JP3880727B2 - TEM cell - Google Patents

TEM cell Download PDF

Info

Publication number
JP3880727B2
JP3880727B2 JP21333198A JP21333198A JP3880727B2 JP 3880727 B2 JP3880727 B2 JP 3880727B2 JP 21333198 A JP21333198 A JP 21333198A JP 21333198 A JP21333198 A JP 21333198A JP 3880727 B2 JP3880727 B2 JP 3880727B2
Authority
JP
Japan
Prior art keywords
test
tem cell
inner conductor
wall surface
tem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21333198A
Other languages
Japanese (ja)
Other versions
JPH11174102A (en
Inventor
在▲フーン▼ 尹
光胤 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH11174102A publication Critical patent/JPH11174102A/en
Application granted granted Critical
Publication of JP3880727B2 publication Critical patent/JP3880727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0821Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning rooms and test sites therefor, e.g. anechoic chambers, open field sites or TEM cells
    • G01R29/0828TEM-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/18Screening arrangements against electric or magnetic fields, e.g. against earth's field

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁波耐性(EMS)、電磁波障害(EMI)等測定、アンテナ矯正等において必要な標準電磁波(平面波)を発生させるY型TEMセルに関する。
【0002】
【従来の技術】
一般に、従来TEM(transverse electromagnetic)セルの施設ではクローフォードTEMセル(Crawford TEM cell)、GTEMセル(Giga−Hertz TEM cell)、TTEMセル(Triple TEM cell)、WTEMセル(Wire TEM cell)、改良型GTEM セル、自動測定用TEMセル、6端子TEMセル等種類が多いがこれらは大きく2種類に区分することができる。
【0003】
すなわち、GTEMセル(Giga−Hertz TEM cell)、TTEMセル(Triple TEM cell)、WTEMセル(Wire TEM cell)、改良型GTEM セル等のように片面に入出力端子が存在する“一端TEMセル”と、クローフォードTEMセル、非対称型TEMセル、自動測定用TEMセル、6端子TEMセルのように両面に入出力端子が存在する“両端TEMセル”に区分することができる。上記2種類とも電磁波障害測定、電磁波耐性測定、アンテナ矯正等に活用されるが、前者は遠域場に対する試験のみ可能であり、後者は遠域場のみならず近域場試験においても支援することができ、これらは互いに相違するものと見られる。
【0004】
両端TEMセルは更に2種類に区分が可能である。すなわち、クローフォードTEMセル、非対称型TEMセル、可変インピ−ダンス電磁波発生装置のように垂直分極のみ支援されるTEMセルと、6端子TEMセル、自動測定用TEMセル、回転用円筒TEMセルのように垂直水平分極とも支援されるTEMセルとに区分が可能である。
【0005】
これらは、また、更に自動測定用TEMセル、回転型円筒TEMセルのように機械的に回転させるTEMセルと、6端子TEMセルのように内部導体の給電選択により分極を調節する、すなわち電気的に調節するTEMセルとに区分が可能である。後者は垂直・水平分極に対してのみ調節可能な反面、前者は任意の分極を調節することができる。しかし、後者は前者よりも構造が簡単であり製作も容易である。電気的に垂直・水平分極を調節することができる一端TEMセルにはTTEMセルがある。これは、両端TEMセル構造に変更が可能であるため、これらの中に包含してその特性を比較して見ると、次のとおりである。
【0006】
6端子TEMセルは均一場領域が基準施設に比して大変広く確保することができ、電磁波の均一度が非常に良い反面、入力電力の有用度が落ちる問題点を有する。一方、TTEMセルは均一場領域が狭く、電磁波の均一度が低いという特性を有している反面、6端子TEMセルより入力電力の有用度が高いという特性がある。
【0007】
更に、これらはともに最大の均一度を提供するためには外部導体断面の構造を正四角形に維持しなければならない。このため、携帯ホーン、ダイーポール及びモノポ−ルアンテナを有する無線機器、各種コンピュータ機器、冷蔵庫のように幅が狭く高さが高い各種電気電子製品に対する電磁波耐性、電磁波障害等測定時、既存の施設は試験領域の空間活用度が低いためより大きい施設が必要となる問題点を有する。
【0008】
