、ガラスの粘度が1×106 〜1×1011ポアズに相当する温度に加熱しハロゲン化銅粒子含有ガラスを延伸して、ガラス中のハロゲン化銅粒子を伸長する。ガラスの延伸法には特に制限はないが、例えば、引っ張り法、線引き法、および押し出し法を用いることができる。ガラスの延伸時の温度が高過ぎると、伸長した粒子が球形に戻ったり分裂したりしやすくなる。また、温度が低すぎるとガラスが破損しやすくなる。また、ガラスの延伸法に応じて適したガラスの粘度があるので、これらを考慮して、適度な粘性範囲で伸長することができる。例えば、薄肉なガラスに高速で延伸できる線引き法では、低粘性領域(1×106 〜1×108 ポアズ)、高速での成形には不向きな押出し法では、高粘性領域(1×108 〜1×1011ポアズ)が適している。
【0012】
ガラスの延伸は、ガラス中の伸長されたハロゲン化銅粒子のアスペクト比が3:1〜60:1になるように行うことが適当である。これにより還元工程でアスペクト比が2:1〜16:1である金属銅粒子を析出させることができる。近赤外で偏光特性を持たせるのには、上記範囲のアスペクト比の金属銅粒子を含有することが好ましい。
【0013】
次いで、得られたガラス中のハロゲン化銅粒子の一部又は全部を還元して金属銅粒子を析出させる。十分な偏光特性を与えるためには、ハロゲン化銅粒子の少なくとも一部を金属銅に還元する。ハロゲン化銅粒子の還元は、公知の方法を用いて行うことができる。例えば、特開平5−208844号に記載と同様の条件である350〜550℃、好ましくは375〜475℃の範囲の温度で30分〜10時間還元することが適当である。熱処理の温度が低過ぎると十分な偏光特性を得るのに長時間を要し、高すぎると伸長された粒子が球状に戻ったり分裂してしまう場合がある。還元には、水素ガス等の還元性のガスを適宜用いることができる。
【0014】
【発明の効果】
本発明の製造方法によれば、粒子径が100nm以下のハロゲン化銅粒子を含むガラスを延伸する場合でも、小さな応力でハロゲン化銅粒子を吸収ピーク波長が1.3〜1.7μに相当する程度のアスペクト比に伸長させることができ、ガラスの破損やダイスの磨耗・破損のない安定した延伸を行える。これによって、消光比が高く、挿入損失の低い銅含有偏光ガラスを安価に安定的に提供できる。
【0015】
【実施例】
以下、本発明を実施例および比較例によりさらに説明する。
実施例1
wt%で、SiO2 ;59.9%、B2 3 ;20.5%、Al2 3 ;6.8%、AlF3 ;2.0%、Na2 O;9.8%、NaCl;1.0%、CuCl;0.45%、SnO;0.077%なる組成のガラスを作製した。原料としてSiO2 、H3 BO3 、Al(OH)、AlF3 、Na2 CO3 、NaCl、CuCl、SnOなどを用いた。これらの原料を5リッターの白金ルツボに入れ約1400℃で溶解した後、金型に流し込み室温まで除冷して上記ガラスを得た。このガラスを適当な大きさに切断し、電気炉に入れ、昇温を始め735℃にて1時間保持した後断電し冷却した。透過型電子顕微鏡で観察した結果、この熱処理にてガラス中に平均で約93nmの塩化銅粒子が析出していることが確認できた。このガラスブロックから、切断・研磨により、2×20×220mmの板状ガラスを得、これを線引き用プリフォームとした。
【0016】
図1に線引き装置の概略図を示す。図中、1はプリフォームであり、プリフォーム1は送り装置2に針金を介して保持されて下方に移動可能になっている。プリフォーム1の先端付近は、加熱炉3内で軟化されてプリフォーム1の下端部から下方に向けて引張装置4によって線引きが行われる。線引きにより、伸長した金属ハロゲン化物粒子が分散している線状のガラス5が形成される。線引きされて加熱炉3の外に出た線状のガラス5は、外気により急激に冷却される。尚、加熱炉3の上にはフタ7の付いた円筒形のフード6が設けられている。
【0017】
次に線引きの手順を説明する。プリフォームを送り装置に取り付け、その先端が炉の中央のやや下に位置するようにセットする。昇温を開始し720℃(粘度5.9×106 ポアズに相当)に保持しプリフォーム先端部をネックダウンさせる。このネックダウンしたガラスを、モータードライブされた引取用ローラーに挟み、このローラーを回転して引取を開始する。10mm/minの送り速度、1m/minの引取速度で線引きすることにより、断面が約0.2×2.0mmのガラスが連続して得られた。この線引き装置についているロードセルの指示した値から、この時の張力は約750gであった。よって、0.2×2.0mmの断面積で割って、18.4MPa( 188kg f /cm 2 )の応力で線引きされたと計算される。
【0018】
張力が後述する比較例1に比べ低く、ガラスの破損もなく線引きが安定して行われた。この線引きされたガラスを適当な長さに切り、水素雰囲気中425℃にて4時間の熱処理をした。得られたガラスの透過率曲線を図2に示す。実線は偏光ガラスの透過方向の偏光を入射した場合、破線は消光方向の偏光を入射した場合である。このガラスの吸収ピーク波長は.1.50μであり、1.55μの消光比56dB、挿入損は0.04dBであった。ただし、挿入損は1.55μ用のARコートをした場合の測定値である。
【0019】
比較例1
CuClを0.85%、SnOを0.11%とした以外は実施例1のガラスと同様の組成のガラスを用いた。塩化銅析出のための熱処理は、720℃にて1時間で行った。透過型電子顕微鏡で観察した結果、この熱処理にてガラス中の塩化銅粒子の平均粒形は約91nmであった。実施例1と同じ条件で線引き及び水素還元を行った。その結果、得られたガラスの吸収ピーク波長は0.90μであり、1.55μの消光比は2dB未満であり、偏光ガラスとして実用にならないものであった。
