JP3880656B2 - Sewage treatment method with suppression of hydrogen sulfide generation - Google Patents

Sewage treatment method with suppression of hydrogen sulfide generation Download PDF

Info

Publication number
JP3880656B2
JP3880656B2 JP16995996A JP16995996A JP3880656B2 JP 3880656 B2 JP3880656 B2 JP 3880656B2 JP 16995996 A JP16995996 A JP 16995996A JP 16995996 A JP16995996 A JP 16995996A JP 3880656 B2 JP3880656 B2 JP 3880656B2
Authority
JP
Japan
Prior art keywords
concentration
sludge
sulfate
hydrogen sulfide
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16995996A
Other languages
Japanese (ja)
Other versions
JPH1015592A (en
Inventor
謙一 加藤
正造 秋野
陽子 片平
郁美 大森
敏 鈴木
一夫 小澤
真伸 河田
天司 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Miyagi Prefectural Government.
Original Assignee
Nittetsu Mining Co Ltd
Miyagi Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd, Miyagi Prefectural Government. filed Critical Nittetsu Mining Co Ltd
Priority to JP16995996A priority Critical patent/JP3880656B2/en
Publication of JPH1015592A publication Critical patent/JPH1015592A/en
Application granted granted Critical
Publication of JP3880656B2 publication Critical patent/JP3880656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理施設等で発生する硫化水素の量を抑制し、実質的に硫化水素の発生を抑え込む方法に関するものである。
【0002】
【従来の技術】
近年、排水処理施設等において、硫化水素による不快な臭気の発生や機械設備等の腐食が問題となっている。特に腐食については、施設機能に支障が生じ、また補修にも多大な費用を生じるため、その対策が排水処理施設等では重要な課題となっている。
【0003】
排水処理施設における硫化水素の発生原因には、家庭汚水に硫黄を含有する界面活性剤や硫酸等を高濃度に含む事業場排水が流入したり、ポンプの定水位運転、流入過少及びポンプ場経由の汚水圧送等により、施設の構造上汚泥が溜りやすい場所ができ、嫌気状態となることなどが考えられる。
【0004】
このような硫化水素の発生を抑制するにあたり、鉄塩を硫化水素と反応させて硫化鉄を形成させ、もって硫化水素を除去する公知技術が考慮される。鉄塩としては、塩化第1鉄、塩化第2鉄、硫酸第1鉄、硫酸第2鉄等が知られているが、2価の鉄を含む鉄塩は溶解度が大きく排水中に溶出してしまうので、硫化水素除去に利用されない。また塩化第2鉄は、pH低下が大きくまた腐食性も大きいために設備等を痛めやすいことから、最近では硫酸系の鉄塩を用いるケースが多くなっている。
【0005】
硫酸系鉄塩の中でも例えば特公昭51−17516号公報などで製法の知られたポリ硫酸第2鉄は、主に脱水の助剤や凝集剤として硫化水素発生の抑制に用いられているが、水酸基を含みpH低下が少なく、塩素を含まず腐食性の危惧も少ないので、流入下水や汚泥処理返流水に添加して用いられている。例えば下水道協会誌 Vol.31、No.374、1994/9 で報告された例では、ポリ硫酸第2鉄を各ポンプ場、流入分配槽及び濃縮タンクのいずれかで添加することを検討し、消化ガス等の硫化水素の発生を抑制でき、添加のための設備が容易にできることを考慮して、最初沈殿池前の流入分配槽に添加することが述べられている。