両端TEMセルの大きさは可用周波数と反比例的関係がある。このため試験領域の空間活用度が低ければ可用周波数帯域がその程度狭くなるという問題点を有する。更に、ペイジャー、携帯ホーン等をはじめ無線機器感度及び矯正測定のようにすべての製品に対して測定をしなければならない場合、多量の施設の確保が必要であり非常に広い作業空間が必要であるという問題点がある。
【0009】
【発明が解決しようとする課題】
したがって、本発明は上記の問題点が解消されるように垂直分極の標準電磁波を発生するため2個の内部導体を設け、水平分極の場合1個の内部導体を設け、垂直/水平分極ともに高い均一度を有するようにし、試験空間の活用を最適化したY型TEMセルを提供することにその目的がある。
【0010】
上記の目的を達成するための本発明は、内部導体が上下側面ともに3個で構成され、被試験体を固定させながら回転テーブルのように回転させることができるように被試験体支持台が設けられた試験領域と、3個のN型コネクターが装着された同軸コネクター継ぎ目領域と、上記試験領域両端に上記同軸コネクターが装着されるように繋ぐテーパ領域から構成されることを特徴とする。
【0011】
【発明の実施の形態】
以下に、添付した図面を参照して本発明を説明すると次のとおりである。
【0012】
図1乃至図4は本発明によるY型TEMセルの構成図である。
【0013】
図2及び図3に図示されたように本発明の構造を大きく区分すると、被調査体が置かれる試験領域1、テーパ領域2と、同軸ケーブルコネクターと本体が連結される同軸コネクター繋ぎ目領域3、及び伝達された電磁波を縦断する縦断領域に区分することができる。このとき、試験領域1は左端第1N型コネクター5と右端第1N型コネクター8が連結された第1内部導体11、左端第2N型コネクター6と右端第2N型コネクター9が連結された第2内部導体12、左端第3N型コネクター7と右端第3N型コネクター10が連結された第3内部導体13、中心第3外部導体16、門20(図1)、被調査体の状態を観察するための遮蔽窓21(図1)、被調査体が固定配置される支持台4及び本体全体を支え移動自在になるように設計された支持台19から構成される。
【0014】
図4に図示された本発明の側断面図では、第2内部導体12と第3内部導体13が中心第3外部導体16内に上下壁近くに設置され、より広い均一場領域を確保し、第1内部導体11も外部導体の壁近くに設置され、より広い均一場領域を確保する。しかし、内部導体が外部導体壁に近寄れば近寄るほど均一場領域が広くなるが、反面、電磁波の均一度が悪くなる特性がある。
【0015】
更に、第1,2及び3内部導体構造はすべて一般同軸ケーブルの特性インピーダンス(主に、50オーム)で整合させなければならないため、第1,2及び3内部導体11,12及び13の位置が固定されると、内部導体の幅が決定されなければならない。また、給電方式により50オームの特性インピーダンスを有する構造が変更されるため、上記モデルにおいては第2,3内部導体12及び13は第1内部導体11とは異なり反対位相の奇数モード(odd mode)給電(入力電圧の大きさが同じで180度位相差をもつように給電)により特性インピーダンス整合構造を決定する。
【0016】
また、試験領域1に設置された被試験体支持台4は円板支持板24上に円板22を分離設置して回転可能にし、被試験体が円板22上に設置されたとき円滑な回転をさせるためこれらの間にベアリング23を設置する。被試験体支持台4、円板支持台24及び円板22は内部標準電磁波の歪曲を最小化させるためテフロンのように非導電体であり誘電率が低い材料で形成する。ベアリング23は非導電体であるセラミックのように硬い材料で形成し、被試験体の回転状態及び位置把握が容易になるように目盛りをつける。
【0017】
同軸コネクター繋ぎ目領域3には、同軸ケーブルと本体を連結するため第1外部導体14を設置する。第1外部導体14内部に第4内部導体25を設置しテーパ領域2端の内部導体と連結し、その間に誘電体26を挿入し固定させた。これらの構造は、すべてインピーダンス整合が維持されるように設計する。
【0018】
テーパ領域2は、第2外部導体15と第1,2,3内部導体11,12及び13から構成され、被試験体領域の大きさを維持させるためテーパされた領域である。また、テーパ領域2は電磁波の歪曲がない範囲内で短く維持する。何故ならば、長くなると有効長さが増加して共振周波数が低くなるためである。
【0019】
図5乃至図8はTEMセルの電界値偏差分布図であり、図5は従来TTEMセルの1.2mx1.2m断面大きさを有する50オームの電界値偏差分布図である。図6は従来6端子TEMセルの1.2mx1.2m断面大きさを有する50オームの電界値偏差分布図である。図7は本発明によるY型TEMセルの1.2mx1.2m断面大きさを有する50オームの電界値偏差分布図である
図8は本発明によるY型TEMセルの1.2mx1.2m断面大きさを有する50オームの電界値偏差分布図である。各図それぞれの右側の結果は水平偏波造成結果であり、左側は垂直偏波造成結果である。図5乃至図8は中心地点においての等方性電界プローブを利用して測定された結果に対して正規化した電界分布図を示し、本発明によるY型TEMセルの均一場領域が大きいことが判る。
【0020】
特に、図8は、高さが高く幅が狭い被試験体に対する電磁波耐性及び障害測定のためのY型TEMセルの1.2mx1.2m断面大きさを有する50オームの電界値偏差分布図であり、従来TTEMセル及び6端子TEMセルにおいて断面構造が正四角を維持できない場合に内部電磁波の均一度が低い特性を表すのとは異なり、本発明によるY型TEMセルは垂直及び水平分極ともに均一度が非常に安定していることが判る。このとき、均一場領域の大きさは0.33mx0.467mであり、総入射電力が2Wattのとき中心から垂直電界が6.11V/m、水平電界は9.14V/mと測定された。上記測定結果本発明によるY型TEMセルは冷蔵庫、コンピュータ、携帯ホーンのように幅が狭く高さが高い一般被試験体に対する電磁波障害及び耐性測定等に適している。
【0021】
下記「表1」は1.2mx1.2mの従来TEMセル及びY型TEMセルの均一場領域大きさ及び2Watt入力時中心においての電界強度を示している。
【0022】