【0020】
比較例2比較例1と同じガラス組成・溶解条件・熱処理条件・還元条件とした。吸収ピーク波長を1.5μ付近にするためには応力を大きくする必要があり、線引き条件を以下のようにした。即ち、温度704℃(粘度1.1×107 ポアズに相当)、10mm/minの送り速度、1m/minの引取速度で線引きした。この時の張力は1.8kg(応力に換算して約44.1MPa( 450kg f /cm 2 ))であった。この線引きでは途中でガラスが破断し線引きが中断した。破断箇所は、炉内であり、ガラスの幅が縮小して約2mmになった所であった。得られたガラスを水素還元した。その結果、吸収ピーク波長は1.54μであり、1.55μの消光比は60dBであった。性能は十分であるが、この条件では線引きを長尺にわたって破損なく線引きすることは困難であった。
【0021】
実施例2
実施例1で用いたガラスと同様の組成のガラスを切断し内径50mmの金型に入れ、735℃にて1時間の熱処理をした。この熱処理により粒形の93nmの塩化銅が析出した。これを押し出し装置のダイスとパンチに挟まれた部分に入れ、620℃(粘度7.2×108 ポアズ相当)に保持して油圧シリンダーにてパンチ(金属棒)を通してガラスに荷重20tonかけることにより、ダイスの押し出し口から5mm径の棒に押し出した。高温・高圧下でのガラスとの融着を防ぐためにダイスには濡れの悪いカーボンを用いたが、この押し出しで磨耗が多少あったものの破損はなかった。この棒を適当な長さに切断し、次にその側面を研磨して0.5×60mmの板を得た。この板を実施例1と同じ条件で水素還元した。得られたガラスの透過率曲線を図3に示す。吸収ピーク波長は1.55μであり、1.55μの消光比は56dBであった。ARコートをつけた試料の挿入損は0.06dBであった。
【0022】
比較例3
比較例1で用いたと同様の組成のガラスを使い、730℃にて1時間の熱処理をした。析出した塩化銅の粒径は平均で100nmであった。次に実施例2で示した手順で押し出した。条件は、温度620℃荷重25tonであった。このガラスを使い、実施例2と同じ条件で切断研磨・水素還元を行った。その結果、吸収ピーク波長は1.18μであり、1.55μの消光比は10dBであった。押し出し荷重を上げたにもかかわらず吸収ピーク波長は1.18μと短波長であり性能は不十分であった。逆に、ダイスの磨耗は激しく、何回か行ったがダイスにヒビが入ることがしばしばあった。
以上のように、塩化銅濃度の高いガラスを用いて本発明の場合と同等の性能の偏光ガラスを得るためには、より大きな応力で伸長する必要がある。その結果、線引き工程でのガラスの破損、押し出し工程でのダイスの磨耗・破損は避けられない。
【0023】
実施例3
wt%で、SiO2 ;56.0%、B2 3 ;17.5%、Al2 3 ;6.0%、AlF3 ;4.0%、Na2 O;10.0%、NaCl;2.0%、MgO;3.0%、CuCl;0.40%、SnO;0.070%なる組成のガラスを作製した。原料としてSiO2 、H3 BO3 、Al(OH)3 、AlF3 、Na2 CO3 、NaCl、MgCl、MgCO3 、CuCl、SnOなどを用いた。これらの原料を5リッターの白金ルツボに入れ約1400℃で溶解した後、金型に流し込み室温まで除冷して上記ガラスを得た。このガラスを適当な大きさに切断し、730℃にて1時間保持した後断電し冷却した。
【0024】
透過型電子顕微鏡で観察した結果、この熱処理にてガラス中の塩化銅粒子の平均粒径は約85nmであった。このガラスブロックから、切断・研磨により、2×20×220mmの板状ガラスを得、これを線引き用プリフォームとした。実施例1と同じ線引き手順で線引きした。725℃(粘度6.3×106 ポアズに相当)に保持し、10mm/minの送り速度、1m/minの引取速度で線引きすることにより、断面が約0.2×2.0mmのガラスが連続して得られた。ついで、実施例1と同じ条件で水素還元をした。このガラスの吸収ピーク波長は1.45μであり、1.55μの消光比は52dBであった。また、ARコートをつけた試料の挿入損は0.04dBであった。
【0025】
実施例4
wt%でSiO2 ;59.9%、B2 3 ;20.5%、Al2 3 ;6.8%、AlF3 ;2.0%、Na2 O;9.8%、NaCl;1.0%、CuCl;0.34%、SnO;0.058%なる組成のガラスを作製した。原料としてSiO2 、H3 BO3 、Al(OH)3 、AlF3 、Na2 CO3 、NaCl、CuCl、SnOなどを用いた。これらの原料を5リッターの白金ルツボに入れ約1400℃で溶解した後、金型に流し込み室温まで除冷した。このガラスを適当な大きさに切断し、電気炉に入れ、昇温を始め740℃にて4時間保持した後断電し冷却した。透過型電子顕微鏡で観察した結果、この熱処理にてガラス中に平均で約86nmの塩化銅粒子が析出していることが確認できた。このガラスブロックから、切断・研磨により2×20×220mmの板状ガラスを得、これを線引き用プリフォームとした。
実施例1と同じ線引き手順で線引きした。725℃(粘度6.3×106 ポアズに相当)に保持し、6mm/minの送り速度0.6m/minの引取速度で線引きすることにより、断面が約0.2×2.0mmのガラスが連続して得られた。ついで、実施例1と同じ条件で水素還元をした。ただし、還元時間は24時間である。金属粒子のアスペクト比は約4:1であった。このガラスの吸収ピーク波長は1.40μであり、1.55μの消光比は50dBであった。また、ARコートをつけた試料の挿入損は0.04dBであった。