【0006】
【発明が解決しようとする課題】
しかしながら、排水処理施設における硫化水素発生の効率的な抑制効果を考えると、濃縮工程での、あるいはその前での添加が適当である。また硫酸系の鉄塩を用いる場合、無酸素な状態、即ち、嫌気性になると硫酸還元菌の作用によって硫酸イオンが分解して逆に硫化水素を発生してしまうが、どの程度の硫酸根が混入した場合に硫化水素の発生が助長されるのか、または抑制されるのかは不明である。また硫酸根及び鉄分が消化槽に混入することにより、どの程度消化工程へ影響を及ぼすのか不明であり、安心して硫酸系鉄塩を用いることができない。
【0007】
そこで本発明は、下水処理施設において硫化水素発生抑制剤として硫酸系鉄塩を用いる場合に硫化水素の発生が効果的に抑制され、汚泥消化工程に悪影響を及ぼすことのない、下水処理方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記課題は、本発明にしたがい、沈殿工程、濃縮工程及び消化工程を備えてなる下水処理方法において、濃縮工程の際又はその前に硫酸系鉄塩を添加して、その際、消化工程前の濃縮汚泥中で上記鉄塩添加により増加した3価鉄濃度と硫酸根濃度の比が1.3以上となるように調整されることで解決する。硫酸系鉄塩としては、硫酸第2鉄の他、ポリ硫酸第2鉄がある。
【0009】
【発明の実施の形態】
一般的な汚水処理は、集められた下水を最初沈殿池で沈殿汚泥と上澄み液に分け、上澄み液に対してエアレーションと沈殿を繰り返すことで余剰汚泥を取り出し、余剰汚泥取り出し後の液を放流する一方、最初沈殿汚泥及び余剰汚泥を濃縮し、その濃縮汚泥や余剰汚泥を消化し、しかる後に脱水し、脱水ケーキを取り出し、脱水ろ液を濃縮分離液や消化脱離液と共に返流水として処理プロセスの始めに戻すようになっている。
【0010】
硫酸系鉄塩を用いて消化工程における硫化水素の発生を抑制する場合、その添加位置や濃縮の程度によって効果が異なることが予想される。これは、硫酸系鉄塩を添加することで増加する全鉄と硫酸根との量の比が添加位置や濃縮の程度によって異なるからである。例えば濃縮済み汚泥に、硫酸根濃度360g/リットル、全鉄濃度160g/リットルのポリ硫酸第2鉄溶液を直接添加すると、添加によって増加した全鉄と硫酸根の比は、単純に当該溶液中の全鉄と硫酸根の濃度比たる0.44となる。なお、ポリ硫酸第2鉄は
【0011】
【化1】

Figure 0003880656
【0012】
の一般式で表され、鉄イオンは全て3価鉄であるため、添加により増加する全鉄量は3価鉄の増加量と同一である。一方、濃縮工程の際又はその前に硫酸系鉄塩を添加すると、濃縮工程において全鉄は濃縮汚泥に蓄積するのに対して、硫酸根は濃縮分離液中に溶在して上澄液として返流水に逃げるので、濃縮を行えば行うほど、硫酸系鉄塩を添加することで増加する全鉄と硫酸根の濃度比の値は大きくなる。本発明では、この値に注目し、当該値が1.3以上であれば消化工程での硫化水素の発生を抑制する効果が高いことを見出した。また濃縮工程の際又はその前に硫酸系鉄塩を添加すると濃縮槽越流水の硫化水素の抑制も可能となる。
【0013】
消化工程の前後においてVSS、pHの変化を調査した結果、硫酸系鉄塩を添加しても消化工程に悪影響を及ぼさないことが明らかになった。即ち、消化工程が順調に行われ、VSSの値が低下した。本発明において、消化前の汚泥に硫酸系鉄塩を添加して増加した全鉄と硫酸根の濃度の比を変え、消化してもVSSの低下に違いが認められなかった。
【0014】
消化が順調に行なわれるとpHは8.0前後になるが、本発明において、消化前の汚泥に硫酸系鉄塩を添加し増加する全鉄と硫酸根の濃度の比を変えて消化しても、消化後のpHに変化は認められなかった。
【0015】
【実施例】
実施例
宮城県仙塩流域下水道の下水処理場の最初沈殿引抜汚泥、即ち、生汚泥をメスシリンダーに1リットル採取し、そこにポリ硫酸第2鉄溶液(硫酸根濃度360g/リットル、全鉄濃度160g/リットル)を500mg添加し、24時間静置した。その結果、汚泥の懸濁物質(以下SSという)は、メスシリンダー100mlの目盛以下に沈殿した。上澄みの900mlを捨て、残りの100mlを濃縮汚泥▲1▼とした。即ち、この濃縮汚泥▲1▼は、ポリ硫酸第2鉄溶液を500mg/リットル添加した生汚泥を1/10量に濃縮したものである。
【0016】
同様の操作をして、上澄みの700mlを捨て、残りの300mlを撹拌して均等に混ぜたものを濃縮汚泥▲2▼とした。即ち、濃縮汚泥▲2▼は、ポリ硫酸第2鉄溶液を500mg/リットル添加した生汚泥を3/10量に濃縮したものである。同様の操作をして、上澄みの500mlを捨て、残りの500mlを撹拌して均等に混ぜたものを濃縮汚泥▲3▼とした。即ち、濃縮汚泥▲3▼は、ポリ硫酸第2鉄溶液を500mg/リットル添加した生汚泥を1/2量に濃縮したものである。