Figure 0003880727
「表1」において従来TTEMセルの均一場領域の大きさは0.24mx0.24mであり、既存の6端子TEMセルは0.325x0.325mで、本発明によるY型TEMセルは0.3mx0.33mであることが判った。本発明によるY型TEMセルは6端子TEMセルより均一場領域が僅か小さい、しかし従来TTEMセルより広いことが判った。更に、「表1」においてのように同一の入射電力(2Watt)を維持させたときの均一場領域中心における電界値は6端子TEMセルが最も低い反面、本発明によるY型TEMセルが最も高いことが判った。すなわち、Y型TEMセルは低い電力で高い電磁波を発生させることができる。
【0023】
【発明の効果】
上述したように本発明によるY型TEMセルは入射電力の有用度を高め、小さい入射電力でも高い標準電磁波発生が可能であり、電磁波の均一度を高め精密な電磁波耐性、電磁波障害及び矯正、受信機感度測定が可能になり、それのみならず携帯ホーンをはじめとするダイポール及びモノポールアンテナを有する無線機、各種コンピュータ機器、冷蔵庫等のように幅が狭く高さが高い各種電気、電子製品に対する空間活用が高い電磁波耐性、電磁波障害測定にも試験空間の活用度を高めるモデル製作が可能である。
【0024】
試験領域の空間活用度を高める技術は周波数特性の面から見て非常に重要である。何故ならば、試験領域の断面が小さくなればなるほど遮断周波数が高くなり、可用周波数帯域を高めることができるためである。結局、Y型TEMセルは既存施設に比して可用周波数帯域を相当上昇させる効果を有する。
【図面の簡単な説明】
【図1】本発明によるY型TEMセルの斜視図。
【図2】本発明によるY型TEMセルの正断面図。
【図3】本発明によるY型TEMセルの平断面図。
【図4】本発明によるY型TEMセルの側断面図。
【図5】従来TTEMセルの1.2mx1.2m断面大きさを有する50オームの電界値偏差分布図。
【図6】従来6端子TEMセルの1.2mx1.2m断面大きさを有する50オームの電界値偏差分布図。
【図7】本発明によるY型TEMセルの1.2mx1.2m断面大きさを有する50オームの電界値偏差分布図。
【図8】半発明によるY型TEMセルの1.2mx1.6m断面大きさを有する50オームの電界値偏差分布図。
【符号の説明】
1:試験領域 2:テーパ領域
3:同軸コネクター繋ぎ目領域 4:被試験体支持台
5:左端第1N型コネクター 6:左端第2N型コネクター
7:左端第3N型コネクター 8:右端第1N型コネクター
9:右端第2N型コネクター 10:右端第3N型コネクター
11:第1内部導体 12:第2内部導体
13:第3内部導体 14:左端第1外部導体
15:左端第2外部導体 16:中心第3外部導体
17:右端第1外部導体 18:右端第2外部導体
19:支持台 20:門
21:遮蔽窓 22:円板
23:ベアリング 24:円板支持板
25:第4内部導体 26:誘電体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Y-type TEM cell that generates standard electromagnetic waves (plane waves) necessary for electromagnetic wave resistance (EMS), electromagnetic wave interference (EMI) measurement, antenna correction, and the like.
[0002]
[Prior art]
Generally, in a facility of a conventional TEM (transverse electromagnetic) cell, Crawford TEM cell (Crawford TEM cell), GTEM cell (Giga-Hertz TEM cell), TTEM cell (Triple TEM cell), WTEM cell (Wire TEM cell), improved type There are many types such as GTEM cell, TEM cell for automatic measurement, and 6-terminal TEM cell, but these can be roughly divided into two types.
[0003]
That is, “one-end TEM cell” having an input / output terminal on one side like a GTEM cell (Giga-Hertz TEM cell), a TTEM cell (Triple TEM cell), a WTEM cell (Wire TEM cell), an improved GTEM cell, etc. , Crawford TEM cells, asymmetrical TEM cells, automatic measurement TEM cells, and 6-terminal TEM cells can be divided into “both-end TEM cells” having input / output terminals on both sides. Both types are used for electromagnetic interference measurement, electromagnetic wave immunity measurement, antenna correction, etc. The former can only be used for far field tests, and the latter should support not only far field but also near field tests. And they appear to be different from each other.
[0004]
Both-end TEM cells can be further divided into two types. That is, like a Crawford TEM cell, an asymmetric TEM cell, a TEM cell that supports only vertical polarization, such as a variable impedance electromagnetic wave generator, a 6-terminal TEM cell, an automatic measurement TEM cell, and a rotating cylindrical TEM cell It can be divided into TEM cells that are also supported by vertical and horizontal polarization.
[0005]
They also adjust the polarization by selecting the power supply of the inner conductor, such as a TEM cell for automatic measurement such as a TEM cell for automatic measurement, a rotating cylindrical TEM cell, and a 6-terminal TEM cell. Can be divided into TEM cells to be adjusted. The latter can be adjusted only for vertical and horizontal polarization, while the former can adjust any polarization. However, the latter has a simpler structure and is easier to manufacture than the former. One-end TEM cells that can electrically adjust vertical and horizontal polarization include a TTEM cell. Since this can be changed to the double-ended TEM cell structure, it is as follows when it is included in these to compare the characteristics.
[0006]
The 6-terminal TEM cell can ensure a uniform field area very widely compared to the standard facility, and the uniformity of electromagnetic waves is very good, but the usefulness of input power is reduced. On the other hand, the TTEM cell has the characteristics that the uniform field region is narrow and the electromagnetic wave uniformity is low, but the input power is more useful than the 6-terminal TEM cell.