【図面の簡単な説明】
【図1】 実施例で用いた線引き装置の概略図
【図2】 実施例1で得られた偏光ガラスの分光透過率曲線。
【図3】 実施例2で得られた偏光ガラスの分光透過率曲線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a polarizing glass used in a small optical isolator used in optical communication using a semiconductor laser and an optical fiber.
[0002]
[Prior art]
As a polarizer used for a small optical isolator, a small extinction ratio, a high extinction ratio and a low insertion loss are required at a wavelength of 1.31 μm or 1.55 μm, and polarizing glass is frequently used. As an example of such a polarizing glass, there is a copper-containing polarizing glass disclosed in JP-A-5-208844. This glass is prepared by (1) melting a copper halide-containing glass by a normal melting method, (2) heat treating the copper halide-containing glass to precipitate copper halide fine particles in the glass, and (3) By pulling or extruding the glass at a high temperature, the copper halide fine particles are elongated and (4) heat-treated in a reducing atmosphere. By this method, a polarizing glass containing metallic copper particles having an aspect ratio of 2: 1 to 15: 1 can be formed on the surface layer of the glass. This is a condition such that the absorption peak wavelength in the extinction direction of the glass is about 1.3 to 1.7 μm, and a high extinction ratio can be expected at a wavelength of 1.31 μm or 1.55 μm.
[0003]
[Problems to be solved by the invention]
In the field of such a small optical isolator, it is strongly desired to reduce the insertion loss of the polarizer. In order to reduce the insertion loss in the copper-containing polarizing glass, it is effective to reduce the scattering loss of the copper halide particles and the metal copper particles. It is desirable that the particle diameters of the copper halide particles and the metal copper particles contained in the polarizing glass are small. However, if the particle diameters of the copper halide particles and the metal copper particles are reduced, it is necessary to elongate smaller copper halide fine particles to make anisotropic particles during the production of polarizing glass. The insertion loss of the polarizing glass is desirably 0.06 dB or less, and for that purpose, the copper halide particles before elongation must have an average particle diameter of, for example, 100 nm or less. However, when the copper halide fine particles are made small, a large stress is required for elongation.
[0004]
The actual maximum stress that can be applied during the glass elongation process to obtain anisotropic particles is within the range where the glass is not damaged by the pulling and drawing methods, and the die (made of carbon or boron nitride) is worn by the extrusion method.・ Determine within the extent that damage occurs and is hated. For example, Japanese Patent Laid-Open No. 5-208844 describes an example (Example 6) in which a glass containing copper halide fine particles having a diameter of about 70 nm is stretched by a pulling method. However, stretching of the glass requires a load of 39.2 MPa ( 400 kgf / cm 2 ) , and requires a load 1.5 to 2 times that of glass containing copper halide fine particles having a diameter exceeding 100 nm. Under such conditions, the glass is easily broken during stretching, and even if polarizing glass is obtained at the laboratory level, it is difficult to shift to actual production from the viewpoint of stable operation. That is, in order to reduce the insertion loss of the polarizer, it is desirable that the copper halide particles and / or metal copper particles contained in the polarizing glass have a smaller particle size. However, it has been difficult to stretch without causing problems such as breakage of glass containing copper halide fine particles having a particle diameter of 100 nm or less.
[0005]
Therefore, an object of the present invention is a method for stably producing a copper-containing polarizing glass with low insertion loss, and even glass containing copper halide fine particles having a smaller (100 nm or less) particle diameter does not damage the glass. It is providing the said manufacturing method including the process which can be extended | stretched.
[0006]
[Means for Solving the Problems]
The present inventors have made various studies in order to solve the above problems. As a result, as long as the concentration of copper halide contained in the glass is within a certain low range, even if the particle diameter of the copper halide fine particles contained in the glass is 100 nm or less, the glass can be easily broken. The present invention was completed by finding that a polarizing glass that can be stretched and has polarization characteristics equivalent to those of the conventional one and low insertion loss can be obtained. According to this method, it is possible to produce a polarizing glass without substantially causing breakage of the glass during stretching and abrasion / breakage of the extrusion die.
[0007]
That is, the present invention is a method for producing a polarizing glass in which metallic copper particles having shape anisotropy are oriented and dispersed in the glass, wherein the content of copper halide is expressed in wt%, A step of heat-treating a borosilicate glass having a SnO content of 0.01 to 0.12% that is 0.3 or more and less than 0.5% to precipitate copper halide in the glass was obtained. A step of heating the glass at a temperature corresponding to a viscosity of 1 × 10 6 to 1 × 10 11 poise to elongate the copper halide particles in the glass, and one of the obtained copper halide particles in the glass The present invention relates to the above production method comprising a step of reducing a part or all of the metal and depositing metallic copper particles.
[0008]
The present invention will be described below. In the method for producing a polarizing glass of the present invention, a borosilicate glass having a copper halide content expressed by weight% of 0.3 or more and less than 0.5% is used. A borosilicate glass is suitable because it easily contains copper monovalently and easily precipitates copper halide particles by heat treatment. If the content of copper halide is less than 0.3%, copper halide particles cannot be precipitated by heat treatment. On the other hand, when the copper halide content is 0.5% or more, a larger force is required to stretch the glass containing the copper halide particles, which causes problems such as glass breakage and die wear.
[0009]
Said borosilicate glass, for example, and in weight%, SiO 2; 48~65%, B 2 O 3; 13~33%, Al 2 O 3; 6~13%, AlF 3; 0~ 5%, R 2 O (where R is an alkali metal); 0 to 5%, RCl; 0 to 5%, alkaline earth oxide; 0 to 5%, copper halide ; It may be a glass having a composition of less than 5%, SnO; 0.01 to 0.12%, As 2 O 3 ; 0 to 5%. Here, SnO is a reducing agent and has a function of making divalent copper monovalent. The amount obtaining pressurized in the range of 0.01 to 0.12% depending on the copper amount and dissolution schedule.
[0010]
In order to make a glass having the above composition, oxides, carbonates, hydroxides and halides can be used as raw materials. A glass batch based on the above composition is prepared, melted and cast, and then cooled to room temperature to obtain a desired glass. Next, the glass is cut into an appropriate size and subjected to heat treatment, whereby fine particles of copper halide particles can be precipitated in the glass. The heating temperature is suitably in the range of 650 ° C. to 750 ° C., for example. When the temperature is lower than 650 ° C., the precipitation time tends to be too long. When the temperature is higher than 750 ° C., the particles grow in a short time and the particle diameter tends to be difficult to control. By controlling the particle size to be small, the scattering loss of the obtained polarizing glass can be reduced. In order to make the insertion loss of the polarizing glass 0.06 dB or less, it is appropriate that the average particle diameter of the copper halide particles is 100 nm or less.
[0011]
Next, the glass is heated to a temperature corresponding to 1 × 10 6 to 1 × 10 11 poise to stretch the copper halide particle-containing glass, and the copper halide particles in the glass are stretched. Although there is no restriction | limiting in particular in the extending | stretching method of glass, For example, the drawing method, the drawing method, and the extrusion method can be used. If the temperature at which the glass is stretched is too high, the elongated particles are liable to return to a spherical shape or split. If the temperature is too low, the glass tends to break. Moreover, since there exists the viscosity of the glass suitable according to the extending | stretching method of glass, it can extend | stretch in an appropriate viscosity range in consideration of these. For example, in the drawing method that can be stretched at high speed to thin glass, the low viscosity region (1 × 10 6 to 1 × 10 8 poise), and in the extrusion method that is not suitable for high speed molding, the high viscosity region (1 × 10 8). ~ 1 × 10 11 poise) is suitable.
[0012]
It is appropriate to stretch the glass so that the aspect ratio of the elongated copper halide particles in the glass is 3: 1 to 60: 1. Thereby, metallic copper particles having an aspect ratio of 2: 1 to 16: 1 can be deposited in the reduction step. In order to give polarization characteristics in the near infrared, it is preferable to contain metallic copper particles having an aspect ratio in the above range.
[0013]
Next, some or all of the copper halide particles in the obtained glass are reduced to precipitate metal copper particles. In order to provide sufficient polarization characteristics, at least a part of the copper halide particles is reduced to metallic copper. The reduction of the copper halide particles can be performed using a known method. For example, it is appropriate to perform the reduction for 30 minutes to 10 hours at a temperature in the range of 350 to 550 ° C., preferably 375 to 475 ° C. under the same conditions as described in JP-A-5-208844. If the temperature of the heat treatment is too low, it takes a long time to obtain sufficient polarization characteristics, and if it is too high, the elongated particles may return to a spherical shape or split. For the reduction, a reducing gas such as hydrogen gas can be appropriately used.
[0014]
【The invention's effect】
According to the production method of the present invention, even when a glass containing copper halide particles having a particle diameter of 100 nm or less is stretched, the absorption peak wavelength of the copper halide particles corresponds to 1.3 to 1.7 μm with a small stress. It can be stretched to a certain aspect ratio and can be stably stretched without glass breakage or die wear / breakage. Thereby, a copper-containing polarizing glass having a high extinction ratio and a low insertion loss can be stably provided at a low cost.
[0015]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
Example 1
In wt%, SiO 2; 59.9% , B 2 O 3; 20.5%, Al 2 O 3; 6.8%, AlF 3; 2.0%, Na 2 O; 9.8%, NaCl 1.0%, CuCl; 0.45%, SnO; 0.077%. SiO 2 , H 3 BO 3 , Al (OH), AlF 3 , Na 2 CO 3 , NaCl, CuCl, SnO, etc. were used as raw materials. These raw materials were put in a 5-liter platinum crucible and melted at about 1400 ° C., then poured into a mold and cooled to room temperature to obtain the glass. This glass was cut into an appropriate size, placed in an electric furnace, started to be heated, held at 735 ° C. for 1 hour, and then cut off and cooled. As a result of observation with a transmission electron microscope, it was confirmed that copper chloride particles having an average of about 93 nm were precipitated in the glass by this heat treatment. From this glass block, a plate glass of 2 × 20 × 220 mm was obtained by cutting and polishing, and this was used as a preform for drawing.
[0016]
FIG. 1 shows a schematic diagram of a drawing apparatus. In the figure, 1 is a preform, and the preform 1 is held by a feeding device 2 via a wire and is movable downward. The vicinity of the tip of the preform 1 is softened in the heating furnace 3 and drawn by the tension device 4 downward from the lower end of the preform 1. By drawing, a linear glass 5 in which elongated metal halide particles are dispersed is formed. The linear glass 5 drawn out of the heating furnace 3 is rapidly cooled by the outside air. A cylindrical hood 6 with a lid 7 is provided on the heating furnace 3.
[0017]
Next, the drawing procedure will be described. Attach the preform to the feeder and set it so that its tip is located slightly below the center of the furnace. The temperature rise is started and the temperature is maintained at 720 ° C. (corresponding to a viscosity of 5.9 × 10 6 poise) and the preform tip is necked down. The necked-down glass is sandwiched between take-up rollers driven by a motor, and the take-up is started by rotating the rollers. By drawing at a feed speed of 10 mm / min and a take-up speed of 1 m / min, a glass having a cross section of about 0.2 × 2.0 mm was continuously obtained. From the value indicated by the load cell attached to the drawing device, the tension at this time was about 750 g. Therefore, by dividing the cross-sectional area of 0.2 × 2.0 mm, it is calculated to have been drawn in stress 18.4MPa (188kg f / cm 2) .