【0017】
ポリ硫酸第2鉄を添加しない他は、濃縮汚泥▲1▼の調製と同様の操作をして得た汚泥を濃縮汚泥▲4▼とした。即ち、濃縮汚泥▲4▼は、生汚泥を1/10量に濃縮したものである。また濃縮汚泥▲4▼にポリ硫酸第2鉄溶液を1000mg/リットル添加したものを濃縮汚泥▲5▼とした。即ち、濃縮汚泥▲5▼は、生汚泥を1/10量に濃縮後、ポリ硫酸第2鉄溶液を1000mg/リットル添加したものである。
【0018】
これら濃縮汚泥各100mlに、上記生汚泥と同じ出所たる下水処理場の消化汚泥100mlを混合し、500mlの三角フラスコに入れた。その時の汚泥中の硫酸根濃度、全鉄濃度及び汚泥の性状を表1に示す。またポリ硫酸第2鉄溶液起因の全鉄と硫酸根の濃度比も同表に示す。
【0019】
【表1】
Figure 0003880656
【0020】
図1に示されるように、汚泥を収容する三角フラスコ1を密閉し、この汚泥中に窒素を導入可能なようにガラス管2を導き、また当該フラスコ中からガスを引き抜くための別のガラス管3を配設してなる装置において、当該フラスコ1を恒温水槽(図示せず)に浸し、30日間37℃の温度で一定に保った。その間、窒素導入管2から窒素ガスを15ml/秒で流し続けた。30日後、即ち、消化後の汚泥の性状は表1に示す通りであった。また37℃で一定に保ち始めてから数時間毎に導出管3ににおける分岐部のゴムキャップからガスタイトシリンジを打ち込み、ガスを採取してガスクロマトグラフィーで硫化水素の測定を行った。その結果を表2に示す。
【0021】
【表2】
Figure 0003880656
【0022】
恒温槽に30日間浸す前と後の汚泥の性状を比較すると、表1から理解されるように、どの汚泥ともVSS(汚泥を濾過して得た固形分中の有機物の割合)に関しては百分率で約12ポイント減少し、pHに関しても30日経過後約8.0になっている。これらから、硫酸根及び全鉄濃度が異なるにもかかわらず、各汚泥とも順調に消化が行われたことが判る。
【0023】
また表2より、硫化水素は37℃に保ってから22時間後に最も濃度が高くなっており、ポリ硫酸第2鉄不添加の濃縮汚泥▲4▼を用いた場合で、22ppmの値を示した。濃縮前にポリ硫酸第2鉄溶液を添加した汚泥の場合には、37℃に保ってから22時間経過後において、濃縮汚泥▲1▼で1ppm、濃縮汚泥▲2▼で5ppm、濃縮汚泥▲3▼で10ppmとなっており、濃縮の程度によって発生する硫化水素の濃度が異なったが、全鉄濃度と硫酸イオン濃度の比が1.3を越えるこれら濃縮汚泥▲1▼〜▲3▼は、ポリ硫酸第2鉄不添加の濃縮汚泥▲4▼に比べ、明らかに硫化水素の発生を著しく抑制している。また濃縮後にポリ硫酸第2鉄溶液を添加した濃縮汚泥▲5▼では、120ppmであった。これにより、消化工程での硫化水素の発生を抑制する場合は、汚泥を濃縮した後に硫酸系鉄塩を添加するのではなく、濃縮工程の際又はその前に添加し、しかも全鉄濃度と硫酸根濃度の比を適切に調整すべきであることが判る。
【0024】
実施例
処理フローを図2に示した消化設備を有する実際の下水処理場において、初期沈殿引抜汚泥に対してポリ硫酸第2鉄溶液を汚泥量に対して200〜1000mg/リットル添加した。この時、ポリ硫酸第2鉄溶液の添加濃度における添加により増加した全鉄濃度と硫酸イオン濃度との比を表3に示す。
【0025】
【表3】
Figure 0003880656
【0026】
ポリ硫酸第2鉄の添加濃度と消化ガス中の硫化水素の濃度の経時変化を図3に示す。硫化水素の濃度は検知管により測定した。これにより、ポリ硫酸第2鉄溶液を添加する前は消化ガス中の硫化水素濃度が1600ppm程度であったのが、ポリ硫酸第2鉄を添加すると、汚泥量に対して400〜600mg/リットルの添加で約100ppmに、汚泥量に対して200〜300mg/リットル添加で約200ppmに抑制されることが判明した。
【0027】
濃縮槽越流水の硫化水素濃度はヘッドスペース法で測定した。ヘッドスペース法は、試料100mlを300mlの三角フラスコに取り、塩酸(1+1)1mlを添加して密栓撹拌後、静置し、気相中の硫化水素を検知管で測定するものである。ポリ硫酸第2鉄添加前は400〜900ppmであったものが添加後は200ppm以下となった。また脱水機ケース内の気相中の硫化水素の濃度もポリ硫酸第2鉄溶液無添加時で20ppm程度であったものが、添加時で1ppm以下に低下した。
【0028】
ポリ硫酸第2鉄溶液添加による消化槽中の汚泥の性状を表4に示す。ポリ硫酸第2鉄溶液を添加した期間の平均値と無添加時の値を表しているが、pH値、VTS(汚泥を蒸発乾燥して得た固形分中の有機物の割合,(%))、消化率(%)、Mアルカリ度(mg/リットル)ともに変化は見られず、ポリ硫酸第2鉄の添加により消化槽に悪影響を与えないことが判る。
【0029】
【表4】
Figure 0003880656
【0030】
【効果】
本発明によれば、消化槽前の濃縮工程で、ポリ硫酸第2鉄溶液を注入することにより、消化槽に影響なく硫化水素の発生を抑制することが可能となり、施設の維持管理及び作業環境の改善対策として価値が大きい。
【図面の簡単な説明】
【図1】本発明の第1実施例を行うための実験装置の概略図である。
【図2】第2実施例に係る下水処理場における処理フローを示す図である。
【図3】ポリ硫酸第2鉄の添加濃度と消化ガス中の硫化水素の濃度の経時変化を示すグラフである。
【符号の説明】
1 三角フラスコ
2 ガラス管
3 ガラス管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for suppressing the amount of hydrogen sulfide generated in a sewage treatment facility or the like and substantially suppressing the generation of hydrogen sulfide.
[0002]
[Prior art]
In recent years, generation of unpleasant odor due to hydrogen sulfide and corrosion of machinery and the like have become problems in wastewater treatment facilities and the like. In particular, for corrosion, the facility function is hindered and the repair is expensive, so that countermeasures are an important issue in wastewater treatment facilities.
[0003]
Causes of hydrogen sulfide generation at wastewater treatment facilities include wastewater from workplaces containing high concentrations of surfactants and sulfuric acid containing sulfur in domestic sewage, constant pump level operation, underflow, and via pump stations Due to the sewage pumping, etc., it is possible to create a place where sludge is likely to accumulate due to the structure of the facility, resulting in an anaerobic state.
[0004]
In order to suppress the generation of such hydrogen sulfide, a known technique of reacting an iron salt with hydrogen sulfide to form iron sulfide and thereby removing the hydrogen sulfide is considered. As iron salts, ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, etc. are known, but iron salts containing divalent iron have high solubility and are eluted in the waste water. Therefore, it is not used for removing hydrogen sulfide. In addition, since ferric chloride has a large pH drop and is highly corrosive, it tends to damage facilities and the like, and recently, there are many cases of using a sulfuric iron salt.
[0005]
Among sulfated iron salts, for example, polyferric sulfate, which is known in Japanese Patent Publication No. 51-17516, is mainly used as a dehydration aid or flocculant to suppress the generation of hydrogen sulfide. Since it contains a hydroxyl group, has a low pH drop, does not contain chlorine, and has little fear of corrosiveness, it is used by adding it to influent sewage and sludge treated return water. For example, in the example reported in the Journal of Sewerage Society Vol.31, No.374, 1994/9, we considered adding ferric polysulfate at each pump station, inflow distribution tank, or concentration tank, and digesting it. Considering that generation of hydrogen sulfide such as gas can be suppressed and equipment for the addition can be easily performed, it is described that the hydrogen sulfide is first added to the inflow distribution tank before the settling tank.
[0006]
[Problems to be solved by the invention]
However, considering the effective suppression effect of hydrogen sulfide generation in the wastewater treatment facility, addition in or before the concentration step is appropriate. In addition, when using a sulfate-based iron salt, if it becomes anaerobic, that is, anaerobic, sulfate ions are decomposed by the action of sulfate-reducing bacteria and hydrogen sulfide is generated. Whether it is promoted or suppressed when it is mixed is unknown. In addition, it is unclear how much the sulfate radical and iron are mixed in the digestion tank, affecting the digestion process, and it is not possible to use sulfate iron salts with peace of mind.
[0007]
Therefore, the present invention provides a sewage treatment method in which the generation of hydrogen sulfide is effectively suppressed when a sulfated iron salt is used as a hydrogen sulfide generation inhibitor in a sewage treatment facility, and the sludge digestion process is not adversely affected. The task is to do.
[0008]
[Means for Solving the Problems]
In the sewage treatment method comprising the precipitation step, the concentration step, and the digestion step according to the present invention, the above-mentioned problem is achieved by adding a sulfate-based iron salt during or before the concentration step. The problem is solved by adjusting the ratio of the trivalent iron concentration and sulfate radical concentration increased by adding the iron salt in the concentrated sludge to be 1.3 or more. Examples of sulfate-based iron salts include ferric sulfate and polyferric sulfate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In general sewage treatment, the collected sewage is first separated into sedimentation sludge and supernatant liquid in the sedimentation basin, excess aeration sludge is removed by repeating aeration and sedimentation on the supernatant liquid, and the liquid after the excess sludge removal is discharged. On the other hand, first the precipitated sludge and surplus sludge are concentrated, the concentrated sludge and surplus sludge are digested, then dehydrated, the dehydrated cake is taken out, and the dehydrated filtrate is treated as a return water together with the concentrated separation liquid and digestion desorption liquid. To come back to the beginning.
[0010]
When the generation of hydrogen sulfide in the digestion process is suppressed using a sulfate-based iron salt, the effect is expected to vary depending on the addition position and the degree of concentration. This is because the ratio of the amount of total iron and sulfate radical that is increased by adding a sulfate iron salt varies depending on the addition position and the degree of concentration. For example, when a polyferric sulfate solution having a sulfate radical concentration of 360 g / liter and a total iron concentration of 160 g / liter is directly added to the concentrated sludge, the ratio of total iron to sulfate radical increased by the addition is simply determined in the solution. The concentration ratio of total iron and sulfate radical is 0.44. Polyferric ferric sulfate is [0011]
[Chemical 1]
Figure 0003880656
[0012]
Since all iron ions are trivalent iron, the total amount of iron increased by addition is the same as the amount of increase in trivalent iron. On the other hand, when a sulfate-based iron salt is added during or before the concentration step, all iron accumulates in the concentrated sludge in the concentration step, whereas sulfate radicals dissolve in the concentrated separation liquid and become a supernatant. Since it escapes to return water, the more concentrated it is, the larger the value of the concentration ratio of total iron and sulfate radicals that increases by adding sulfate iron salt. In the present invention, paying attention to this value, it was found that if the value is 1.3 or more, the effect of suppressing the generation of hydrogen sulfide in the digestion process is high. In addition, when a sulfate iron salt is added during or before the concentration step, the hydrogen sulfide in the overflow of the concentration tank can be suppressed.
[0013]
As a result of investigating changes in VSS and pH before and after the digestion process, it was found that the addition of sulfate-based iron salt does not adversely affect the digestion process. That is, the digestion process was performed smoothly, and the VSS value decreased. In the present invention, even if the ratio of the total iron and sulfate radicals increased by adding sulfate iron salt to the sludge before digestion was changed and digested, no difference was found in the decrease in VSS.
[0014]
If digestion is carried out smoothly, the pH will be around 8.0. In the present invention, a sulfate iron salt is added to the sludge before digestion to increase the ratio of the concentration of total iron and sulfate radicals. However, no change was observed in the pH after digestion.
[0015]
【Example】
Example 1
1 liter of the first sedimentation sludge from the sewage treatment plant in the Sensyo basin sewerage in Miyagi Prefecture, that is, raw sludge, is collected in a graduated cylinder, and there is a polysulfuric ferric sulfate solution (sulfuric acid concentration 360 g / liter, total iron concentration 160 g / Liter) was added and allowed to stand for 24 hours. As a result, the sludge suspended material (hereinafter referred to as SS) precipitated below the scale of the 100 ml graduated cylinder. 900 ml of the supernatant was discarded, and the remaining 100 ml was concentrated sludge (1). That is, this concentrated sludge {circle around (1)} is obtained by concentrating the raw sludge added with 500 mg / liter of polyferric ferric sulfate solution to 1/10 amount.
[0016]
The same operation was performed, 700 ml of the supernatant was discarded, and the remaining 300 ml was stirred and mixed uniformly to obtain concentrated sludge (2). That is, the concentrated sludge {circle around (2)} is obtained by concentrating the raw sludge added with 500 mg / liter of the polyferric sulfate ferric solution to 3/10 amount. The same operation was performed, 500 ml of the supernatant was discarded, and the remaining 500 ml was stirred and mixed uniformly to obtain concentrated sludge (3). That is, the concentrated sludge {circle around (3)} is obtained by concentrating raw sludge to which polyferric sulfate ferric sulfate solution is added at 500 mg / liter to ½ amount.
[0017]
The sludge obtained by the same operation as the preparation of concentrated sludge (1) except that polyferric sulfate was not added was designated as concentrated sludge (4). That is, the concentrated sludge (4) is obtained by concentrating raw sludge to 1/10 amount. Concentrated sludge {4} was obtained by adding 1000 mg / liter of polyferric sulfate ferric sulfate solution to concentrated sludge {4}. That is, the concentrated sludge (5) is obtained by concentrating raw sludge to 1/10 volume and then adding 1000 mg / liter of polyferric sulfate solution.
[0018]
100 ml of each of these concentrated sludges was mixed with 100 ml of digested sludge from the same sewage treatment plant as the raw sludge and placed in a 500 ml Erlenmeyer flask. Table 1 shows the sulfate radical concentration, total iron concentration, and sludge properties in the sludge at that time. The concentration ratio of total iron and sulfate radicals caused by the polyferric ferric sulfate solution is also shown in the same table.
[0019]
[Table 1]
Figure 0003880656
[0020]
As shown in FIG. 1, an Erlenmeyer flask 1 containing sludge is sealed, a glass tube 2 is guided so that nitrogen can be introduced into the sludge, and another glass tube for extracting gas from the flask. In the apparatus comprising 3, the flask 1 was immersed in a thermostatic water bath (not shown) and kept constant at a temperature of 37 ° C. for 30 days. Meanwhile, nitrogen gas was continuously supplied from the nitrogen introduction tube 2 at 15 ml / second. Table 1 shows the properties of the sludge after 30 days, that is, after digestion. In addition, a gas tight syringe was driven through a rubber cap at the branching portion in the outlet tube 3 every few hours after starting to keep constant at 37 ° C., and gas was collected and hydrogen sulfide was measured by gas chromatography. The results are shown in Table 2.
[0021]
[Table 2]
Figure 0003880656
[0022]
Comparing the properties of sludge before and after soaking in a thermostatic bath for 30 days, as can be seen from Table 1, all sludges are in terms of VSS (percentage of organic matter in the solid content obtained by filtering sludge). The pH is reduced by about 12 points, and the pH is about 8.0 after 30 days. From these, it can be seen that each sludge was digested smoothly despite differences in sulfate and total iron concentrations.
[0023]
Further, from Table 2, the concentration of hydrogen sulfide became the highest after 22 hours from keeping at 37 ° C., and the value was 22 ppm when using concentrated sludge (4) not added with polyferric sulfate. . In the case of sludge added with polyferric ferric sulfate solution before concentration, after 22 hours from maintaining at 37 ° C, concentrated sludge (1) is 1 ppm, concentrated sludge (2) is 5 ppm, concentrated sludge (3) The concentration of hydrogen sulfide generated differs depending on the degree of concentration, but these concentrated sludges (1) to (3), in which the ratio of total iron concentration to sulfate ion concentration exceeds 1.3, Compared with the concentrated sludge (4) without addition of polyferric ferric sulfate, the generation of hydrogen sulfide is significantly suppressed. Further, in the concentrated sludge (5) to which the polyferric ferric sulfate solution was added after concentration, the concentration was 120 ppm. Thus, when suppressing the generation of hydrogen sulfide in the digestion process, the sulfate iron salt is not added after the sludge is concentrated, but is added during or before the concentration process, and the total iron concentration and sulfuric acid are added. It can be seen that the ratio of root concentration should be adjusted appropriately.
[0024]
Example 2
In an actual sewage treatment plant having a digestion facility shown in FIG. 2, 200 to 1000 mg / liter of polyferric sulfate solution was added to the amount of sludge to the initial sedimentation sludge. Table 3 shows the ratio between the total iron concentration and the sulfate ion concentration increased by the addition at the addition concentration of the polyferric ferric sulfate solution.
[0025]
[Table 3]
Figure 0003880656
[0026]
FIG. 3 shows changes with time in the addition concentration of polyferric sulfate and the concentration of hydrogen sulfide in the digestion gas. The concentration of hydrogen sulfide was measured with a detector tube. As a result, the hydrogen sulfide concentration in the digestion gas was about 1600 ppm before adding the polyferric sulfate solution, but when adding polyferric sulfate, 400 to 600 mg / liter of sludge was added. It was found that the addition was suppressed to about 100 ppm, and the addition of 200 to 300 mg / liter to the sludge amount was suppressed to about 200 ppm.
[0027]
The concentration of hydrogen sulfide in the overflow water of the concentration tank was measured by the headspace method. In the headspace method, 100 ml of a sample is placed in a 300 ml Erlenmeyer flask, 1 ml of hydrochloric acid (1 + 1) is added, stirred tightly, and left to stand, and hydrogen sulfide in the gas phase is measured with a detector tube. What was 400-900 ppm before addition of polyferric ferric sulfate became 200 ppm or less after addition. The concentration of hydrogen sulfide in the gas phase in the dehydrator case was about 20 ppm when no polyferric sulfate solution was added, but dropped to 1 ppm or less when added.
[0028]
Table 4 shows the properties of the sludge in the digestion tank by adding the polyferric ferric sulfate solution. The average value during the addition of the polyferric ferric sulfate solution and the value at the time of no addition are shown, but the pH value, VTS (ratio of organic matter in solids obtained by evaporating and drying sludge, (%)) No change was observed in the digestibility (%) and M alkalinity (mg / liter), and it can be seen that the addition of polyferric sulfate does not adversely affect the digestion tank.
[0029]
[Table 4]
Figure 0003880656
[0030]
【effect】
According to the present invention, by injecting the polyferric sulfate solution in the concentration step before the digestion tank, it becomes possible to suppress the generation of hydrogen sulfide without affecting the digestion tank, and to maintain and manage the facility and the work environment. It has great value as an improvement measure.
[Brief description of the drawings]
FIG. 1 is a schematic view of an experimental apparatus for carrying out a first embodiment of the present invention.
FIG. 2 is a diagram showing a processing flow in a sewage treatment plant according to a second embodiment.
FIG. 3 is a graph showing temporal changes in the concentration of polyferric sulfate ferric sulfate and the concentration of hydrogen sulfide in the digestion gas.
[Explanation of symbols]
1 Erlenmeyer flask 2 Glass tube 3 Glass tube

Claims (1)

沈殿工程、濃縮工程及び消化工程を備えてなる下水処理方法において、濃縮工程の際又はその前に硫酸系鉄塩を添加して、その際、消化工程前の濃縮汚泥中で上記鉄塩添加により増加した3価鉄の濃度と硫酸根濃度の比が1.3以上となるように調整されることを特徴とする下水処理方法。In the sewage treatment method comprising a precipitation step, a concentration step, and a digestion step, a sulfated iron salt is added during or before the concentration step, and at that time, by adding the iron salt in the concentrated sludge before the digestion step A sewage treatment method, wherein the ratio of increased trivalent iron concentration to sulfate radical concentration is adjusted to 1.3 or more.
JP16995996A 1996-06-28 1996-06-28 Sewage treatment method with suppression of hydrogen sulfide generation Expired - Fee Related JP3880656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16995996A JP3880656B2 (en) 1996-06-28 1996-06-28 Sewage treatment method with suppression of hydrogen sulfide generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16995996A JP3880656B2 (en) 1996-06-28 1996-06-28 Sewage treatment method with suppression of hydrogen sulfide generation

Publications (2)

Publication Number Publication Date
JPH1015592A JPH1015592A (en) 1998-01-20
JP3880656B2 true JP3880656B2 (en) 2007-02-14

Family

ID=15896011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16995996A Expired - Fee Related JP3880656B2 (en) 1996-06-28 1996-06-28 Sewage treatment method with suppression of hydrogen sulfide generation

Country Status (1)

Country Link
JP (1) JP3880656B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006026723A2 (en) * 2004-08-26 2006-03-09 Aceto Corporation Odor abatement of organic waste
JP6755231B2 (en) * 2017-11-24 2020-09-16 月島機械株式会社 Sludge concentration equipment and sludge concentration method

Also Published As

Publication number Publication date
JPH1015592A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
KR101804555B1 (en) WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof
JP5951986B2 (en) Biological treatment method of organic wastewater
CN104671565A (en) Treatment method of industrial refuse landfill percolate
FR2729653A1 (en) METHOD FOR IMPROVED DEPHOSPHATION OF WASTE WATER
WO2016042901A1 (en) Biological treatment method and biological treatment device
JP3880656B2 (en) Sewage treatment method with suppression of hydrogen sulfide generation
KR101018636B1 (en) Sewage and wastewater phosphorus removal system and method
JP3903500B2 (en) High-concentration salt-containing wastewater treatment equipment
Adachi et al. Removal efficiency of anionic and nonionic surfactants from chemical wastewater by a treatment plant using activated carbon adsorption and coagulation precipitation processes
US4978457A (en) Method of filtering a brine
RU2361823C1 (en) Sewage treatment plant for solid domestic wastes
KR102320633B1 (en) System for treating sewage sludge using adjuvant flocculants for scale preventer
JP2004148269A (en) Membrane separation methane fermentation process
JP6490114B2 (en) Biological treatment method of organic wastewater
JP2007283254A (en) Volume reduction method for sludge and volume reduction agent for sludge
JPH02135190A (en) Treatment of waste water containing phosphorus
JPH11347595A (en) Water purifying treatment equipment and concentration sludge thereof
JP2003205297A (en) Waste water treating system
JP2005046697A (en) Activated sludge treatment method
KR100756838B1 (en) Waste-water treatment method
JPH1029000A (en) Method for suppressing hydrogen sulfide in sewage treatment
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JP4051183B2 (en) Water quality control equipment for sewage treatment plants
JP2005305253A (en) Treatment method for sludge
SU1749180A1 (en) Method of sewage treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees