JPH02135190A - Treatment of waste water containing phosphorus - Google Patents

Treatment of waste water containing phosphorus

Info

Publication number
JPH02135190A
JPH02135190A JP29047888A JP29047888A JPH02135190A JP H02135190 A JPH02135190 A JP H02135190A JP 29047888 A JP29047888 A JP 29047888A JP 29047888 A JP29047888 A JP 29047888A JP H02135190 A JPH02135190 A JP H02135190A
Authority
JP
Japan
Prior art keywords
phosphorus
waste water
tank
membrane
compds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29047888A
Other languages
Japanese (ja)
Other versions
JPH0720583B2 (en
Inventor
Norio Murashige
村重 憲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP63290478A priority Critical patent/JPH0720583B2/en
Publication of JPH02135190A publication Critical patent/JPH02135190A/en
Publication of JPH0720583B2 publication Critical patent/JPH0720583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To efficiently remove phosphorus compds. in waste water and to also remove iron ions by adding a phosphorus compd. fixing agent to the waste water under acidic conditions to make the phosphorus compds. insoluble, separating the compds., neutralizing the remaining waste water and carrying out filtration with a membrane. CONSTITUTION:A phosphorus compd. fixing agent 3 such as ferric sulfate or iron chloride is added to waste water 1 contg. phosphorus such as night soil or waste water discharged by processing marine products under acidic conditions to make phosphorus compds. insoluble. The raw water is then sent to a settling and separating vessel 8, where the insoluble compds. are settled and separated. The remaining raw water is neutralized by adding NaOH 5 in a neutralizing vessel 13 to deposit iron ions as iron hydroxide. The raw water is further sent to a separating apparatus 15 provided with a membrane. In the apparatus 15, suspended solids (SS) having a division mol.wt. or above are filtered off and treated water 22 is separated from a concd. liq. The COD and BOD of the waste water contg. phosphorus are reduced, SS, phosphorus compds., etc., are removed at a high rate and the waste water is treated at a low running cost because no iron ions flow out.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、し尿、水産加工排水、家庭用排水、下水ある
いは工場排水などにおけるリン化合物を有する排水の高
度浄化処理方法に関し、特に、化学的酸素要求量(以下
CODということがある)、生物学的酸素要求1i(以
下BODということがある)、懸濁固体(以下SSとい
うことがある)、リン酸等の除去率が高(、しかも鉄イ
オンの流出も実質的にない処理方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for advanced purification of wastewater containing phosphorus compounds, such as human waste, fishery processing wastewater, domestic wastewater, sewage, or industrial wastewater, and in particular, to It has a high removal rate of oxygen demand (hereinafter referred to as COD), biological oxygen demand 1i (hereinafter referred to as BOD), suspended solids (hereinafter referred to as SS), phosphoric acid, etc. The present invention relates to a treatment method that substantially eliminates the outflow of iron ions.

〈従来技術とその問題点〉 従来、有機物等で汚染度の高い排水の処理方法としては
、水で希釈後、活性汚泥法によって処理することが行わ
れてきた。さらに、下水、工場排水の再利用の必要から
排水の高度処理技術が発達してきた。
<Prior art and its problems> Conventionally, as a method for treating wastewater highly contaminated with organic matter, etc., the method has been to dilute it with water and then treat it by an activated sludge method. Furthermore, advanced wastewater treatment technology has been developed due to the need to reuse sewage and industrial wastewater.

下水、排水の高度処理技術には大別して二つあり、−は
従来の活性汚泥処理した処理液をさらに高度処理する方
法であり、他は、物理化学的処理方法と呼ばれるもので
硫酸パン土、消石灰、塩化第一鉄などの無機凝集剤によ
る沈澱生成と沈澱除去を組み合わせる方法である。物理
化学的処理方法は、各種の被処理物質に応じた処理が可
能で高度処理ができるが、複雑な処理工程が必要であり
装置が大型化してしまう問題があり、また必ずしも低濃
度まで除去する必要のない被処理物もあり経済的でない
場合もある。
There are two types of advanced treatment technologies for sewage and wastewater. This is a method that combines precipitation generation and precipitation removal using an inorganic flocculant such as slaked lime or ferrous chloride. Physicochemical treatment methods can process various substances to be treated and can perform advanced treatment, but they require complicated treatment steps and increase the size of the equipment, and they do not necessarily remove substances to low concentrations. There are some objects to be processed that are not necessary and it may not be economical.

このため処理する排水に応じた各種の処理方法を組み合
わせて行う方法が考えられている。
For this reason, methods are being considered that combine various treatment methods depending on the wastewater to be treated.

し尿の処理は、希釈後、生物学的処理方法である硝化脱
窒素活性汚泥法をおこなってB OD、窒素を除去した
後、処理水に硫酸パン土などを添加し、残留する燐、C
OD、色度、SSを除去する方法がおこなわれている。
To process human waste, after diluting it, we perform the nitrification and denitrification activated sludge method, which is a biological treatment method, to remove BOD and nitrogen, and then add sulfuric acid bread soil to the treated water to remove the remaining phosphorus and carbon.
Methods are being used to remove OD, chromaticity, and SS.

しかし硫酸パン土による凝集処理は凝集剤を大量に消費
するうえ、発生する凝集汚泥の処分も大きな問題となる
However, flocculation treatment using sulfuric acid bread soil consumes a large amount of flocculant, and disposal of the flocculated sludge that is generated also poses a major problem.

また、近年、燐酸の存在は富栄養化の主因となり、湖水
、河川水の富栄養化によって水質が異臭化し、閉鎖系海
域への燐酸含有排水の放流は赤潮発生の原因となる。こ
のような燐酸は、逆浸透膜を利用した高度な処理をすれ
ば除去できるが、設備費、経費がかかる。このため、し
尿、下水、工場排水処理法での脱燐法の主流は、曝気段
階で第一鉄塩を添加して、燐酸を鉄塩として沈澱させる
方法や、最終沈澱処理の段階で、第二鉄塩を添加して沈
澱処理する方法、また、鉄塩に代わってアルミニウム塩
を使用する方法が知られている。
In addition, in recent years, the presence of phosphoric acid has become a major cause of eutrophication, and the eutrophication of lake and river waters has resulted in water quality becoming foul-smelling, and the discharge of phosphoric acid-containing wastewater into closed sea areas has become a cause of red tide. Such phosphoric acid can be removed by advanced treatment using a reverse osmosis membrane, but this requires equipment costs and expenses. For this reason, the mainstream methods of dephosphorization in human waste, sewage, and industrial wastewater treatment methods include adding ferrous salts in the aeration stage to precipitate phosphoric acid as iron salts, and adding ferrous salts in the aeration stage to precipitate phosphoric acid as iron salts. A method of precipitation treatment by adding a ferrous salt and a method of using an aluminum salt in place of the iron salt are known.

本発明者等は、FeCl3により燐酸を凝集沈澱させた
後、膜濾過して固液分離して排水処理をおこなった。こ
の方法ではpH4〜5で凝集反応を行った後そのまま膜
処理するだけで燐酸を効率よく除去でき、さらにCOD
や色度も減少でき、最終工程の活性吸着塔の運転コスト
も低減できることがわかった。
The present inventors treated waste water by coagulating and precipitating phosphoric acid with FeCl3 and then performing solid-liquid separation through membrane filtration. In this method, phosphoric acid can be efficiently removed simply by carrying out the aggregation reaction at pH 4 to 5, followed by membrane treatment, and furthermore, COD
It was also found that the operating cost of the active adsorption tower in the final step could be reduced as well.

しかしながらこの方法では、凝集剤として加えた鉄イオ
ンや凝集工程で生成する第一鉄イオンが除去されず膜処
理時の膜透過流速(以下フラックスということがある)
が安定しないという問題があった。
However, with this method, iron ions added as a flocculant and ferrous ions generated during the flocculation process are not removed, resulting in a decrease in membrane permeation flow rate (hereinafter sometimes referred to as flux) during membrane treatment.
The problem was that it was not stable.

〈発明が解決しようとする課題〉 本発明の目的は、従来技術の問題点を解決し、リン化合
物を効率よく除去できるだけでなく、鉄イオンが充分除
去され、処理水の水質がさらに向上し、膜濾過のフラッ
クスの減少が少ない含リン排水の処理方法を提供しよう
とする。
<Problems to be Solved by the Invention> The purpose of the present invention is to solve the problems of the prior art, to not only efficiently remove phosphorus compounds, but also to sufficiently remove iron ions and further improve the quality of treated water. An object of the present invention is to provide a method for treating phosphorus-containing wastewater that causes less decrease in flux during membrane filtration.

〈課題を解決するための手段〉 すなわち本発明は、リン化合物を含有する排水の処理方
法であって、下記の工程(a)〜(d)からなることを
特徴とする含リン排水の処理方法を提供する。
<Means for Solving the Problem> That is, the present invention is a method for treating wastewater containing phosphorus compounds, the method comprising the following steps (a) to (d). I will provide a.

(a)酸性条件下で、リン化合物固定化剤を加え、リン
化合物を不溶性物として生成せしめる工程。
(a) A step of adding a phosphorus compound fixing agent under acidic conditions to produce a phosphorus compound as an insoluble substance.

(b)前記不溶性物を分離する工程。(b) A step of separating the insoluble matter.

(C)前記不溶性物が分離除去された液を中和する工程
(C) Neutralizing the liquid from which the insoluble substances have been separated and removed.

(d)前記中和された液を膜濾過して濃縮液と処理水と
に分離する工程。
(d) A step of separating the neutralized liquid into a concentrated liquid and treated water by membrane filtration.

ここで、(a)工程の酸性条件が、pH3〜5である含
リン排水の処理方法が好ましい。
Here, a method for treating phosphorus-containing wastewater in which the acidic conditions in step (a) are pH 3 to 5 is preferred.

また、リン化合物を含有する排水が、前処理として生物
学的処理工程を経たものである含リン排水の処理方法が
よい。
Further, a method for treating phosphorus-containing wastewater in which the wastewater containing phosphorus compounds has undergone a biological treatment process as a pretreatment is preferable.

さらに、(d)工程で膜濾過された濃縮液の少なくとも
一部を(a)工程の不溶性物生成工程へ返送する含リン
排水の処理方法が好ましい。
Furthermore, a method for treating phosphorus-containing wastewater in which at least a portion of the concentrate membrane-filtered in step (d) is returned to the insoluble matter generation step in step (a) is preferable.

また、(d)工程で得られた処理水を、活性炭を用いて
脱色するのがよい。
Furthermore, it is preferable to decolorize the treated water obtained in step (d) using activated carbon.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法を適用される排水は、リン化合物を含む排水
であれば特に限定されないが、し尿、水産加工排水、食
品排水、下水、工場排水などの有機性物質を含む排水で
ある。排水は、必要により生物学的処理を行ってから以
下の(a)〜(d)工程を行う。生物学的処理は、嫌気
性菌、好気性菌、適性嫌気性菌、等の微生物を活性汚泥
と共に排水中に入れ、ばっ気、攪拌等の適切な処理を行
う。
The wastewater to which the method of the present invention is applied is not particularly limited as long as it contains phosphorus compounds, but it is wastewater containing organic substances such as human waste, fishery processing wastewater, food wastewater, sewage, and factory wastewater. The wastewater is subjected to biological treatment if necessary, and then the following steps (a) to (d) are performed. In biological treatment, microorganisms such as anaerobic bacteria, aerobic bacteria, and suitable anaerobic bacteria are introduced into wastewater together with activated sludge, and appropriate treatments such as aeration and stirring are performed.

・(a)工程;酸性条件下で、リン化合物固定化剤を加
え、リン化合物を不溶性物として生成せしめる工程。
- Step (a): A step of adding a phosphorus compound fixing agent under acidic conditions to produce a phosphorus compound as an insoluble substance.

リン化合物を不溶性物とする工程は、排水中のリン化合
物を、接触粒体あるいは粉体、沈澱物を添加して、吸着
あるいは化学的に反応させて固定化し、−反固定化した
リン化合物が系外に流出しないようにする場合もあるし
、化合物を添加してリン化合物と反応させて不溶性の沈
澱とする等の場合もある。 用いるリン化合物固定化剤
は、リン化合物を不溶性リン含有物とするものであれば
特に限定されないが、燐鉱石、燐灰石、骨炭、アルミナ
等の粉体、粒体や、(ac12.  アルミン酸塩、F
e塩等の化学物質が例示され、Fe塩が好ましく、特に
第二鉄塩、なかでもpesO4、FeCl3が好ましい
。リン化合物固定化剤の濃度は、全リン濃度に対してF
e、AI、Ca等の金属濃度が、金属(Fe、Al、C
a等)/全リン=1.5〜3モル比がよい。
The process of making phosphorus compounds insoluble is to immobilize them by adsorption or chemical reaction by adding contact particles, powder, or precipitate to the phosphorus compounds in the wastewater. In some cases, it is prevented from flowing out of the system, and in other cases, a compound is added and reacted with a phosphorus compound to form an insoluble precipitate. The phosphorus compound fixing agent to be used is not particularly limited as long as the phosphorus compound is an insoluble phosphorus-containing material, but powders and granules such as phosphate rock, apatite, bone char, alumina, (ac12. aluminate, F
Examples include chemical substances such as e-salts, Fe salts are preferred, and ferric salts are particularly preferred, especially pesO4 and FeCl3. The concentration of the phosphorus compound fixing agent is F with respect to the total phosphorus concentration.
The concentration of metals such as e, AI, Ca, etc.
a)/total phosphorus = 1.5 to 3 molar ratio is preferable.

酸性条件は、好ましくは、pH3〜5、より好ましくは
、4〜4.5がよい。
The acidic conditions are preferably pH 3 to 5, more preferably 4 to 4.5.

酸性条件は、燐化合物固定化剤にFeCl3を用いる場
合は、カセイソーダ、カセイカリ、等のアルカリを添加
して調整するが、場合によっては、硝酸、塩酸、硫酸等
の酸を必要により添加して調整してもよい。
When FeCl3 is used as a phosphorus compound fixing agent, acidic conditions are adjusted by adding an alkali such as caustic soda or caustic potash, but in some cases, an acid such as nitric acid, hydrochloric acid, or sulfuric acid is added as necessary. You may.

工程(a)を行う装置は、バッチ式でも連続式でもよい
が第1図に例示する攪拌機6を備えた混合槽5が好まし
い。
The apparatus for carrying out step (a) may be either a batch type or a continuous type, but a mixing tank 5 equipped with an agitator 6 illustrated in FIG. 1 is preferable.

工程(a)を行う時間および温度は、処理される排水の
種類や汚染度によって種々であり限定されない。好まし
くは、10〜120分、15〜50℃がよい。
The time and temperature for carrying out step (a) vary depending on the type and degree of pollution of the wastewater to be treated and are not limited. Preferably, the temperature is 10 to 120 minutes and 15 to 50°C.

工程(b);工程(a)でえられた不溶性物を分離する
工程。
Step (b); step of separating the insoluble matter obtained in step (a).

工程(b)は、工程(a)で得られた不溶性のリン含有
沈澱物を分離して系外に除(工程であれば特に限定され
ない。加圧分離法、限外濾過分離法、濾過分離法、重力
分離法等を例示できる。好ましくは、第1図に例示する
攪拌機を備えた重力分離槽7を用いて静置し、重力分離
槽7の底部に溜った沈澱物をバルブ12を開けて排出ラ
イン13から系外に排出する。
Step (b) involves separating the insoluble phosphorus-containing precipitate obtained in step (a) and removing it from the system (not particularly limited as long as it is a step. Pressure separation method, ultrafiltration separation method, filtration separation method) Preferably, a gravity separation tank 7 equipped with a stirrer as shown in FIG. and discharged from the system through the discharge line 13.

工程(b)で得られる上澄み液は、COD。The supernatant obtained in step (b) is COD.

80ff1g72以下、SS、90■/Q以下とするの
がよい。分離槽7中の滞留時間は、用いる排水の種類に
よって異なるが、2〜10 時間が好ましい。
It is preferable to set it to 80ff1g72 or less, SS, and 90■/Q or less. The residence time in the separation tank 7 varies depending on the type of wastewater used, but is preferably 2 to 10 hours.

必要な場合は、不溶性物の凝集性をあげるためにアニオ
ンまたはノニオン系高分子等の凝集助剤を添加してもよ
いが、本発明方法では、特に凝集助剤を用いなくても充
分沈澱分離できることも一つの特徴である。
If necessary, a flocculation aid such as an anionic or nonionic polymer may be added to improve the flocculation of insoluble materials, but in the method of the present invention, sufficient precipitation separation can be achieved without the use of any flocculation aid. One of its characteristics is what it can do.

工程(C);工程(b)で不溶性物が分離除去された上
澄み液を中和する工程。
Step (C): a step of neutralizing the supernatant liquid from which insoluble matter has been separated and removed in step (b).

工程(b)で得られた液に、NaOH,KOH等のアル
カリの中和剤を加えてpH6〜8の中性とする。
An alkaline neutralizing agent such as NaOH or KOH is added to the liquid obtained in step (b) to make it neutral to pH 6-8.

処理温度は、15〜70°Cがよい。好ましくは、箪1
図に例示する中和槽9をもちいる。
The treatment temperature is preferably 15 to 70°C. Preferably, the chest 1
A neutralization tank 9 illustrated in the figure is used.

本発明法では、 (a)工程を酸性条件下で行って、従
来中性条件下では水酸化第二鉄として沈澱していた第二
鉄イオンとCODとの酸化還元反応を行う結果第一鉄イ
オンが生成するが、中和工程を有するため、溶解度がお
おきいFe2°の濃度が減少し、第一鉄イオンを含有し
ない高度処理排水かえられる。
In the method of the present invention, step (a) is carried out under acidic conditions, and as a result of the redox reaction between ferric ions, which conventionally precipitated as ferric hydroxide under neutral conditions, and COD, ferrous iron is produced. Ions are generated, but since the process involves a neutralization process, the solubility is high and the concentration of Fe2° is reduced, allowing advanced treatment wastewater to be replaced without containing ferrous ions.

工程(d);工程(C)で中和された液を膜濾過して濃
縮液と処理水とに分離する工程。
Step (d): A step of filtering the liquid neutralized in step (C) through a membrane to separate it into a concentrated liquid and treated water.

膜濾過は、分画分子量10.000〜100.000の
透過膜を1.0〜5.0kg/am’の加圧条件で用い
て透過する。使用しうる透過膜の素材は、芳香族ポリア
ミド系、ポリスルフォン系、ポリベンズイミダゾール系
、ニトリル系、ポリハロゲン化ビニル系、ポリハロゲン
化ビニリデン系等の樹脂が用いられ、好ましくは、ポリ
アクリロニトリル、ポリフッ化ビニリデンがよい。
Membrane filtration is performed using a permeable membrane having a molecular weight cut-off of 10.000 to 100.000 under pressure conditions of 1.0 to 5.0 kg/am'. As the material of the permeable membrane that can be used, resins such as aromatic polyamide, polysulfone, polybenzimidazole, nitrile, polyvinyl halide, and polyvinylidene halide are used, and preferably polyacrylonitrile, polyvinylidene halide, etc. Polyvinylidene fluoride is good.

膜濾過装置の形式は、特に限定されないが、ロッド型膜
モジュール、管型膜モジュール、中空管型膜モジュール
、のり巻き構造型膜モジュール、中空糸型膜モジュール
、平膜型モジュール等を利用することができるが、管型
、中空管型膜モジュールは物理的洗浄が容易であり好ま
しい。より好ましくは、第1図に例示する平膜型モジュ
ールがよい。
The format of the membrane filtration device is not particularly limited, but a rod-type membrane module, a tube-type membrane module, a hollow-tube membrane module, a winding membrane module, a hollow fiber membrane module, a flat membrane module, etc. are used. However, tubular and hollow tubular membrane modules are preferred because they are easy to physically clean. More preferably, a flat membrane type module illustrated in FIG. 1 is preferred.

本発明法では、 (b)工程を有するので、工程(d)
での膜濾過のフラックスの低下率が少な(、排水を連続
処理しても2001/rr?hr以上の値を2週間以上
保持できる。
Since the method of the present invention has step (b), step (d)
The rate of decrease in flux during membrane filtration is small (even if wastewater is continuously treated, a value of 2001/rr?hr or higher can be maintained for more than two weeks.

また、工程(d)で処理水と分離された濃縮液は、好ま
しくは、その少なくとも一部を工程(a)および/また
は工程(C)へ返送するのがよい。
Furthermore, at least a portion of the concentrated liquid separated from the treated water in step (d) is preferably returned to step (a) and/or step (C).

この返送処理により中和処理工程(c)で必要な中和剤
の量を低減できる。
This return process can reduce the amount of neutralizing agent required in the neutralization process (c).

以上の本発明法による処理を行った処理水は、必要によ
りさらに吸着処理を行ってもよい。吸着処理は、有機性
吸着樹脂や、活性炭、ゼオライト、珪藻土、酸性白土等
の無機性吸着剤を用いて処理を行うことができる。
The treated water treated by the method of the present invention described above may be further subjected to adsorption treatment if necessary. The adsorption treatment can be performed using an organic adsorption resin or an inorganic adsorbent such as activated carbon, zeolite, diatomaceous earth, or acid clay.

本発明の好適実施例の一つを第1図を用いて説明する。One of the preferred embodiments of the present invention will be described with reference to FIG.

°第1図に示すフローチャートは、攪拌機7を備えた混
和槽6、かき取り羽根9を備えた沈澱分離槽8、中和槽
13、膜分離装置15、をこの順序で配置して、搬送ラ
イン14で連続的につないだ含リン化合物の処理ライン
をあられす。別に、原水槽2、塩化第二鉄槽3、カセイ
ソーダ槽4を設け、これらは、それぞれポンプ25を備
える搬入ライン26をもち、搬入ライン26は混和槽6
に連通し、それぞれ混和槽6に原水1、塩化第二鉄、カ
セイソーダを供給できるように配置されている。
°The flowchart shown in FIG. 1 shows that a mixing tank 6 equipped with an agitator 7, a sedimentation separation tank 8 equipped with scraping blades 9, a neutralization tank 13, and a membrane separation device 15 are arranged in this order to form a conveyor line. The processing line for phosphorus-containing compounds, which is continuously connected at 14, is installed. Separately, a raw water tank 2, a ferric chloride tank 3, and a caustic soda tank 4 are provided, and each of these has a carry-in line 26 equipped with a pump 25, and the carry-in line 26 is connected to the mixing tank 6.
The raw water 1, ferric chloride, and caustic soda can be supplied to the mixing tank 6, respectively.

また、必要によりカセイソーダ槽5を備え、カセイソー
ダ槽5は同様にポンプ25を備える搬入ライン26をも
ち中和槽13にカセイソーダを供給できるように配置さ
れている。カセイソーダ槽5を設けずに、中和槽13へ
のカセイソーダの供給は、カセイソーダ槽4から行って
もよい。
Further, if necessary, a caustic soda tank 5 is provided, and the caustic soda tank 5 has a carry-in line 26 similarly equipped with a pump 25, and is arranged so as to be able to supply caustic soda to the neutralization tank 13. Caustic soda may be supplied to the neutralization tank 13 from the caustic soda tank 4 without providing the caustic soda tank 5.

原水lは、原水槽2に導入され、原水槽2ではフロート
21により原水の水位が一定に保たれている。
Raw water 1 is introduced into a raw water tank 2, and in the raw water tank 2, the water level of the raw water is kept constant by a float 21.

原水槽2中の原水1は、ポンプ25により搬入ライン2
6中を運ばれ混和槽6の底部にはいる。
The raw water 1 in the raw water tank 2 is transferred to the carry-in line 2 by the pump 25.
6 and enters the bottom of the mixing tank 6.

別に混和槽6中には、塩化第二鉄槽3およびカセイソー
ダ槽4よりそれぞれ塩化第二鉄、カセイソーダが、適宜
供給される。
Separately, ferric chloride and caustic soda are appropriately supplied into the mixing tank 6 from the ferric chloride tank 3 and the caustic soda tank 4, respectively.

原水と、塩化第二鉄と、カセイソーダは、混和槽6中で
攪拌機7により攪拌混合され所定のpH値を保つよう調
節されつつ供給される。混和槽6中で、原水中に含まれ
るリン化合物は、塩化第二鉄と反応して不溶性物となる
Raw water, ferric chloride, and caustic soda are stirred and mixed by a stirrer 7 in a mixing tank 6, and are supplied while being adjusted to maintain a predetermined pH value. In the mixing tank 6, the phosphorus compound contained in the raw water reacts with ferric chloride to become an insoluble substance.

一定時間混和槽6中で混合されリン化合物を不溶性物と
して含む原水は、搬送ライン14により沈澱分離槽8中
にはこばれる。沈澱分離槽8中で静置された原水は、重
力により不溶性物を沈澱分離し、沈澱分離槽8の底部に
不溶性物がたまる。
The raw water that has been mixed in the mixing tank 6 for a certain period of time and contains phosphorus compounds as insoluble substances is spilled into the sedimentation separation tank 8 via the conveyance line 14. In the raw water left still in the sedimentation tank 8, insoluble substances are precipitated and separated by gravity, and the insoluble substances accumulate at the bottom of the sedimentation separation tank 8.

沈澱分離槽8の底部に不溶性物が固着すると分離除去し
にくいのでかき取り羽根9により底部に固着した不溶性
物をかき取って不溶性物を沈澱分離槽8の排出底部に導
く。沈澱分離槽8の底部は排出ライン11とバルブ10
を介して連通し、底部に溜った不溶性物を適宜バルブ1
0を開いて排出ライン11により濃縮液12として系外
に排出する。
If insoluble matter sticks to the bottom of the sedimentation tank 8, it is difficult to separate and remove it, so the scraping blade 9 scrapes off the insoluble matter stuck to the bottom and guides the insoluble matter to the discharge bottom of the sedimentation tank 8. The bottom of the sedimentation separation tank 8 is connected to a discharge line 11 and a valve 10.
through valve 1 to remove insoluble matter accumulated at the bottom.
0 is opened and the concentrated liquid 12 is discharged out of the system through the discharge line 11.

不溶性物中には、不溶性リン化合物以外に、SS凝集物
等も含まれる。
Insoluble substances include SS aggregates and the like in addition to insoluble phosphorus compounds.

沈澱物を分離された原水は、中和槽13に搬送され、中
和槽13中で、カセイソーダ槽5から導入されるカセイ
ソーダにより所定のpHに中和される。中和処理により
鉄イオンは、水酸化鉄として析出する。
The raw water from which the precipitate has been separated is conveyed to the neutralization tank 13, where it is neutralized to a predetermined pH with caustic soda introduced from the caustic soda tank 5. Through the neutralization treatment, iron ions are precipitated as iron hydroxide.

中和された原水は、搬送ライン14によりポンプ25を
介して膜分離装置15に送られる。原水は膜分離装置1
5中の分離膜を通過することにより分画分子量以上の物
がこしとられて処理水22となり処理水ライン19によ
り糸外に搬送される。
The neutralized raw water is sent to the membrane separation device 15 via the pump 25 by the conveyance line 14. Raw water is membrane separator 1
By passing through the separation membrane in 5, substances exceeding the molecular weight cutoff are filtered out and become treated water 22, which is conveyed to the outside of the yarn through a treated water line 19.

処理水ライン19には、流量計20が設けられ、膜分離
装置15からの透過液量を常時読み取れる。
A flow meter 20 is provided in the treated water line 19, and the amount of permeated liquid from the membrane separator 15 can be read at all times.

また、搬送ライン14から中和槽13に流れ込む液量以
上の膜分離装置15からの透過液は中和槽13に設けた
フロート21を介して返送することにより、中和槽13
の液レベルは一定に保持される。
Further, the permeated liquid from the membrane separation device 15 exceeding the amount of liquid flowing into the neutralization tank 13 from the conveyance line 14 is returned to the neutralization tank 13 via the float 21 provided in the neutralization tank 13.
The liquid level is kept constant.

膜分離装置15により処理水22と分離された膜分離装
置濃縮液は、返送ライン16を通って一部中和槽返送ラ
イン17にはいって中和槽13中に返送され、一部は、
混和槽返送ライン18にはいって混和槽6に返送される
。このpH値の高い液の返送により系全体で使用するカ
セイソーダの量を節約することが出来る。
The membrane separator concentrate separated from the treated water 22 by the membrane separator 15 passes through the return line 16 and partially enters the neutralization tank return line 17 and is returned to the neutralization tank 13.
It enters the mixing tank return line 18 and is returned to the mixing tank 6. By returning this high pH liquid, the amount of caustic soda used in the entire system can be saved.

〈実施例〉 以下に実施例により本発明を具体的に説明する。<Example> The present invention will be specifically explained below using Examples.

本発明は実施例に限定されるものではない。The invention is not limited to the examples.

(実施例1) 表1に示す水質の原水を、第1図に示す装置を用いて処
理した。
(Example 1) Raw water having the water quality shown in Table 1 was treated using the apparatus shown in FIG.

テスト条件および測定条件は下記のとおりであった。な
お用いた化合物の分子量(原子量)は下記の値で計算し
た。
The test conditions and measurement conditions were as follows. The molecular weight (atomic weight) of the compound used was calculated using the following value.

P  H30,97F e CR3; 162.2F 
e ; 55.85  F e (OR) 3; 1o
tiJC2H35,5F e PO4; 150.82
0  ;16      NaOH;40■、テスト条
件 1・1 原水 原水フィード量37.8〜51.6 Q/ h標準値4
5.02/ h 1.2  混和槽 容積    50Q 滞留時間 1.11h pH4゜0〜4.5で操業 pHコントロールはフレークカセイソーダ−の682g
を水道水2012に溶解し、0,48〜0.68g/h
で定量フィードし行った。
P H30,97F e CR3; 162.2F
e; 55.85 F e (OR) 3; 1o
tiJC2H35,5F e PO4; 150.82
0; 16 NaOH; 40■, Test conditions 1/1 Raw water raw water feed amount 37.8-51.6 Q/h standard value 4
5.02/h 1.2 Mixing tank volume 50Q Residence time 1.11h Operational pH control at pH 4°0 to 4.5 is 682g of flaked caustic soda
Dissolved in tap water 2012, 0.48-0.68g/h
Quantitative feed was carried out.

塩化第二鉄フィード量 原水中の全リン量(以下全Pと略すことがある)を90
■/I2としFe/全2モル比2で塩化第二鉄をフィー
ドした。塩化第二鉄は38%品(40’Be’)の2,
785 gを水道水202で希釈して使用した。
Ferric chloride feed amount Total phosphorus content (hereinafter sometimes abbreviated as total P) in raw water is 90
2/I2 and ferric chloride was fed at a Fe/total 2 molar ratio of 2. Ferric chloride is 38% product (40'Be') 2,
785 g was diluted with 202 g of tap water and used.

全リンフイード量; 45 x 9(1/30.97−
13G、 8+*mo ’j /hFe/全Pモル比;
2.0 FeCQ3フィード量; 130.8 X 2.0S2
6L、 5mmo 2 /h=42.4g−F e C
23/h −111,6g−38%FeCR3/h1.3  沈澱
分離槽 断面積  0.29フイ 容積   (1,253m’ 面積負荷 45X 10−310.297=(1,15
2m”/n? −h冨3.64讃/day 滞留時間 0.235x 103/45−5.62h掻
き取り羽根回転数  1.15rph外径  600■ 先端周速度  2.16m/h 入口懸濁固体濃度 濃縮液懸濁固体濃度 濃縮液抜き出し量 懸濁固体濃度除去率 出口懸濁固体濃度 1・4 中和槽 pHは6.5〜7.5を目標とした。凝集混和槽のpH
コントロールは、フレークカセイソーダ40gを水道水
102に溶解し0.27〜0.75 I2/hでフィー
ドし行った。
Total phosphorus feed amount; 45 x 9 (1/30.97-
13G, 8+*mo 'j /hFe/total P molar ratio;
2.0 FeCQ3 feed amount; 130.8 x 2.0S2
6L, 5mmo2/h=42.4g-FeC
23/h -111,6g-38%FeCR3/h1.3 Sedimentation tank cross-sectional area 0.29fi volume (1,253m' Area load 45X 10-310.297=(1,15
2m”/n? -h depth 3.64cm/day Residence time 0.235x 103/45-5.62h Scraping blade rotation speed 1.15rphOuter diameter 600■ Tip peripheral speed 2.16m/h Inlet suspended solids Concentration Concentrated liquid Suspended solid concentration Concentrated liquid withdrawal amount Suspended solid concentration Removal rate Outlet suspended solid concentration 1.4 Neutralization tank pH was targeted at 6.5 to 7.5. pH of coagulation mixing tank
The control was carried out by dissolving 40 g of caustic soda flakes in tap water 102 and feeding the solution at a rate of 0.27 to 0.75 I2/h.

入口懸濁固体濃度 濃縮倍率 中和槽懸濁固体濃度 混和槽への返送量 ホールドアツプ ト5 膜分離装置 平膜型モジュール; UFP−102S2P O,22
イア3■72 10倍 730mg/R 4、82/h 730■/2 12.000mg/Q 2、812/h 90% 73■/2 面間 3. Om EFTフレームジコイント 運転条件;圧力、入口 2.4kg/cm’出口 1.
6kg/cnl” 線速度 2.5m/s 膜; ロース・ブーラン社製IRIS−3065(材質
ポリフッ化ビニリチン) 分画分子量 40.000および70.0002、分析
方法 2・1 全リン量 モリブデン酸アンモニウム法(下水試験法準拠)2・2
  C0D 100°C過マンガン酸カリウム法(JIS K−01
02準拠) 2・3 全Fe量 0−フェナントロリン法(JIS K−0102準拠)
2・4 懸濁固体(S S)濃度 ■ 沈殿分離槽処理水 試料500−に500mg/Q−アコフロックA100
1−を加え、弱撹拌下10m1n凝集処理した。このも
のをJ[S K−010214・1懸濁物質に基いて分
析した。ろ過材は東洋ろ紙ガラスフィルター G520
を使用した。
Inlet suspended solids concentration concentration magnification Neutralization tank Suspended solids concentration Return amount to mixing tank Hold up 5 Membrane separator flat membrane type module; UFP-102S2P O, 22
Ia 3■72 10 times 730mg/R 4,82/h 730■/2 12.000mg/Q 2,812/h 90% 73■/2 Between surfaces 3. Om EFT frame dicoint operating conditions; pressure, inlet 2.4kg/cm' outlet 1.
6kg/cnl" Linear velocity 2.5m/s Membrane; IRIS-3065 manufactured by Loos-Boulin (Material polyvinyritine fluoride) Molecular weight cut off 40.000 and 70.0002, Analysis method 2.1 Total phosphorus content Ammonium molybdate method (Based on Sewage Testing Law) 2.2
C0D 100°C potassium permanganate method (JIS K-01
2.3 Total Fe amount 0-phenanthroline method (based on JIS K-0102)
2.4 Suspended solids (SS) concentration ■ 500 mg/Q-acofloc A100 in sedimentation separation tank treated water sample 500-
1- was added thereto, and flocculation treatment was carried out for 10ml1n under weak stirring. This was analyzed based on J[SK-010214.1 suspended solids. The filter material is Toyo Roshi Glass Filter G520
It was used.

■ 沈殿分離槽濃縮液 試料20−を50−遠沈管に採り3,000rpm、2
0m1nの条件で遠心分離し、上澄みをデカンチーシコ
ンの後沈殿分を30m12蒸留水に再懸濁した。その後
再度遠心分離して105℃で一昼夜乾燥後秤量して88
分とした。
■ Sedimentation separation tank Take a sample of concentrated liquid 20- to a 50-centrifuge tube and spin at 3,000 rpm, 2
The mixture was centrifuged at 0 mL of water, the supernatant was decanted, and the precipitate was resuspended in 30 mL of distilled water. After that, it was centrifuged again, dried at 105℃ for a day and night, and then weighed.
It was a minute.

■ 沈澱分離槽 試料500+nffに500mg/2−アコフロックA
1001−を加え弱撹拌下10 m i n凝集処理し
た。10m1n静置の後上澄みをデカンテーションして
沈殿分を50−遠沈管に移液した。この後は0項と同操
作によりSSを測定した。
■ 500mg/2-Acofloc A to sedimentation tank sample 500+nff
1001- was added and flocculated for 10 min under weak stirring. After standing for 10ml, the supernatant was decanted and the precipitate was transferred to a 50-centrifuge tube. After this, SS was measured by the same operation as in Section 0.

■ 混和槽 ■項と同操作を行ったがフロックの浮上、形成不良等に
より定量的測定は困難であった。したがって計算により
理論値を算出した。計算式をつぎに示した。
■ Mixing tank The same operation as in section ■ was performed, but quantitative measurements were difficult due to floating flocs and poor formation. Therefore, the theoretical value was calculated by calculation. The calculation formula is shown below.

CFLII(0丁−ρX  150.28)  I (
QFε−QT−P)X 106.8+  +(Cup 
X QHi+)/ (QRir+ (b+u)CFL 
 ;混和槽懸濁固体濃度 (■/l2)Cup  ;中
和槽懸濁固体濃度 (mg/Q)叶−ρ ;全リンフイ
ード量   (m+1off/h)QFe  ;塩化第
二鉄フィード量(!Q/h)Qpv  ;原水フィード
量    (!2/h)QHw  ;混和槽への返送量
  (2/h)2・5 色度 吸光光度計を利用し測定波長410nm、セル10mm
にて測定した。
CFLII (0 cho-ρX 150.28) I (
QFε-QT-P)X 106.8+ +(Cup
X QHi+)/ (QRir+ (b+u)CFL
; Mixing tank suspended solids concentration (■/l2)Cup; Neutralizing tank suspended solids concentration (mg/Q) Kano-ρ; Total phosphorus feed amount (m+1off/h) QFe; Ferric chloride feed amount (!Q/ h) Qpv ; Amount of raw water fed (!2/h) QHw ; Amount returned to the mixing tank (2/h) 2.5 Using a chromaticity absorption photometer, measuring wavelength 410 nm, cell 10 mm
Measured at

(比較例) 比較として、沈殿分離槽8および中和槽13がな(、中
和槽と同容量の濃縮槽27を有し、膜分離装置15から
混和槽6への混和槽返送ライン18のない以外は第1図
と同様の装置である第2図に示す装置を用いて、実施例
1と同様な処理を行った。ただし、下記の条件とした。
(Comparative example) As a comparison, the sedimentation separation tank 8 and the neutralization tank 13 (which have a concentration tank 27 with the same capacity as the neutralization tank, and the mixing tank return line 18 from the membrane separation device 15 to the mixing tank 6) The same process as in Example 1 was carried out using the apparatus shown in FIG. 2, which is the same apparatus as in FIG. 1 except for the following conditions.

原水水質;全リン濃度80mg/ 12COD  LQ
Omg/R FeCI2a/全リン=1.全リン化 1aOH/ FeC23=1.5モル沈金P   O,
114mo St /hF e C230,17mo 
Q /h=a27.7g/hN a o H0,25?
+*o 2 /h−1o、 3g/h透過膜流出量 2
002 /*2・h以上・各部所の流出および測定した
懸濁固体(S S)濃度を第2図に示した。
Raw water quality: Total phosphorus concentration 80mg/12COD LQ
Omg/R FeCI2a/total phosphorus=1. Total phosphide 1aOH/FeC23 = 1.5 mol P O,
114mo St /hFe C230,17mo
Q/h=a27.7g/hN ao H0,25?
+*o2/h-1o, 3g/h permeable membrane outflow 2
002/*2.h or more The outflow at each location and the measured suspended solids (SS) concentration are shown in Figure 2.

3、テスト結果および考察 3・1 原水水質 テスト期間中の原水水質は運転状態により変動した。p
H,COD、全リン量および色度の最高、最低、平均の
各位を表1に示した。
3. Test results and considerations 3.1 Raw water quality The raw water quality during the test period varied depending on the operating conditions. p
Table 1 shows the highest, lowest, and average H, COD, total phosphorus content, and chromaticity.

表1 原水水質 3・2 混和層へのカセイソーダ添加量混和層へのカセ
イソーダ添加量は混和槽pH1原水QHおよびFe/全
2モル比で変動した。原水pHとNaOH/Feモル比
の関係を測定し、結果を第4図に示した。
Table 1 Raw water quality 3.2 Amount of caustic soda added to the mixed layer The amount of caustic soda added to the mixed layer varied depending on the mixing tank pH 1 raw water QH and Fe/total 2 molar ratio. The relationship between raw water pH and NaOH/Fe molar ratio was measured, and the results are shown in FIG.

第4図の結果は下記式で示され、混和槽平均pH4,2
0で、相関係数r=0.908という高い相関関係が得
られた。
The results in Figure 4 are shown by the following formula, and the average pH of the mixing tank is 4.2.
0, a high correlation with a correlation coefficient r=0.908 was obtained.

NaOH/Fe (モル比’)−O,334X原水pH
+4.2L6rlIQ、 90g 3・3 沈殿分離槽 テスト期間中の平均面積負荷4.17m/day。
NaOH/Fe (molar ratio')-O, 334X raw water pH
+4.2L6rlIQ, 90g 3.3 Average area load during the settling tank test period 4.17m/day.

平均滞留時間4.94hの条件で、懸濁固体濃度平均除
去率89.14%が得られた。
Under conditions of an average residence time of 4.94 h, an average removal rate of suspended solids concentration of 89.14% was obtained.

また、沈殿分離槽濃縮液の平均懸濁固体濃度はtz、o
3omg/ Qであった。濃縮液の取扱は容易で、沈降
固化、配管閉塞等の問題は全く認められなかった。
In addition, the average suspended solids concentration of the sedimentation separation tank concentrate is tz, o
It was 3omg/Q. The concentrated liquid was easy to handle, and no problems such as sedimentation, solidification, or blockage of pipes were observed.

3・4 中和槽 中和槽の温度制御を行わなかった。そのため15.4〜
42.1℃で変動し、平均温度は32.2°Cであった
。なお温度依存係数は次式においてel、o 24であ
り、純水系とほぼ同じ値であった。
3.4 Neutralization tank The temperature of the neutralization tank was not controlled. Therefore 15.4~
It fluctuated at 42.1°C, with an average temperature of 32.2°C. The temperature dependence coefficients were el and o24 in the following equation, which were almost the same values as in the pure water system.

FIUX”−FIUXt2x (1+(tL−t2)X
klK−0,024 上記の結果より、高温で運転することにより高いフラッ
クスレベルが得られると考えられる。
FIUX"-FIUXt2x (1+(tL-t2)X
klK-0,024 From the above results, it is believed that higher flux levels can be obtained by operating at higher temperatures.

pHX整用カセイソーダ添加量 pH4の沈澱分離槽処理水をpH7にするためのカセイ
ソーダ必要量は、平均44.7mmoR/hであった。
Amount of Caustic Soda Added for pHX Adjustment The required amount of caustic soda to adjust pH 4 of the treated water from the sedimentation separation tank to pH 7 was 44.7 mmoR/h on average.

この量は混和槽での添加量の約10%に相当した。This amount corresponded to about 10% of the amount added in the mixing tank.

混和槽と中和槽での全カセイソーダ添加量をNaOH/
Feモル比にし、東5図に示した。
The total amount of caustic soda added in the mixing tank and neutralization tank is changed to NaOH/
The Fe molar ratio is shown in Fig. 5.

第5図から原水pHが6.8〜7.0の範囲ではNaO
H/Feモル比は約2.1であった。
From Figure 5, NaO
The H/Fe molar ratio was approximately 2.1.

なお、第5図から下記関係式が得られ、相関係数r−0
,876であった。
In addition, the following relational expression is obtained from FIG. 5, and the correlation coefficient r-0
,876.

全NaOH/全F e =−0,270X原水p H+
3.9543・5 膜分離装置 ・UFフラックス 16日間以上200Q/rd、h以上のフラックスが安
定して得られた。フラックス量の測定結果を第3図に示
した。
Total NaOH/Total Fe = -0,270X raw water pH H+
3.9543.5 Membrane separator/UF flux A flux of 200 Q/rd, h or more was stably obtained for 16 days or more. The measurement results of the flux amount are shown in Figure 3.

フラ・ツクス低下の要因となる膜付着物は剥離が容易で
、モジュールの一時運転停止でかなりのフラックス回復
が認められた。中和槽のレベルコントロールによる間欠
運転がフラックス向上に有効と考えられた。なおテスト
では午前と午後各1回の一時停止操作を行った。
The film deposits, which cause a decrease in flux, are easily peeled off, and a significant flux recovery was observed by temporarily stopping module operation. Intermittent operation using level control of the neutralization tank was considered effective in improving flux. In the test, the system was paused once in the morning and once in the afternoon.

膜グレードごとのフラックス経時変化 IRIS−3065、分画分子量40.000と70,
000の膜のフラックス経時変化を第6図に示した。本
データにおいて分画分子量40.000が高圧側、70
.Gooが低圧側である。
Flux change over time for each membrane grade IRIS-3065, molecular weight cutoff 40.000 and 70,
Figure 6 shows the flux change over time for the 000 membrane. In this data, the molecular weight cut off is 40.000 on the high pressure side, and 70.000 on the high pressure side.
.. Goo is the low pressure side.

第6図においてテスト初期にバラツキが大きいのは、プ
レートフラックスの測定を一時停止操作の前に行なった
り、後に行なったりしたためである。
The large variation in the initial stage of the test in FIG. 6 is due to the fact that the plate flux was measured before and after the temporary stop operation.

この結果から分画分子量40,000の膜がTo、 0
00に比較し高いフラックスが得られることがわかった
From this result, a membrane with a molecular weight cutoff of 40,000 has To, 0
It was found that higher flux was obtained compared to 00.

しかし薬液洗浄後は差がほとんど認められな(なった。However, after washing with the chemical solution, almost no difference was observed.

薬液洗浄 モジュールの薬液洗浄を行った。洗浄条件は次のとおり
The chemical cleaning module was cleaned with a chemical solution. The washing conditions are as follows.

使用水       :本発明装置で処理した処理水 洗浄時圧力     :入口 0.5kg/cイ;出口
 0.3kg/c++? 流量     ; 4.8m”/h  LVJ、4m/
sフラックス測定時圧力;入口 2.3kg/am’出
口 1.7kg#/ 流量     ; 8.5m’/h  LVx2.5m
/5(1)0.1mo2/ Q−塩酸洗浄 フラックス低下要因が水酸化第二鉄の沈着であると推定
し0.1moQ/ 2−塩酸による洗浄を行った。しか
し、洗浄後のフラックスは4527h(205Ω/m2
.h)でほとんど効果が見られなかった。
Water used: Treated water treated with the device of the present invention Pressure during cleaning: Inlet 0.5kg/c; Outlet 0.3kg/c++? Flow rate: 4.8m”/h LVJ, 4m/h
Pressure during s flux measurement: Inlet 2.3kg/am' Outlet 1.7kg#/Flow rate: 8.5m'/h LVx2.5m
/5(1)0.1mo2/Q-Hydrochloric Acid Cleaning It was assumed that the cause of the decrease in flux was the deposition of ferric hydroxide, so cleaning with 0.1moQ/2-HCl was performed. However, the flux after cleaning was 4527h (205Ω/m2
.. Almost no effect was observed in h).

(2)600■/9−次亜塩素酸ナトリウム洗浄塩酸洗
浄液置換後600■151−次亜塩素酸ナトリウム洗浄
を行った。洗浄液濃度は置換後の洗浄水pHが約4であ
ったので、pHを8にするに要した量から決定した。
(2) 600cm/9-Sodium hypochlorite washing After replacing the hydrochloric acid cleaning solution, 600cm 151-Sodium hypochlorite washing was performed. Since the pH of the washing water after replacement was approximately 4, the concentration of the washing solution was determined from the amount required to bring the pH to 8.

洗浄後の7ラツクスは125ff/h(568Q/m2
.h)まで回復した。このことからフラックス低下要因
が残留COD等の有機物であることが判明した。
7lux after cleaning is 125ff/h (568Q/m2
.. It recovered to h). From this, it was found that the cause of the decrease in flux was organic matter such as residual COD.

(3)600mg/ Q−次亜塩素酸ナトIJウム単独
の洗浄 前記結果に基き、600mg/R−次亜塩素酸ナトリウ
ム単独の洗浄テストを行った。その結果洗浄後のフラッ
クスは85 Q/ h (386fl/m2.h)にな
った。塩酸と併用した場合に比較すると32%の低下と
なったが、実演での初期フラックスはほとんど変わらな
かった。
(3) Cleaning with 600mg/Q-sodium hypochlorite alone Based on the above results, a cleaning test with 600mg/R-sodium hypochlorite alone was conducted. As a result, the flux after cleaning was 85 Q/h (386 fl/m2.h). Compared to when it was used in combination with hydrochloric acid, the decrease was 32%, but the initial flux in the demonstration was almost unchanged.

(4)UF膜で(7)COD阻止率 以上の洗浄結果からUF膜でのCOD阻止が起こってい
ると考え沈殿分離槽処理水、中和槽濃縮液および膜分離
装置処理水のCODを測定した。
(4) With the UF membrane (7) Based on the cleaning result that exceeds the COD rejection rate, we believe that COD inhibition is occurring with the UF membrane, and measure the COD of the sedimentation tank treated water, neutralization tank concentrate, and membrane separation device treated water. did.

結果を表2に示した。The results are shown in Table 2.

表2  UF膜のCOD阻止率 表2に示すとおりUF膜で平均12.8%のCOD阻止
が認められた。使用したIRIS−3065の分画分子
量は40,000ないし70,000であり、フロック
ス共存系であることからプレコート効果によるものと推
定される。
Table 2 COD inhibition rate of UF membrane As shown in Table 2, an average of 12.8% COD inhibition was observed with the UF membrane. The molecular weight cutoff of IRIS-3065 used was 40,000 to 70,000, which is presumed to be due to the precoat effect since it is a flox coexisting system.

以上の洗浄テスト結果からUFフラックスの低下要因は
沈殿分離槽処理水に含まれるCOD成分の寄与が大きい
ことがわかった。したがって中和槽から混和槽への返送
量を1/10から115程度に上げればフラノゲスの向
上が期待できる。
From the above cleaning test results, it was found that the cause of the decrease in UF flux was largely due to the COD components contained in the sedimentation separation tank treated water. Therefore, if the amount returned from the neutralization tank to the mixing tank is increased from 1/10 to about 115, an improvement in furanoges can be expected.

また、1〜2回/月の薬液洗浄、1回/3ケ月の開放洗
浄で200127n(、h以上のフラックス維持が可能
である。
In addition, it is possible to maintain a flux of 200127n (, h) or more with chemical cleaning once or twice a month and open cleaning once every three months.

3・6 処理水水質 テスト期間中全般にわたり良好な処理水質が維持された
。ただし−時混和槽pHが上昇しCODが65■/Qに
なったことがあった。表3に結果を示した。
3.6 Good treated water quality was maintained throughout the treated water quality test period. However, there were times when the pH of the mixing tank increased and the COD reached 65 .mu./Q. The results are shown in Table 3.

表3 処理水水質(実施例) ると平均値で40+ng/  2から29+ng/ff
に低下した。混和槽のFe/T−Pモル比が2.0から
2.4に上昇した効果によるものと思われるが、滞留時
間5時間の中和槽が組み込まれたことで緩衝作用が生じ
処理水水質がさらに安定したものと考えた。
Table 3 Treated water quality (Example) Average value: 40+ng/2 to 29+ng/ff
It declined to . This seems to be due to the effect of increasing the Fe/T-P molar ratio in the mixing tank from 2.0 to 2.4, but the inclusion of a neutralization tank with a residence time of 5 hours creates a buffering effect that improves the quality of the treated water. was considered to be more stable.

全リン濃度T−P、全鉄濃度T−Feにおいては0.1
+ng/R以下の分析値は分析誤差範囲内にあり、混和
槽pHおよび中和槽pHがコントローラー等で適正に管
理されれば無視しうると言って差し支えない。
Total phosphorus concentration T-P, total iron concentration T-Fe is 0.1
An analysis value of +ng/R or less is within the analysis error range and can be safely ignored if the mixing tank pH and neutralization tank pH are properly controlled with a controller or the like.

これに対し比較例では、膜分離装置処理水中に2mg/
lの溶存鉄が残存していた。
On the other hand, in the comparative example, 2mg/
1 of dissolved iron remained.

比較例では中和槽13中でのSSa度が20.000@
/ Q、UFフラブクス200ff/rd、hの設計値
に対し余裕がなかった。実施例では中和槽13中でのS
S濃度は1.000mg/ 12でありUFフラックス
200Q/d、hの設計値に対し充分余裕があった。
In the comparative example, the SSa degree in the neutralization tank 13 is 20.000@
/ Q: There was no margin for the design value of UF Flavux 200ff/rd, h. In the example, S in the neutralization tank 13
The S concentration was 1.000 mg/12, which had sufficient margin for the designed value of UF flux 200 Q/d, h.

3・7 活性炭吸着特性 武田薬品工業(株)化成品研究所に依頼し、実施例1お
よび比較例で得られた処理水の活性炭吸着等混線データ
を採った。使用した活性炭グレードはW5 C−873
2である。
3.7 Activated Carbon Adsorption Characteristics We requested Takeda Pharmaceutical Co., Ltd.'s Chemical Products Research Laboratory to collect crosstalk data such as activated carbon adsorption of the treated water obtained in Example 1 and Comparative Example. The activated carbon grade used was W5 C-873.
It is 2.

比較例で得られた処理水の活性炭吸着等温線データを第
7図に示した。第7図の結果から武田W3C−8/32
COD平衡吸着量は従来設計データとして使用している
北越炭素データ240g−COD/kg−ACに比較し
て1/2以下(7)110g・COD/kg−ACa 
t 110mg/ 12CODであった。
Figure 7 shows the activated carbon adsorption isotherm data of the treated water obtained in the comparative example. From the results in Figure 7, Takeda W3C-8/32
The COD equilibrium adsorption amount is less than 1/2 compared to the Hokuetsu carbon data of 240g-COD/kg-AC used as conventional design data (7) 110g-COD/kg-ACa
t was 110 mg/12 COD.

実施例で得られた処理水の活性炭吸着等温線データを第
8図に示した。第8図に示すように実施例で得られた処
理水は、平均C0D29■/Qに対し25mg/2と低
い設定でもCOD平衡吸着量は230g−COD/kg
−ACと北越炭素データとほぼ同じ値になった。
The activated carbon adsorption isotherm data of the treated water obtained in the example is shown in FIG. As shown in Figure 8, the treated water obtained in the example had an equilibrium COD adsorption amount of 230g-COD/kg even at a low setting of 25mg/2 compared to the average COD29/Q.
-The values were almost the same as the AC and Hokuetsu carbon data.

このことから本発明の中和工程を有する処理方法により
活性炭COD吸着能が向上することがわかった。したが
って、本発明法の活性炭に掛かるランニングコストは比
較例に対してCOD入口濃度が1/3に低下する分、安
価になった。
This indicates that the activated carbon COD adsorption capacity is improved by the treatment method including the neutralization step of the present invention. Therefore, the running cost of activated carbon in the method of the present invention was reduced by the amount that the COD inlet concentration was reduced to 1/3 compared to the comparative example.

また、比較例で得られた処理水、実施例で得られた処理
水および実施例で得られたものをさらに活性炭処理した
ものの窒素成分等の測定を行った。
In addition, nitrogen components and the like were measured in the treated water obtained in the comparative example, the treated water obtained in the example, and the treated water obtained in the example that was further treated with activated carbon.

結果を表4に示す。The results are shown in Table 4.

表4から窒素成分のうち宵機体窒素は、実施例で59.
0%、活性炭処理で97.3%が除去された。しかし硝
酸体窒素はほとんど変化がなかったことがわかる。
Table 4 shows that among the nitrogen components, evening aircraft nitrogen was 59.
0%, and 97.3% was removed by activated carbon treatment. However, it can be seen that there was almost no change in nitrate nitrogen.

・全リン濃度は活性炭処理により0.08mg/12が
ら0.20■/2に上昇しているが、分析下限付近の測
定値であり明確な現象とはいい難い。
・The total phosphorus concentration increased from 0.08 mg/12 to 0.20 μ/2 due to activated carbon treatment, but this is a measured value near the lower limit of analysis and cannot be described as a clear phenomenon.

色度は活性炭処理水でl 7 d e g、  になっ
た。
The chromaticity of the activated carbon-treated water was 17 deg.

目視ではほとんど零に近い。Visually, it is almost zero.

〈発明の効果〉 本発明の含リン排水の処理方法は、COD。<Effect of the invention> The method for treating phosphorus-containing wastewater of the present invention is COD.

BOD、33.  リン化合物等の除去率が高(、しか
も鉄イオンの流出が実質的にないので、安価なランニン
グコストでリン化合物を有する排水の高度浄化処理がで
きる。
BOD, 33. The removal rate of phosphorus compounds, etc. is high (and there is virtually no outflow of iron ions, so high-level purification of wastewater containing phosphorus compounds can be performed at low running costs).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の処理方法を説明するフローチャート
である。 第2図は、比較例に用いた従来の処理方法を説明するフ
ローチャートである。 第3図は、実施例で得られた膜分離装置の透過流速(フ
ラックス)の経時変化を示すグラフである。 ・第4図は、実施例で用いた原水pHと混和槽NaOH
添加量の関係を示すグラフである。 第5図は、実施例で用いた原水pHと全カセイソーダ添
加量の関係を示すグラフである。 第6図は、実施例で得られた膜グレードごとの透過流速
(フラックス)の経時変化を示すグラフである。 第7図は、比較例で得られた処理水の活性炭吸着処理時
における吸着等混線を示すグラフである。 第8図は、実施例で得られた処理水の活性炭吸着処理時
における吸着等温線を示すグラフである。 符号の説明 1  ・・・原水(排水) 2  ・・・ 原水槽 3  ・・・塩化第2鉄槽 4.5・・・カセイソーダ槽 ・・・混和槽 ・・・撹拌機 ・・・沈殿分離槽 ・・・かき取り羽根 ・・・バルブ ・・・排出ライン ・・・不溶性物(濃縮液) ・・・中和槽 ・・・搬送ライン ・・・膜分離装置 ・・・返送ライン ・・・中和槽返送ライン ・・・混和槽返送ライン ・・・処理水ライン ・・・流量計 ・・・フロート ・・・処理水 ・・・ポンプ ・・・搬入ライン ・・・濃縮槽 UF Fl ux (1/m”−h at35°C) り毘40槽NaOH/FeC−+ル>)全力セインーダ
°/全f失 (モノし項二、) FIG。 ylZ$1.例”A’rLj’L!”4 商3IL度O
D (mg/I) F lux (1/ m”−h at 35°C) F f G。 夫#L例の3活[収餐萼Al鯨− Co D;34.2 (mg /I )COD(mg/
FIG. 1 is a flowchart illustrating the processing method of the present invention. FIG. 2 is a flowchart illustrating the conventional processing method used in the comparative example. FIG. 3 is a graph showing the change over time in the permeation flow rate (flux) of the membrane separation device obtained in the example.・Figure 4 shows the raw water pH and mixing tank NaOH used in the example.
It is a graph showing the relationship between the amounts added. FIG. 5 is a graph showing the relationship between the pH of the raw water used in the examples and the total amount of caustic soda added. FIG. 6 is a graph showing changes over time in permeation flow rate (flux) for each membrane grade obtained in Examples. FIG. 7 is a graph showing adsorption crosstalk during activated carbon adsorption treatment of treated water obtained in a comparative example. FIG. 8 is a graph showing adsorption isotherms during activated carbon adsorption treatment of treated water obtained in Examples. Explanation of symbols 1... Raw water (drainage) 2... Raw water tank 3... Ferric chloride tank 4.5... Caustic soda tank... Mixing tank... Stirrer... Precipitation separation tank ...Scraping blade...Valve...Discharge line...Insoluble matter (concentrated liquid)...Neutralization tank...Transportation line...Membrane separation device...Return line...Medium Wash tank return line...Mixing tank return line...Treated water line...Flow meter...Float...Treated water...Pump...Carry-in line...Concentrator tank UF Flu ux (1 /m”-h at 35°C) 40 tanks NaOH/FeC-+L>) Full force seindar °/Total f loss (Monoshi term 2,) FIG. ylZ$1. Example “A'rLj'L! ”4 quotient 3IL degree O
D (mg/I) F lux (1/m”-hat 35°C) F f G. 3 Lives of Husband #L Example [Accessory Calyx Al Whale- Co D; 34.2 (mg/I) COD (mg/
l

Claims (5)

【特許請求の範囲】[Claims] (1)リン化合物を含有する排水の処理方法であって、
下記の工程(a)〜(d)らなることを特徴とする含リ
ン排水の処理方法。 (a)酸性条件下で、リン化合物固定化剤を加え、リン
化合物を不溶性物として生成せしめる工程。 (b)前記不溶性物を分離する工程。 (c)前記不溶性物が分離除去された液を中和する工程
。 (d)前記中和された液を膜濾過して濃縮液と処理水と
に分離する工程。
(1) A method for treating wastewater containing phosphorus compounds,
A method for treating phosphorus-containing wastewater, comprising the following steps (a) to (d). (a) A step of adding a phosphorus compound fixing agent under acidic conditions to produce a phosphorus compound as an insoluble substance. (b) A step of separating the insoluble matter. (c) Neutralizing the liquid from which the insoluble substances have been separated and removed. (d) A step of separating the neutralized liquid into a concentrated liquid and treated water by membrane filtration.
(2)前記(a)工程の酸性条件が、pH3〜5である
請求項1に記載の含リン排水の処理方法。
(2) The method for treating phosphorus-containing wastewater according to claim 1, wherein the acidic conditions in step (a) are pH 3 to 5.
(3)前記リン化合物を含有する排水が、前処理として
生物学的処理工程を経たものである請求項1または2に
記載の含リン排水の処理方法。
(3) The method for treating phosphorus-containing wastewater according to claim 1 or 2, wherein the wastewater containing the phosphorus compound has undergone a biological treatment process as a pretreatment.
(4)前記(d)工程で膜濾過された濃縮液の少なくと
も一部を前記(a)工程の不溶性物生成工程へ返送する
請求項1〜3のいずれかに記載の含リン排水の処理方法
(4) The method for treating phosphorus-containing wastewater according to any one of claims 1 to 3, wherein at least a part of the concentrate membrane-filtered in the step (d) is returned to the insoluble matter generation step in the step (a). .
(5)前記(d)工程で得られた処理水を、さらに活性
炭を用いて脱色する請求項1〜4のいずれかに記載の含
リン排水の処理方法。
(5) The method for treating phosphorus-containing wastewater according to any one of claims 1 to 4, wherein the treated water obtained in step (d) is further decolorized using activated carbon.
JP63290478A 1988-11-17 1988-11-17 Treatment method of phosphorus-containing wastewater Expired - Lifetime JPH0720583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63290478A JPH0720583B2 (en) 1988-11-17 1988-11-17 Treatment method of phosphorus-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63290478A JPH0720583B2 (en) 1988-11-17 1988-11-17 Treatment method of phosphorus-containing wastewater

Publications (2)

Publication Number Publication Date
JPH02135190A true JPH02135190A (en) 1990-05-24
JPH0720583B2 JPH0720583B2 (en) 1995-03-08

Family

ID=17756535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63290478A Expired - Lifetime JPH0720583B2 (en) 1988-11-17 1988-11-17 Treatment method of phosphorus-containing wastewater

Country Status (1)

Country Link
JP (1) JPH0720583B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043616A (en) * 2004-08-06 2006-02-16 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus
JP2006122794A (en) * 2004-10-28 2006-05-18 Kurita Water Ind Ltd Method and apparatus for treating phosphoric acid-containing liquid
JP2006281001A (en) * 2005-03-31 2006-10-19 Kubota Corp Method and apparatus for treating water
CN1301913C (en) * 2005-12-21 2007-02-28 史立皂 Avermectin-containing waste liquor recovery process
CN100383057C (en) * 2005-08-31 2008-04-23 刘天暘 Method for removing impurities in phosphoric acid and deposition purificant used in the method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565083B2 (en) * 1999-03-31 2004-09-15 Jfeエンジニアリング株式会社 Method and apparatus for treating human wastewater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660691A (en) * 1979-10-23 1981-05-25 Ebara Infilco Co Ltd Treatment of waste water containing organic substance
JPS63256180A (en) * 1987-04-13 1988-10-24 Ebara Infilco Co Ltd Treatment or organic sewage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660691A (en) * 1979-10-23 1981-05-25 Ebara Infilco Co Ltd Treatment of waste water containing organic substance
JPS63256180A (en) * 1987-04-13 1988-10-24 Ebara Infilco Co Ltd Treatment or organic sewage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043616A (en) * 2004-08-06 2006-02-16 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus
JP2006122794A (en) * 2004-10-28 2006-05-18 Kurita Water Ind Ltd Method and apparatus for treating phosphoric acid-containing liquid
JP2006281001A (en) * 2005-03-31 2006-10-19 Kubota Corp Method and apparatus for treating water
JP4660247B2 (en) * 2005-03-31 2011-03-30 クボタ環境サ−ビス株式会社 Water treatment method and apparatus
CN100383057C (en) * 2005-08-31 2008-04-23 刘天暘 Method for removing impurities in phosphoric acid and deposition purificant used in the method
CN1301913C (en) * 2005-12-21 2007-02-28 史立皂 Avermectin-containing waste liquor recovery process

Also Published As

Publication number Publication date
JPH0720583B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
KR101075885B1 (en) Water purification apparatus and method for using pressure filter and pore control fiber filter
KR101467476B1 (en) Method for biological processing of water containing organic material
CN105800885A (en) Resource recycling and treatment system of high-concentration degradation-resistant salt-containing organic waste water
CN105800886A (en) Resource recycling and treatment technology of high-concentration degradation-resistant salt-containing organic waste water
US20060231499A1 (en) Methods and compositions for wastewater treatment
Owen Removal of phosphorus from sewage plant effluent with lime
CN1450978A (en) System and method for simultaneous removal of arsenic and fluoride from aqueous solutions
JP3653422B2 (en) Waste water treatment method and waste water treatment equipment
CN109626727A (en) A kind of Zero discharge treatment method and system machining waste water
CN109293145A (en) The method that textile waste is back to Thermal Power Generation Industry
CN208136047U (en) A kind of coking wastewater processing system
KR100707975B1 (en) Treatment method for livestock waste water including highly concentrated organic materials
CN111056653A (en) Cold rolling wastewater treatment system and method
Zahid et al. Impacts of alum addition on the treatment efficiency of cloth-media MBR
WO2012146324A1 (en) Method for treatment of sludge from water and wastewater treatment plants with chemical treatment
KR20040002594A (en) Liquid treatment method and apparatus
JPH02135190A (en) Treatment of waste water containing phosphorus
Azmi et al. The Effect of Operating Parameters on Ultrafiltration and Reverse Osmosis of Palm Oil Mill Effluent for Reclamation and Reuse of Water.
CN107352744A (en) Kitchen garbage slurry fermentation waste water processing method
KR20050097485A (en) High concentration organic wastewater treatment method use of ceramic coagulant
Qi et al. Integration of immersed membrane ultrafiltration with the reuse of PAC and alum sludge (RPAS) process for drinking water treatment
KR0168827B1 (en) Method for purifying organic waste water
US20200255308A1 (en) Treatment of Liquid Streams containing High concentration of Solids utilizing Ballasted Floc Technology
US11661366B2 (en) Process for selenium removal with biological, chemical and membrane treatment
Prisciandaro et al. Development of a reliable alkaline wastewater treatment process: optimization of the pre-treatment step

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14