[0007]
Furthermore, both of these must maintain the structure of the outer conductor cross-section as a regular square in order to provide maximum uniformity. Therefore, existing facilities are tested when measuring electromagnetic wave resistance, electromagnetic interference, etc. for various electronic devices such as portable devices, wireless devices with dipoles and monopole antennas, various computer devices, and refrigerators with narrow width and high height. There is a problem that a larger facility is required because the space utilization of the area is low.
[0008]
The size of the both-end TEM cell is inversely related to the usable frequency. For this reason, if the space utilization of the test area is low, there is a problem that the available frequency band becomes narrow to that extent. In addition, if all products must be measured, such as the sensitivity and correction of wireless devices such as pagers and portable horns, it is necessary to secure a large amount of facilities and a very large work space is required. There is a problem.
[0009]
[Problems to be solved by the invention]
Therefore, the present invention provides two internal conductors to generate vertical polarized standard electromagnetic waves so as to eliminate the above-mentioned problems, and in the case of horizontal polarization, one internal conductor is provided, and both vertical / horizontal polarization is high. The purpose is to provide a Y-type TEM cell that has uniformity and that optimizes the utilization of the test space.
[0010]
In order to achieve the above object, the present invention provides a device under test base that is configured with three inner conductors on both the upper and lower sides and can be rotated like a turntable while the device under test is fixed. The test area is composed of a joint area where the three N-type connectors are attached, and a taper area where the coaxial connectors are attached to both ends of the test area.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the accompanying drawings.
[0012]
1 to 4 are configuration diagrams of a Y-type TEM cell according to the present invention.
[0013]
As shown in FIGS. 2 and 3, the structure of the present invention is roughly divided into a test area 1 where a test object is placed, a taper area 2, and a coaxial connector joint area 3 where a coaxial cable connector and a main body are connected. , And the transmitted electromagnetic wave can be divided into longitudinal regions that longitudinally intersect. At this time, the test area 1 includes a first inner conductor 11 to which the left end first N-type connector 5 and the right end first N-type connector 8 are connected, and a second inner part to which the left end second N-type connector 6 and the right end second N-type connector 9 are connected. For observing the state of the conductor 12, the third inner conductor 13, the center third outer conductor 16, the gate 20 (FIG. 1), the left third N-type connector 7 and the right third N-type connector 10 connected, The shielding window 21 (FIG. 1), the support base 4 on which the object to be examined is fixedly arranged, and the support base 19 designed to support and move the entire main body are configured.
[0014]
In the side sectional view of the present invention shown in FIG. 4, the second inner conductor 12 and the third inner conductor 13 are installed near the upper and lower walls in the central third outer conductor 16 to ensure a wider uniform field region, The first inner conductor 11 is also installed near the wall of the outer conductor to ensure a wider uniform field region. However, the closer the inner conductor is to the outer conductor wall, the wider the uniform field region, but on the other hand, there is a characteristic that the uniformity of the electromagnetic wave is worsened.
[0015]