[0018]
The tension was lower than that of Comparative Example 1 described later, and the drawing was performed stably without breakage of the glass. The drawn glass was cut to an appropriate length and heat-treated at 425 ° C. for 4 hours in a hydrogen atmosphere. The transmittance curve of the obtained glass is shown in FIG. A solid line indicates a case where polarized light in the transmission direction of the polarizing glass is incident, and a broken line indicates a case where polarized light in the extinction direction is incident. The absorption peak wavelength of this glass is. The extinction ratio was 1.5 dB and the insertion loss was 0.04 dB. However, the insertion loss is a value measured when AR coating for 1.55 μ is applied.
[0019]
Comparative Example 1
A glass having the same composition as the glass of Example 1 was used except that CuCl was 0.85% and SnO was 0.11%. The heat treatment for copper chloride precipitation was performed at 720 ° C. for 1 hour. As a result of observation with a transmission electron microscope, the average particle shape of the copper chloride particles in the glass by this heat treatment was about 91 nm. Drawing and hydrogen reduction were performed under the same conditions as in Example 1. As a result, the absorption peak wavelength of the obtained glass was 0.90 μ, the extinction ratio of 1.55 μ was less than 2 dB, and it was not practical as a polarizing glass.
[0020]
Comparative Example 2 The same glass composition, melting conditions, heat treatment conditions and reducing conditions as in Comparative Example 1 were used. In order to make the absorption peak wavelength near 1.5 μm, it is necessary to increase the stress, and the drawing conditions are as follows. That is, the wire was drawn at a temperature of 704 ° C. (corresponding to a viscosity of 1.1 × 10 7 poise) at a feed speed of 10 mm / min and a take-up speed of 1 m / min. Tension at that time was 1.8kg (about in terms of stress 44.1MPa (450kg f / cm 2) ). In this drawing, the glass broke in the middle and the drawing was interrupted. The breakage point was in the furnace, where the glass width was reduced to about 2 mm. The resulting glass was hydrogen reduced. As a result, the absorption peak wavelength was 1.54 μ, and the extinction ratio of 1.55 μ was 60 dB. Although the performance is sufficient, it was difficult to draw the wire over a long length without breakage under these conditions.
[0021]
Example 2
A glass having the same composition as that of the glass used in Example 1 was cut and placed in a mold having an inner diameter of 50 mm, followed by heat treatment at 735 ° C. for 1 hour. By this heat treatment, 93 nm copper chloride having a grain shape was precipitated. This is put into a portion sandwiched between a die and a punch of an extrusion device, held at 620 ° C. (equivalent to a viscosity of 7.2 × 10 8 poise), and a load of 20 ton is applied to the glass through a punch (metal rod) with a hydraulic cylinder. The product was extruded from a die extrusion port to a 5 mm diameter rod. In order to prevent fusion with the glass at high temperature and high pressure, carbon with poor wettability was used for the die, but there was no damage although there was some wear due to this extrusion. The bar was cut to an appropriate length, and then the side surface was polished to obtain a 0.5 × 60 mm plate. This plate was subjected to hydrogen reduction under the same conditions as in Example 1. The transmittance curve of the obtained glass is shown in FIG. The absorption peak wavelength was 1.55 μ, and the extinction ratio of 1.55 μ was 56 dB. The insertion loss of the sample with the AR coat was 0.06 dB.
[0022]
Comparative Example 3
Using glass having the same composition as that used in Comparative Example 1, heat treatment was performed at 730 ° C. for 1 hour. The average particle size of the precipitated copper chloride was 100 nm. Next, the extrusion was performed according to the procedure shown in Example 2. The condition was a temperature of 620 ° C. and a load of 25 ton. Using this glass, cutting polishing and hydrogen reduction were performed under the same conditions as in Example 2. As a result, the absorption peak wavelength was 1.18 μm, and the extinction ratio of 1.55 μm was 10 dB. Despite increasing the extrusion load, the absorption peak wavelength was as short as 1.18 μm, and the performance was insufficient. On the other hand, the dies were worn very often, and after several runs, the dies often cracked.
As described above, in order to obtain a polarizing glass having the same performance as that of the present invention using a glass having a high copper chloride concentration, it is necessary to stretch with a larger stress. As a result, glass breakage in the wire drawing process and die wear / breakage in the extrusion process are inevitable.
[0023]
Example 3
wt%, SiO 2 ; 56.0%, B 2 O 3 ; 17.5%, Al 2 O 3 ; 6.0%, AlF 3 ; 4.0%, Na 2 O; 10.0%, NaCl 2.0%, MgO; 3.0%, CuCl; 0.40%, SnO; 0.070%. SiO 2 , H 3 BO 3 , Al (OH) 3 , AlF 3 , Na 2 CO 3 , NaCl, MgCl, MgCO 3 , CuCl, SnO, etc. were used as raw materials. These raw materials were put in a 5-liter platinum crucible and melted at about 1400 ° C., then poured into a mold and cooled to room temperature to obtain the glass. The glass was cut into an appropriate size, held at 730 ° C. for 1 hour, then cut off and cooled.
[0024]
As a result of observation with a transmission electron microscope, the average particle diameter of the copper chloride particles in the glass by this heat treatment was about 85 nm. From this glass block, a plate glass of 2 × 20 × 220 mm was obtained by cutting and polishing, and this was used as a preform for drawing. Drawing was performed by the same drawing procedure as in Example 1. Holding at 725 ° C. (corresponding to a viscosity of 6.3 × 10 6 poise) and drawing at a feeding speed of 10 mm / min and a take-up speed of 1 m / min, a glass having a cross-section of about 0.2 × 2.0 mm is obtained. Obtained continuously. Subsequently, hydrogen reduction was performed under the same conditions as in Example 1. The absorption peak wavelength of this glass was 1.45 μm, and the extinction ratio of 1.55 μm was 52 dB. The insertion loss of the sample with the AR coat was 0.04 dB.
[0025]
Example 4
59.9%, B 2 O 3; ; SiO 2 in wt% 20.5%, Al 2 O 3; 6.8%, AlF 3; 2.0%, Na 2 O; 9.8%, NaCl; A glass having a composition of 1.0%, CuCl; 0.34%, SnO; 0.058% was produced. As raw materials, SiO 2 , H 3 BO 3 , Al (OH) 3 , AlF 3 , Na 2 CO 3 , NaCl, CuCl, SnO, etc. were used. These raw materials were placed in a 5-liter platinum crucible and dissolved at about 1400 ° C., then poured into a mold and cooled to room temperature. This glass was cut into an appropriate size, placed in an electric furnace, started to rise in temperature, held at 740 ° C. for 4 hours, then cut off and cooled. As a result of observation with a transmission electron microscope, it was confirmed that copper chloride particles having an average of about 86 nm were precipitated in the glass by this heat treatment. From this glass block, a plate glass of 2 × 20 × 220 mm was obtained by cutting and polishing, and this was used as a preform for drawing.
Drawing was performed by the same drawing procedure as in Example 1. A glass having a cross-section of about 0.2 × 2.0 mm by holding at 725 ° C. (corresponding to a viscosity of 6.3 × 10 6 poise) and drawing at a take-up speed of 6 mm / min and a feed rate of 0.6 m / min. Was obtained continuously. Subsequently, hydrogen reduction was performed under the same conditions as in Example 1. However, the reduction time is 24 hours. The aspect ratio of the metal particles was about 4: 1. The absorption peak wavelength of this glass was 1.40 μm, and the extinction ratio of 1.55 μm was 50 dB. The insertion loss of the sample with the AR coat was 0.04 dB.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a drawing apparatus used in Examples. FIG. 2 is a spectral transmittance curve of a polarizing glass obtained in Example 1.
3 is a spectral transmittance curve of the polarizing glass obtained in Example 2. FIG.

Claims (5)

形状異方性を有する金属銅粒子がガラス中に配向して分散されている偏光ガラスの製造方法であって、ハロゲン化銅の含有量が、重量%で表示して、0.3以上0.5%未満であり、SnOの含有量が0.01〜0.12%であるホウケイ酸塩系ガラスを熱処理してガラス中にハロゲン化銅を析出させる工程、得られたガラスをガラスの粘度が1×106 〜1×1011ポアズに相当する温度で加熱して、ガラス中のハロゲン化銅粒子を伸長する工程、および得られたガラス中のハロゲン化銅粒子の一部又は全部を還元して金属銅粒子を析出させる工程、を含む前記製造方法。A method for producing a polarizing glass in which metallic copper particles having shape anisotropy are oriented and dispersed in glass, wherein the content of copper halide is expressed in terms of% by weight and is 0.3 or more and 0.00. The step of heat-treating a borosilicate glass having a SnO content of 0.01 to 0.12% and precipitating copper halide in the glass, and the resulting glass has a glass viscosity of less than 5% Heating at a temperature corresponding to 1 × 10 6 to 1 × 10 11 poise to elongate the copper halide particles in the glass, and reducing part or all of the copper halide particles in the obtained glass And the step of depositing metallic copper particles. ホウケイ酸塩系ガラスが、重量%で表示して、SiO2 ;48〜65%、B23 ;13〜33%、Al23 ;6〜13%、AlF3 ;0〜5%、R2 O(但し、Rはアルカリ金属である);0〜5%、RCl;0〜5%、アルカリ土類酸化物;0〜5%、ハロゲン化銅;0.3以上0.5%未満、SnO;0.01〜0.12%、As23 ;0〜5%の組成を有する請求項1記載の製造方法。Salt-based borosilicate glass, and in weight%, SiO 2; 48~65%, B 2 O 3; 13~33%, Al 2 O 3; 6~13%, AlF 3; 0~5%, R 2 O (where R is an alkali metal); 0 to 5%, RCl; 0 to 5%, alkaline earth oxide; 0 to 5%, copper halide; 0.3 to less than 0.5% , SnO; 0.01~0.12%, As 2 O 3; the process of claim 1, further comprising 0-5% of the composition. 平均粒子径50〜100nmのハロゲン化銅粒子を析出させる請求項1又は2記載の製造方法。 The production method according to claim 1 or 2, wherein copper halide particles having an average particle diameter of 50 to 100 nm are precipitated. ハロゲン化銅粒子の伸長を、ガラスを引っ張るか、線引きするか、または押し出すことにより行う請求項1〜3のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the copper halide particles are stretched by drawing, drawing, or extruding the glass. ハロゲン化銅が塩化銅である請求項1〜4のいずれか1項に記載の製造方法。The manufacturing method according to claim 1, wherein the copper halide is copper chloride.
JP24734095A 1995-09-26 1995-09-26 Manufacturing method of polarizing glass Expired - Lifetime JP3881391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24734095A JP3881391B2 (en) 1995-09-26 1995-09-26 Manufacturing method of polarizing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24734095A JP3881391B2 (en) 1995-09-26 1995-09-26 Manufacturing method of polarizing glass

Publications (2)

Publication Number Publication Date
JPH0986956A JPH0986956A (en) 1997-03-31
JP3881391B2 true JP3881391B2 (en) 2007-02-14

Family

ID=17161958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24734095A Expired - Lifetime JP3881391B2 (en) 1995-09-26 1995-09-26 Manufacturing method of polarizing glass

Country Status (1)

Country Link
JP (1) JP3881391B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563639B1 (en) * 2002-01-24 2003-05-13 Corning Incorporated Polarizing glasses
WO2010013820A1 (en) 2008-07-31 2010-02-04 Hoya Candeo Optronics株式会社 Polarizing element
JP2011059593A (en) * 2009-09-14 2011-03-24 Okamoto Glass Co Ltd Glass polarizing element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0986956A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3105491B2 (en) Manufacturing method of polarizing glass
US5886820A (en) Polarizing glass and production process thereof
US4908054A (en) Method for making infrared polarizing glasses
DE102006059756B4 (en) Visible light polarizer made of stretched, H2-treated glass and method of making the same
JP4653121B2 (en) Broadband contrast polarizing glass
JP5379473B2 (en) Copper-containing polarizing glass and optical isolator
JPS5983951A (en) Drawing formation for laminated glass and infrared ray polarizing glass
JPS6363499B2 (en)
JP3881391B2 (en) Manufacturing method of polarizing glass
CN1140476C (en) Method for producing glass sheets using flotation
JP3705505B2 (en) Polarizing glass and manufacturing method thereof
JP2007193327A (en) Method for making wide optical polarizer using extrusion
CN108821570B (en) Formula and method for preparing surface-strengthened transparent plate glass
US6536236B2 (en) Method of making a polarizing glass
JP2849358B2 (en) Manufacturing method of polarizing glass
CN110231677A (en) Microlens array and preparation method thereof
JP2008299329A (en) Method of manufacturing polarizing glass
EP1018490A1 (en) Method for producing air-quench toughened glass plate
KR102584650B1 (en) Manufacturing method of amorphous metal nanopowder by amorphous metal wire explosion
JP2005049529A (en) Method for manufacturing polarizing glass
WO1998014409A1 (en) Method of making a polarizing glass
KR20230049863A (en) A metal nano fiber bundle coated inorganic composition and manufacturing method thereof
US20030205062A1 (en) Method for producing air-quench-toughened glass plate
KR20230049861A (en) A metal fiber bundle coated inorganic composition and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20020513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term