Furthermore, since the first, second and third inner conductor structures must all be matched with the characteristic impedance of the general coaxial cable (mainly 50 ohms), the positions of the first, second and third inner conductors 11, 12 and 13 are Once fixed, the width of the inner conductor must be determined. In addition, since the structure having a characteristic impedance of 50 ohms is changed depending on the feeding method, in the above model, the second and third inner conductors 12 and 13 are different from the first inner conductor 11 in the odd phase (odd mode). The characteristic impedance matching structure is determined by feeding (feeding so that the input voltage has the same magnitude and a phase difference of 180 degrees).
[0016]
In addition, the DUT support base 4 installed in the test area 1 can be rotated by separating and installing the disc 22 on the disc support plate 24, and smooth when the DUT is installed on the disc 22. A bearing 23 is installed between them for rotation. The DUT 4, the disk support 24 and the disk 22 are made of a non-conductive material having a low dielectric constant, such as Teflon, in order to minimize distortion of the internal standard electromagnetic wave. The bearing 23 is formed of a hard material such as ceramic which is a non-conductive material, and is calibrated so that the rotational state and position of the device under test can be easily grasped.
[0017]
A first outer conductor 14 is installed in the coaxial connector joint region 3 to connect the coaxial cable and the main body. A fourth inner conductor 25 was installed inside the first outer conductor 14 and connected to the inner conductor at the end of the taper region 2, and a dielectric 26 was inserted and fixed therebetween. These structures are all designed so that impedance matching is maintained.
[0018]
The tapered region 2 is composed of a second outer conductor 15 and first, second, and third inner conductors 11, 12, and 13, and is a tapered region for maintaining the size of the device under test region. Further, the tapered region 2 is kept short within a range where there is no electromagnetic wave distortion. This is because as the length increases, the effective length increases and the resonance frequency decreases.
[0019]
5 to 8 are electric field value deviation distribution diagrams of the TEM cell, and FIG. 5 is an electric field value deviation distribution diagram of 50 ohms having a 1.2 mx 1.2 m cross-sectional size of the conventional TEM cell. FIG. 6 is a 50 ohm electric field value deviation distribution diagram of a conventional 6-terminal TEM cell having a 1.2 mx 1.2 m cross-sectional size. 7 is a 50 ohm electric field value deviation distribution diagram having a 1.2 mx 1.2 m cross-sectional size of a Y-type TEM cell according to the present invention. FIG. 8 is a 1.2 mx 1.2 m cross-sectional size of a Y-type TEM cell according to the present invention. It is an electric field value deviation distribution map of 50 ohms. The results on the right side of each figure are the results of horizontal polarization creation, and the results on the left are the results of vertical polarization creation. FIG. 5 to FIG. 8 show electric field distribution diagrams normalized with respect to the results measured using the isotropic electric field probe at the central point, and the uniform field region of the Y-type TEM cell according to the present invention is large. I understand.
[0020]
In particular, FIG. 8 is a 50 ohm electric field value deviation distribution diagram having a 1.2 mx 1.2 m cross-sectional size of a Y-type TEM cell for measuring electromagnetic wave immunity and damage to a test object having a high height and a narrow width. Unlike the conventional TEM cell and 6-terminal TEM cell, where the cross-sectional structure cannot maintain a regular square, the Y-type TEM cell according to the present invention is uniform in both vertical and horizontal polarization. Can be seen to be very stable. At this time, the size of the uniform field region was 0.33 mx 0.467 m, and when the total incident power was 2 Watts, the vertical electric field was measured from the center to 6.11 V / m, and the horizontal electric field was measured to be 9.14 V / m. Results of Measurement The Y-type TEM cell according to the present invention is suitable for measuring electromagnetic interference and resistance against a general test object having a narrow width and a high height such as a refrigerator, a computer, and a portable horn.
[0021]
“Table 1” below shows the uniform field region size and the electric field strength at the center at the time of 2 Watt input of the conventional TEM cell of 1.2 mx 1.2 m and the Y-type TEM cell.
[0022]
Figure 0003880727
In Table 1, the size of the uniform field region of the conventional TTEM cell is 0.24 mx 0.24 m, the existing 6-terminal TEM cell is 0.325 x 0.325 m, and the Y-type TEM cell according to the present invention is 0.3 mx 0. It was found to be 33m. It has been found that the Y-type TEM cell according to the present invention has a slightly smaller uniform field region than the 6-terminal TEM cell, but wider than the conventional TTEM cell. Further, as shown in “Table 1”, the electric field value at the center of the uniform field region when the same incident power (2 Watt) is maintained is the lowest in the 6-terminal TEM cell, whereas the Y-type TEM cell according to the present invention is the highest. I found out. That is, the Y-type TEM cell can generate high electromagnetic waves with low power.
[0023]
【The invention's effect】
As described above, the Y-type TEM cell according to the present invention increases the usefulness of incident power, can generate a high standard electromagnetic wave even with a small incident power, increases the uniformity of the electromagnetic wave, and precise electromagnetic wave resistance, electromagnetic wave interference and correction, reception. Sensitivity can be measured, but not only for radios with dipoles and monopole antennas such as portable horns, various computer equipment, refrigerators, etc. It is possible to produce a model that increases the degree of utilization of the test space for electromagnetic wave resistance and electromagnetic interference measurement with high space utilization.
[0024]
A technique for increasing the space utilization of the test area is very important from the viewpoint of frequency characteristics. This is because the cut-off frequency becomes higher as the cross section of the test area becomes smaller, and the usable frequency band can be increased. Eventually, the Y-type TEM cell has the effect of significantly increasing the available frequency band compared to existing facilities.
[Brief description of the drawings]
FIG. 1 is a perspective view of a Y-type TEM cell according to the present invention.
FIG. 2 is a front sectional view of a Y-type TEM cell according to the present invention.
FIG. 3 is a plan sectional view of a Y-type TEM cell according to the present invention.
FIG. 4 is a side sectional view of a Y-type TEM cell according to the present invention.
FIG. 5 is a 50 ohm electric field value deviation distribution diagram having a 1.2 mx 1.2 m cross-sectional size of a conventional TTEM cell.
FIG. 6 is a distribution diagram of electric field value deviation of 50 ohms having a 1.2 mx 1.2 m cross-sectional size of a conventional 6-terminal TEM cell.
7 is a 50 ohm electric field value deviation distribution diagram having a 1.2 mx 1.2 m cross-sectional size of a Y-type TEM cell according to the present invention. FIG.
FIG. 8 is an electric field value deviation distribution diagram of 50 ohms having a 1.2 mx 1.6 m cross-sectional size of a Y-type TEM cell according to the semi-invention.
[Explanation of symbols]
1: Test area 2: Tapered area 3: Coaxial connector joint area 4: DUT support base 5: Left first N-type connector 6: Left second N-type connector 7: Left third N-type connector 8: Right first N-type connector 9: Right end second N-type connector 10: Right end third N-type connector 11: First inner conductor 12: Second inner conductor 13: Third inner conductor 14: Left end first outer conductor 15: Left end second outer conductor 16: Center first 3 outer conductor 17: right end first outer conductor 18: right end second outer conductor 19: support base 20: gate 21: shielding window 22: disc 23: bearing 24: disc support plate 25: fourth inner conductor 26: dielectric body

Claims (2)

上壁面、下壁面および側壁面を有する外壁と、これらの壁面により囲まれて形成される内部空間に配置される第1、第2および第3の内部導体と、被試験体を搭載する被試験体支持台とを含み、被試験体を収容して試験を行うための試験領域と、
前記試験領域の両側にそれぞれ配置され、前記第1、第2および第3の内部導体と同軸ケーブルとを接続するための3個の同軸ケーブルコネクタを備える同軸コネクター継ぎ目領域と、
前記試験領域の両端と前記同軸コネクター継ぎ目領域とを接続するテーパー領域とを有し、
前記の内部導体は、前記外壁の上壁面の近くに、前記第の内部導体は、前記外壁の下壁面の近くに、それぞれ配置されると共に、前記第の内部導体と前記第の内部導体は、主平面が互いに対向して、前記被試験体を収容する空間を形成し、前記第の内部導体は、側壁面の一方の近くに配置されると共に、前記第2および第3の内部導体に挟まれる空間に面すると共に、その主平面は、前記第および第の内部導体の主平面と直交するように向けられ、
前記被試験体支持台は、前記第の内部導体と前記第の内部導体との間に配置され、
前記第の内部導体の主平面、前記被試験体を収容する空間を挟んで対向する前記側壁面との距離は、前記第の内部導体の主平面から対向する前記下壁面間での距離よりも小さくおよび、前記第の内部導体の主平面から対向する前記上壁面までの距離よりも小さいことを特徴とするTEMセル。
An outer wall having an upper wall surface, a lower wall surface and a side wall surface, first, second and third inner conductors arranged in an inner space surrounded by these wall surfaces, and a device under test for mounting a device under test A test area for containing and testing the test object ;
A coaxial connector seam region disposed on each side of the test region and comprising three coaxial cable connectors for connecting the first, second and third inner conductors and a coaxial cable ;
A tapered region connecting both ends of the test region and the coaxial connector joint region;
Said second internal conductors, near the upper wall surface of said outer wall, said third inner conductor near the lower wall surface of the outer wall, is arranged respectively Rutotomoni, the said second internal conductor 3 The internal conductors of the first and second main surfaces are opposed to each other to form a space for accommodating the device under test. The first internal conductor is disposed near one of the side wall surfaces, and the second and second Facing the space between the three inner conductors, and its main plane is oriented to be orthogonal to the main planes of the second and third inner conductors,
The device under test support base is disposed between the second inner conductor and the third inner conductor,
A main plane of the first inner conductor, the distance between the side walls facing each other across a space for accommodating the test object is between the lower wall opposite from the main plane of the second inner conductor smaller than the distance, and, TEM cell, wherein less than the distance to the upper wall surface opposite from the main plane of the third inner conductor.
請求項1において、前記被試験体支持台は、前記被試験体を支持し回転させるための円板と、前記円板の下に配置される円板支持板と、前記円板と前記円板支持板との間に配置され、前記回転を円滑にするためのベアリングとを包含し構成されること特徴とするTEMセル。2. The test object support base according to claim 1, wherein the test object support base is a disk for supporting and rotating the test object, a disk support plate disposed under the disk, the disk and the disk. A TEM cell comprising a bearing disposed between a support plate and the bearing for facilitating the rotation.
JP21333198A 1997-11-29 1998-07-28 TEM cell Expired - Fee Related JP3880727B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR97-64814 1997-11-29
KR1019970064814A KR100243090B1 (en) 1997-11-29 1997-11-29 Y-transverse electromagnetic cell

Publications (2)

Publication Number Publication Date
JPH11174102A JPH11174102A (en) 1999-07-02
JP3880727B2 true JP3880727B2 (en) 2007-02-14

Family

ID=19526105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21333198A Expired - Fee Related JP3880727B2 (en) 1997-11-29 1998-07-28 TEM cell

Country Status (2)

Country Link
JP (1) JP3880727B2 (en)
KR (1) KR100243090B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223435A (en) * 2015-08-31 2016-01-06 北京航天长征飞行器研究所 A kind of missile-borne anti-interference antenna Auto-Test System and method of testing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809183B1 (en) * 2000-05-16 2002-07-26 Inrets ELECTROMAGNETIC COMPATIBILITY TEST DEVICE
KR100367089B1 (en) * 2000-12-23 2003-01-09 한국전자통신연구원 Measurement system and method for power pattern and total radiation power using Y TEM cell
CN100424517C (en) * 2005-07-26 2008-10-08 财团法人车辆研究测试中心 Transmission line system having uniform electric field
KR102132909B1 (en) 2013-05-29 2020-07-13 한국전자통신연구원 Standard fields generation cell for emc testing and calibration using slit structure
CN109212358B (en) * 2018-10-17 2023-06-02 中国电力科学研究院有限公司 Method for simulating electromagnetic interference generated by ground potential rise of transformer substation
RU2727075C1 (en) * 2019-12-09 2020-07-17 федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники» Tem test cell for estimating noise emission and noise immunity of integrated circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223435A (en) * 2015-08-31 2016-01-06 北京航天长征飞行器研究所 A kind of missile-borne anti-interference antenna Auto-Test System and method of testing
CN105223435B (en) * 2015-08-31 2018-10-09 北京航天长征飞行器研究所 A kind of missile-borne anti-interference antenna Auto-Test System and test method

Also Published As

Publication number Publication date
JPH11174102A (en) 1999-07-02
KR100243090B1 (en) 2000-02-01
KR19990043772A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
Meys et al. Measuring the impedance of balanced antennas by an S-parameter method
Lee et al. A design study for the basic TEM horn antenna
JP2004069337A (en) Magnetometric sensor, side-opened type transverse electromagnetic cell, and device using them
US6795030B2 (en) Electromagnetic compatibility testing device
JP3880727B2 (en) TEM cell
Lin et al. Characteristics of concentrically shorted circular patch microstrip antennas
US6114860A (en) Rotary coupled transmission line cell
JP3187790B2 (en) Linear coupled transmission line cell
Zheng et al. Loop antennas for accurate calibration of OTA measurement systems: Review, challenges, and solutions
JPH07191122A (en) Loop probe calibrating method and its calibrating jig
US5861753A (en) Electromagnetic compatibility (EMC) test cell
Fikioris Experimental study of novel resonant circular arrays
Pan et al. The Analysis of Balanced Feed Low Cross-Polarization Quad-Ridged Horn Antenna for OTA Testing
JP3418750B2 (en) Rotary cylindrical TEM cell
JPH08122379A (en) Cell for measuring minute electromagnetic wave and generating strong electromagnetic wave
CN220652347U (en) Horizontal polarization antenna
JPH06242161A (en) Tem cell
Ghosh et al. Performance analysis of emi sensor in different test sites with different wave impedances
JP2000221233A (en) Tuner for measuring load pull or source pull
Surutka et al. Symmetrical linear antennas driven by two-wire lines
JPH1130638A (en) Wide-band electromagnetic wave testing black box
KR100579126B1 (en) Broad band magnetic field generator
CN118294722A (en) Microwave surface resistance testing system and method based on sector resonant cavity
CA2001258A1 (en) Device for calibrating and testing ring-shaped current clamps
EP0821242A2 (en) An electromagnetic compatibility (EMC) test cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020416

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051216

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees