JP3880173B2 - DNA synthase - Google Patents

DNA synthase Download PDF

Info

Publication number
JP3880173B2
JP3880173B2 JP33210097A JP33210097A JP3880173B2 JP 3880173 B2 JP3880173 B2 JP 3880173B2 JP 33210097 A JP33210097 A JP 33210097A JP 33210097 A JP33210097 A JP 33210097A JP 3880173 B2 JP3880173 B2 JP 3880173B2
Authority
JP
Japan
Prior art keywords
dna
amino acid
synthase
acid sequence
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33210097A
Other languages
Japanese (ja)
Other versions
JPH11155578A (en
Inventor
洋文 土居
昭夫 金井
良純 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Celestar Lexico Sciences Inc
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Celestar Lexico Sciences Inc
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP33210097A priority Critical patent/JP3880173B2/en
Application filed by Japan Science and Technology Agency, Celestar Lexico Sciences Inc, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to DE69841602T priority patent/DE69841602D1/en
Priority to PCT/JP1998/000430 priority patent/WO1998033900A1/en
Priority to EP98901095A priority patent/EP1013759B1/en
Priority to EP05005854A priority patent/EP1564288B1/en
Priority to DE69836971T priority patent/DE69836971T2/en
Publication of JPH11155578A publication Critical patent/JPH11155578A/en
Priority to US10/345,205 priority patent/US7231301B2/en
Application granted granted Critical
Publication of JP3880173B2 publication Critical patent/JP3880173B2/en
Priority to US11/806,448 priority patent/US7820423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Description

【0001】
【発明の属する技術分野】
この発明は、DNA鎖の試験管内での合成や増幅、塩基配列の決定等に用いる新規なDNA合成酵素と、この酵素をコードするDNA配列、並びにこのDNA合成酵素の製造方法に関するものである。
【0002】
【従来の技術とその課題】
DNA合成酵素(DNA polymerase)は1本鎖DNAに相補的なDNA鎖の合成を触媒する酵素の総称である。DNAの塩基配列決定や試験管内でのDNA増幅などには必須の酵素であるが、特にPCR(Polymerase chain reaction) においては、その一連の反応サイクルを自動化する上で「耐熱性DNA合成酵素」は不可欠である。
【0003】
このような耐熱性DNA合成酵素としては、Taq、Pfu、KOD等が知られており、それぞれの特性に応じて使い分けられている。特に、PfuDNA合成酵素はDNA鎖合成時における読み違いが極めて少ない(忠実性が高い)酵素として知られている。
しかしながら、このPfuDNA合成酵素は、合成量が少なく、また合成鎖に対する伸長活性が不十分であるために、ゲノムDNA等の高分子DNAを増幅するには不適当であった。
【0004】
この発明は、以上のとおりの事情に鑑みてなされたものであって、DNA鎖をPCR等により合成、増幅するに際して、PfuDNA合成酵素の特徴である高忠実性を維持しつつ、鋳型DNA鎖をより長く効率的に増幅することのできる新規な耐熱性DNA合成酵素を提供することを目的としている。
またこの発明は、このDNA合成酵素をコードするDNA配列と、このDNA配列の発現産物として上記DNA合成酵素を製造する方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
この発明は、上記の課題を解決するものとして、1本鎖DNAに相補的なDNA鎖の合成を触媒するに際して合成DNA鎖がより長く伸長するようにPfuDNA合成酵素のアミノ酸配列を人為的に改変したことを特徴とするDNA合成酵素を提供する。
【0006】
このDNA合成酵素は、具体的には、配列番号1または2のアミノ酸配列からなる酵素である。
またこの発明は、配列番号1または2のアミノ酸配列をコードするDNA配列と、これらのDNA配列を含む組換え体ベクターを提供する。このようなベクターとしては、大腸菌HMS174(DE3)/pDP5b17 (FERM BP-6189) が保有する組換え体プラスミドpDP5b17(配列番号1のアミノ酸配列をコードするDNA配列を保有するベクター)、および大腸菌HMS174(DE3)/pDP5C4 (FERM BP-6190)が保有する組換え体プラスミドpDP5C4 (配列番号1のアミノ酸配列をコードするDNA配列を保有するベクター)をも提供する。
【0007】
さらにまた、この発明は、上記DNA配列を含む発現ベクターにより形質転換した細胞を培養し、培地中に産生された目的酵素を単離・精製することを特徴とするDNA合成酵素の製造方法を提供する。
【0008】
【発明の実施の形態】
この発明のDNA合成酵素は、具体的には、ピロコッカスフリオサス(Pyrococcus furiosus)由来の耐熱性PfuDNA合成酵素を公知の変異遺伝子作成法 (Strategies, vol 9, p3-4,1996) によって遺伝子工学的に改変した酵素である(以下、この発明の耐熱性DNA合成酵素を「改変型PfuDNA合成酵素」と記載することがある)。この酵素の作成は以下のとおりに行なった。すなわち、PfuDNA合成酵素の遺伝子は塩基配列が公知(Nucleic Acids Research, vol.21, p259-265, 1993) であるため、その両端に相補的なオリゴヌクレオチドを合成し、これをプライマーとして、上記細菌のゲノムDNAを鋳型とするPCR法によりPfuDNA合成酵素の遺伝子を調製した。この遺伝子DNA断片をベクターにクローニングし、上記文献に記載の方法により変異させた。遺伝子の変異は、PfuDNA合成酵素のアミノ酸配列の一部がKODDNA合成酵素のアミノ酸配列に置き変わるように塩基を置換させた。PfuDNA合成酵素とKODDNA合成酵素は、アミノ酸配列が約80%相同であり、PCRの際に同様の合成停止を生じさせるが(図1)、KODDNA合成酵素の伸長速度はPfuDNA合成酵素の約6倍である。そこで、PfuDNA合成酵素のアミノ酸残基をKODDNA合成酵素のアミノ酸残基に置換することによって、伸長速度が速く、従って合成DNA鎖をより長く伸長させることのできる酵素が得られる可能性があるからである。そして、このようにして変異させた遺伝子を大腸菌で発現させ、その発現産物を回収し、精製することによってこの発明の改変型PfuDNA合成酵素を得た。
【0009】
実際には、この発明の発明者等は、上記の方法により数多くの改変型PfuDNA合成酵素を作成し、それぞれについてDNA合成実験をおこない、伸長したDNA鎖を電気泳動的に解析することによって、従来酵素に比べて合成量を高め、合成鎖の伸長を促進させることのできるDNA合成酵素を得、この発明を完成させた。
【0010】
この発明の耐熱性DNA合成酵素(改変型PfuDNA合成酵素)は、具体的には、配列番号1または2のアミノ酸配列を有する酵素である(以下、これらを改変型PfuDNA合成酵素I およびIIと記載することがある)。これらのアミノ酸配列は、従来公知のPfuDNA合成酵素のアミノ酸配列のうち、表1に示すアミノ酸残基がそれぞれ置換された新規な配列である。そして、これらの新規酵素を用いてPCR等のDNA合成を行なった場合には、下記の実施例に示すように、大量かつ高分子の合成産物を得ることが可能となる。
【0011】
【表1】

Figure 0003880173
【0012】
これらの改変型PfuDNA合成酵素をコードするDNA配列としては、上記の酵素作成過程で得られたPfuDNA合成酵素遺伝子の変異遺伝子を例示することができる。これらの変異遺伝子は、例えば配列番号1または2のアミノ酸配列をコードするDNA配列については、それぞれ組換え体プラスミドpDP5b17およびpDP5C4 にクローニングされており、これらの組換え体プラスミドは大腸菌HMS174(DE3)に導入され、工業技術院生命工学工業技術研究所に寄託されている (各々、寄託番号FERM BP-6189およびFERM BP-6190) 。
【0013】
また、この発明のDNA配列は、例えば配列番号1または2の各アミノ酸残基に対応する塩基コドンをつなぎ合わせたDNA配列として適宜にデザインすることもできる。
この発明の耐熱性DNA合成酵素は、大腸菌などの微生物で発現させて得ることができる。例えば、微生物中で複製可能なオリジン、プロモーター、リボソーム結合部位、cDNAクローニング部位、ターミネーター等を有する発現ベクターに、上記DNA配列を挿入結合して発現ベクターを作成し、この発現ベクターで宿主細胞を形質転換したのち、得られた形質転換体を培養してやれば、DNA配列にコードされている酵素を微生物内で大量生産することができる。
【0014】
以下、実施例を示し、この発明のDNA合成酵素についてさらに詳細かつ具体的に説明するが、この発明は以下の例に限定されるものではない。
【0015】
【実施例】
実施例1:PfuDNA合成酵素遺伝子のクローニング
PfuDNA合成酵素遺伝子の塩基配列(Nucleic Acids Research, vol.21, p259-265, 1993) に従ってPCRプライマーを合成し、ピロコッカスフリオサス (P. furiosus)のゲノムDNAを鋳型とするPCRによって目的遺伝子を増幅し、これを大腸菌用の発現ベクターにクローニングした。クローニング方法の詳細は以下のとおりである。
【0016】
P.furiosus DSM3638を上記文献に記載された方法で培養した。先ず、文献記載の培地を調製し、高温加圧滅菌ののち、蜜素ガスを吹き込み、植菌して95℃で15時間静置培養した。200mlの培養掖から遠心分離により約0.5mgの菌体を得た。集菌体を緩衝液A(10mMトリス−HCL,pH8.0, 1mMEDTA, 100mM NaCl )に懸濁し、10% SDSを1ml加え、撹拌の後、プロテイナーゼKを0.5mg 加えて55℃で60分反応させた。反応液を順次フェノ一ル抽出、フェノ一ル/クロロホルム抽出、クロロホルム抽出し、エタノールを加えてDNAを不溶化し、回収した。得られたDNAを1mlのTEバッファー(10mMトリス−HCl,pH8.0,1mMEDTA)に溶解し、0.5mgのRNase Aを加えて37℃で60分反応させたのち、再度フェノール抽出、フェノ一ル/クロロホルム抽出、クロロホルム抽出し、エタノ一ル沈殿でDNAを回収してTEバッファ−に溶解させ、約0.3mgのDNAを得た。
【0017】
次いで、目的のDNA合成酵素遺伝子をPCR増幅するために、既知の配列データをもとに配列番号3および4に示す2種のプライマ−DNAを合成した。すなわち、フォアードプライマー配列中には目的遺伝子の開始コドンATGおよび制限酵素NcoI配列(5'-CCATGG-3')を導入し、リバースプライマーは終止コドンの下流の適当な位置に結合するように設計した。PCRは、P.furiosusDNA2μgとプライマー各10pmolを用い、LATaq(宝酒造)と添付のバッファー条件で、50μlの反応系で行った。サイクル条件は、酵素を加える前に93℃/3分を行い、94℃/0.5 分、55℃/0.5 分、72℃/1.0 分を30サイクルした。増幅したDNA断片を精製し、NcoIで処理した後、同じくNcoIで切断後に平滑末端化し、さらにNcoI処理した発現ベクターpET15−bのT7プロモーター下流に組み込んだ。この発現ベクターをpDPWT100とし、挿入遣伝子の塩基配列を確認した。
実施例2:改変型PfuDNA合成酵素I 遺伝子の作成
クローン化したPfuDNA合成酵素遺伝子を組み込んだ発現ベクターpDPWT100に対して、期待する変異を含んだオリゴヌクレオチド(配列番号5および6)とプロメガ社の突然変異導入キットを用い、公知の方法 (Strategies, vol 9, p3-4,1996) に従って改変型PfuDNA合成酵素I の遺伝子を、発現ベクターpDPWT100上で作成し、発現ベクターpDP5b17を構築した。なお、この改変型遺伝子の塩基配列を決定することにより、改変型PfuDNA合成酵素I のアミノ酸配列(配列番号1)を確認した。
実施例3:改変型PfuDNA合成酵素II遺伝子の作成
配列番号7および8のオリゴヌクレオチドを用いたことを除き、実施例2と同一の方法により、改変型PfuDNA合成酵素IIの遺伝子を作成し、発現ベクターpDP5C4 を構築した。この改変型遺伝子の塩基配列を決定することにより、改変型PfuDNA合成酵素IIのアミノ酸配列(配列番号2)を確認した。
実施例4:改変型PfuDNA合成酵素I の大腸菌での発現と精製
実施例2で作成した改変型PfuDNA合成酵素I の遺伝子を次のとおりに大腸菌で発現させ、精製した。
【0018】
改変型PfuDNA合成酵素I 遺伝子をもつ発現ベクターpDP5b17を大腸菌HMS174(DE3)株に導入し、終濃度0.1mMのIPTGを含んだLB培地で14時間培養し、酵素を大腸菌体内に発現誘導した。遠心して菌体を集めた後、150mM Tris/HCl(pH7.5)、2mM EDTA、0.24mM APMSFおよび0.2%のTween20を含む緩衝液で超音波処理を行いながら、改変型PfuDNA合成酵素I を抽出した。この粗抽出液を80℃、15分の熱処理を行うことで大腸菌由来のDNA合成酵素を失活させると共に、改変型PfuDNA合成酵素I の部分精製を行なった。部分精製画分は50mMTris/HCl(pH7.5)、1mMEDTA、0.2%Tween20、7mM 2-mercaptoethanol および10% glycerolの緩衝液に対し透析した。この段階で改変型PfuDNA合成酵素I に特異的なDNA合成活性を検出した。
実施例5:改変型PfuDNA合成酵素IIの大腸菌での発現と精製
実施例3で構築した発現ベクターpDP5C4 を用い、実施例4と同様の方法により改変型PfuDNA合成酵素IIを抽出し、部分精製した。
実施例6:改変型PfuDNA合成酵素I およびIIによるプライマー伸長反応
実施例4および5でそれぞれ部分精製した改変型PfuDNA合成酵素I およびIIを用い、鋳型DNAに相補的なDNA鎖のプライマー伸長反応を試験した。
【0019】
20mMTris/HCl(pH8.0)、2mM MgCl2、50μg/mlBSA、0.1%Triton X-100、1mMの各cold dNTPs(0.1mM for dCTP)、[α-32P] dCTPの10μCiとM13(-21)のプライマーをアニールさせた0.63μgのpBLUESCRIPT プラスミドを含む反応液20μlに、上記の部分精製酵素画分1μgを入れ、75℃で1分および3分間反応させた。伸長したDNA鎖を8M ureaを含んだポリアクリルアミドゲル電気泳動で分離した後、イメージアナライザ−によりそのパターンを解析した。また対照として、従来の野性型PfuDNA合成酵素を用いて同様のDNA合成を行なった。
【0020】
結果は図2に示したとおりである。従来の野性型PfuDNA合成酵素を用いた場合には、約1000ベースに大きな合成停止領域が存在し、このことによる不完全なDNA鎖の存在を示すバンドが観察された。一方、この発明の改変型PfuDNA合成酵素I およびIIによるDNA合成では、約1000ベースのバンドも含めて合成量が増大し、しかもより高分子の(すなわち、より伸長した)PCR産物の存在を示すバンドも観察された。
【0021】
以上の結果から、この発明のDNA合成酵素は、PCR法によるDNA合成において、合成DNA鎖のより長い伸長が可能であることが確認された。
【0022】
【発明の効果】
以上詳しく説明したとおり、この発明によって、高分子DNAをPCR等によって増幅する場合であっても、その全長を効率よく合成、増幅することのできる新規な耐熱性DNA合成酵素が提供される。これによって、DNA鎖の試験管内での合成や増幅、塩基配列の決定等を簡便かつ高精度で行なうことが可能となる。
【0023】
【配列表】
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173

【図面の簡単な説明】
【図1】従来のPfuDNA合成酵素とKODDNA合成酵素のプライマー伸長活性を示す電気泳動の結果である。
【図2】従来のPfuDNA合成酵素(野性型)とこの発明の改変型PfuDNA合成酵素のプライマー伸長活性を示す電気泳動の結果である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel DNA synthase used for synthesis and amplification of a DNA strand in a test tube, determination of a base sequence, etc., a DNA sequence encoding the enzyme, and a method for producing the DNA synthase.
[0002]
[Prior art and its problems]
DNA polymerase is a general term for enzymes that catalyze the synthesis of a DNA strand complementary to a single-stranded DNA. It is an indispensable enzyme for determining the base sequence of DNA and amplifying DNA in a test tube. Especially in PCR (Polymerase chain reaction), the “thermostable DNA synthase” It is essential.
[0003]
As such thermostable DNA synthetase, Taq, Pfu, KOD and the like are known, and are used properly according to the respective characteristics. In particular, Pfu DNA synthase is known as an enzyme with very few reading errors during DNA chain synthesis (high fidelity).
However, this Pfu DNA synthase is unsuitable for amplifying high-molecular DNA such as genomic DNA because of its low synthesis amount and insufficient elongation activity on the synthetic strand.
[0004]
The present invention has been made in view of the circumstances as described above. When a DNA strand is synthesized and amplified by PCR or the like, the template DNA strand is maintained while maintaining the high fidelity characteristic of Pfu DNA synthase. An object of the present invention is to provide a novel thermostable DNA synthase that can be amplified for a longer time and efficiently.
Another object of the present invention is to provide a DNA sequence encoding the DNA synthase and a method for producing the DNA synthase as an expression product of the DNA sequence.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention artificially modifies the amino acid sequence of Pfu DNA synthase so that the synthetic DNA strand extends longer when catalyzing the synthesis of a DNA strand complementary to a single-stranded DNA. A DNA synthetase characterized by the above is provided.
[0006]
Specifically, this DNA synthase is an enzyme consisting of the amino acid sequence of SEQ ID NO: 1 or 2.
The present invention also provides a DNA sequence encoding the amino acid sequence of SEQ ID NO: 1 or 2, and a recombinant vector containing these DNA sequences. Examples of such vectors include a recombinant plasmid pDP5b17 (a vector having a DNA sequence encoding the amino acid sequence of SEQ ID NO: 1) carried by E. coli HMS174 (DE3) / pDP5b17 (FERM BP-6189), and E. coli HMS174 ( Also provided is a recombinant plasmid pDP5C4 (a vector carrying a DNA sequence encoding the amino acid sequence of SEQ ID NO: 1) carried by DE3) / pDP5C4 (FERM BP-6190).
[0007]
Furthermore, the present invention provides a method for producing a DNA synthase characterized by culturing cells transformed with an expression vector containing the above DNA sequence, and isolating and purifying the target enzyme produced in the medium. To do.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Specifically, the DNA synthase of the present invention is obtained by genetic engineering of a thermostable Pfu DNA synthase derived from Pyrococcus furiosus by a known mutant gene preparation method (Strategies, vol 9, p3-4, 1996). (Hereinafter, the thermostable DNA synthase of the present invention may be referred to as “modified Pfu DNA synthase”). This enzyme was prepared as follows. That is, since the base sequence of the gene for Pfu DNA synthase is known (Nucleic Acids Research, vol.21, p259-265, 1993), complementary oligonucleotides are synthesized at both ends, and this is used as a primer. A gene for Pfu DNA synthase was prepared by a PCR method using the genomic DNA as a template. This gene DNA fragment was cloned into a vector and mutated by the method described in the above literature. In the gene mutation, the base was substituted so that a part of the amino acid sequence of Pfu DNA synthase was replaced with the amino acid sequence of KOD DNA synthase. Pfu DNA synthase and KOD DNA synthase are about 80% homologous in amino acid sequence and cause similar synthesis termination during PCR (FIG. 1), but the extension rate of KOD DNA synthase is about 6 times that of Pfu DNA synthase. It is. Therefore, by substituting the amino acid residue of PfuDNA synthetase with the amino acid residue of KODDNA synthetase, there is a possibility that an enzyme can be obtained that has a high extension rate and therefore can extend the synthetic DNA strand longer. is there. The gene thus mutated was expressed in E. coli, and the expression product was recovered and purified to obtain the modified Pfu DNA synthase of the present invention.
[0009]
In practice, the inventors of the present invention have prepared a number of modified Pfu DNA synthases by the above-described method, conducted DNA synthesis experiments for each, and electrophoretically analyzed the extended DNA strands. The present invention was completed by obtaining a DNA synthesizing enzyme capable of increasing the amount of synthesis compared to the enzyme and promoting the elongation of the synthetic strand.
[0010]
The thermostable DNA synthase (modified Pfu DNA synthase) of the present invention is specifically an enzyme having the amino acid sequence of SEQ ID NO: 1 or 2 (hereinafter referred to as modified Pfu DNA synthases I and II). Sometimes). These amino acid sequences are novel sequences in which the amino acid residues shown in Table 1 are substituted among the conventionally known amino acid sequences of Pfu DNA synthase. When DNA synthesis such as PCR is carried out using these novel enzymes, it becomes possible to obtain a large amount of polymer synthesis product as shown in the following examples.
[0011]
[Table 1]
Figure 0003880173
[0012]
Examples of DNA sequences encoding these modified Pfu DNA synthases include mutant genes of the Pfu DNA synthase gene obtained in the above-described enzyme preparation process. These mutant genes have been cloned into the recombinant plasmids pDP5b17 and pDP5C4, for example, for the DNA sequence encoding the amino acid sequence of SEQ ID NO: 1 or 2, respectively. These recombinant plasmids have been cloned into E. coli HMS174 (DE3). Introduced and deposited at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (deposit numbers FERM BP-6189 and FERM BP-6190, respectively).
[0013]
In addition, the DNA sequence of the present invention can be appropriately designed as a DNA sequence in which base codons corresponding to amino acid residues of SEQ ID NO: 1 or 2, for example, are connected.
The thermostable DNA synthase of the present invention can be obtained by expressing in a microorganism such as Escherichia coli. For example, an expression vector is prepared by inserting and binding the above DNA sequence to an expression vector having an origin, promoter, ribosome binding site, cDNA cloning site, terminator, etc. that can be replicated in microorganisms. If the obtained transformant is cultured after the conversion, the enzyme encoded by the DNA sequence can be mass-produced in the microorganism.
[0014]
EXAMPLES Hereinafter, examples will be shown and the DNA synthase of the present invention will be described in more detail and specifically, but the present invention is not limited to the following examples.
[0015]
【Example】
Example 1: Cloning of Pfu DNA synthase gene PCR primers were synthesized according to the base sequence of the Pfu DNA synthase gene (Nucleic Acids Research, vol. 21, p259-265, 1993), and the genome of P. furiosus was synthesized. The target gene was amplified by PCR using DNA as a template and cloned into an expression vector for E. coli. Details of the cloning method are as follows.
[0016]
P. furiosus DSM3638 was cultured by the method described in the above literature. First, a medium described in the literature was prepared, and after high-temperature autoclaving, infused with nitrous gas, inoculated and cultured at 95 ° C. for 15 hours. About 0.5 mg of cells were obtained from 200 ml of culture cake by centrifugation. The collected cells are suspended in buffer A (10 mM Tris-HCL, pH 8.0, 1 mM EDTA, 100 mM NaCl), 1 ml of 10% SDS is added, and after stirring, 0.5 mg of proteinase K is added and reacted at 55 ° C. for 60 minutes. I let you. The reaction solution was sequentially extracted with phenol, phenol / chloroform and chloroform, and ethanol was added to insolubilize and collect the DNA. The obtained DNA was dissolved in 1 ml of TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA), 0.5 mg of RNase A was added and reacted at 37 ° C. for 60 minutes, followed by phenol extraction and phenol again. / Chloroform extraction, chloroform extraction, DNA was recovered by ethanol precipitation and dissolved in TE buffer to obtain about 0.3 mg of DNA.
[0017]
Subsequently, in order to amplify the target DNA synthase gene, two types of primer DNAs shown in SEQ ID NOs: 3 and 4 were synthesized based on the known sequence data. That is, the start codon ATG of the target gene and the restriction enzyme NcoI sequence (5′-CCATGG-3 ′) were introduced into the forward primer sequence, and the reverse primer was designed to bind to an appropriate position downstream of the stop codon. . PCR was performed in a 50 μl reaction system using 2 μg of P. furiosus DNA and 10 pmol of each primer under the conditions of LATaq (Takara Shuzo) and the attached buffer. Cycle conditions were 93 ° C / 3 minutes before adding the enzyme, and 30 cycles of 94 ° C / 0.5 minutes, 55 ° C / 0.5 minutes, 72 ° C / 1.0 minutes were performed. The amplified DNA fragment was purified, treated with NcoI, cut with NcoI, blunt-ended, and further inserted downstream of the T7 promoter of the NcoI-treated expression vector pET15-b. This expression vector was designated as pDPWT100, and the base sequence of the insertion gene was confirmed.
Example 2: Preparation of modified Pfu DNA synthase I gene For the expression vector pDPWT100 incorporating the cloned Pfu DNA synthase gene, oligonucleotides (SEQ ID NOs: 5 and 6) containing the expected mutation and Promega's sudden mutation Using the mutagenesis kit, a modified Pfu DNA synthase I gene was prepared on the expression vector pDPWT100 according to a known method (Strategies, vol 9, p3-4, 1996) to construct an expression vector pDP5b17. The amino acid sequence (SEQ ID NO: 1) of the modified Pfu DNA synthase I was confirmed by determining the base sequence of this modified gene.
Example 3: Preparation of modified Pfu DNA synthetase II gene A modified Pfu DNA synthetase II gene was prepared and expressed in the same manner as in Example 2 except that the oligonucleotides of SEQ ID NOs: 7 and 8 were used. Vector pDP5C4 was constructed. By determining the base sequence of this modified gene, the amino acid sequence of the modified Pfu DNA synthase II (SEQ ID NO: 2) was confirmed.
Example 4: Expression and purification of modified Pfu DNA synthase I in Escherichia coli The modified Pfu DNA synthase I gene prepared in Example 2 was expressed in E. coli and purified as follows.
[0018]
An expression vector pDP5b17 having a modified Pfu DNA synthase I gene was introduced into E. coli HMS174 (DE3) strain and cultured for 14 hours in an LB medium containing IPTG having a final concentration of 0.1 mM to induce expression of the enzyme in E. coli. After collecting the cells by centrifugation, the modified Pfu DNA synthase I was extracted while sonicating with a buffer containing 150 mM Tris / HCl (pH 7.5), 2 mM EDTA, 0.24 mM APMSF and 0.2% Tween20. did. The crude extract was heat-treated at 80 ° C. for 15 minutes to inactivate E. coli-derived DNA synthase and partially purify modified Pfu DNA synthase I. The partially purified fraction was dialyzed against a buffer of 50 mM Tris / HCl (pH 7.5), 1 mM EDTA, 0.2% Tween 20, 7 mM 2-mercaptoethanol and 10% glycerol. At this stage, DNA synthesis activity specific to the modified Pfu DNA synthase I was detected.
Example 5: Expression and purification of modified Pfu DNA synthetase II in Escherichia coli Using the expression vector pDP5C4 constructed in Example 3, modified Pfu DNA synthase II was extracted and partially purified in the same manner as in Example 4. .
Example 6: Primer extension reaction with modified Pfu DNA synthetases I and II Using modified Pfu DNA synthetases I and II partially purified in Examples 4 and 5, respectively, a primer extension reaction of a DNA strand complementary to the template DNA was performed. Tested.
[0019]
20 mM Tris / HCl (pH 8.0), 2 mM MgCl 2 , 50 μg / ml BSA, 0.1% Triton X-100, 1 mM cold dNTPs (0.1 mM for dCTP), [α- 32 P] dCTP 10 μCi and M13 (-21 1 μg of the above partially purified enzyme fraction was added to 20 μl of a reaction solution containing 0.63 μg of pBLUESCRIPT plasmid annealed with the primer (1) and reacted at 75 ° C. for 1 minute and 3 minutes. The extended DNA strand was separated by polyacrylamide gel electrophoresis containing 8M urea, and the pattern was analyzed by an image analyzer. As a control, the same DNA synthesis was performed using a conventional wild type Pfu DNA synthase.
[0020]
The results are as shown in FIG. When a conventional wild type Pfu DNA synthase was used, a large synthesis stop region was present at about 1000 bases, and a band indicating the presence of an incomplete DNA strand was observed. On the other hand, in the DNA synthesis using the modified Pfu DNA synthetases I and II of the present invention, the amount of synthesis is increased including a band of about 1000 bases, and the presence of higher molecular weight PCR products (ie, more elongated) is indicated. A band was also observed.
[0021]
From the above results, it was confirmed that the DNA synthase of the present invention can extend the synthetic DNA strand longer in DNA synthesis by the PCR method.
[0022]
【The invention's effect】
As described above in detail, the present invention provides a novel thermostable DNA synthase capable of efficiently synthesizing and amplifying the full length even when a high molecular DNA is amplified by PCR or the like. This makes it possible to perform synthesis and amplification of DNA strands in a test tube, determination of a base sequence, and the like simply and with high accuracy.
[0023]
[Sequence Listing]
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173
Figure 0003880173

[Brief description of the drawings]
FIG. 1 is a result of electrophoresis showing primer extension activity of conventional Pfu DNA synthase and KOD DNA synthase.
FIG. 2 is a result of electrophoresis showing primer extension activity of a conventional Pfu DNA synthase (wild type) and a modified Pfu DNA synthase of the present invention.

Claims (9)

1本鎖DNAに相補的なDNA鎖の合成を触媒するに際して合成DNAがより長く伸長するようにアミノ酸配列を人為的に改変した Pfu DNA合成酵素であって、野生型 Pfu DNA合成酵素のアミノ酸配列における第2位 Ile Val に、第717位 Leu Pro にそれぞれ置換した、配列番号2のアミノ酸配列からなる改変型 PfuDNA合成酵素。 A artificially modified Pfu DNA synthase amino acid sequence as the synthetic DNA is extended longer when catalyzes the synthesis of a complementary DNA strand to the single-stranded DNA, the amino acid sequence of a wild-type Pfu DNA synthase A modified Pfu DNA synthetase consisting of the amino acid sequence of SEQ ID NO: 2, wherein Ile in position 2 is replaced with Val and Leu in position 717 is replaced with Pro . さらに、第710位 Pro Arg に、第712位 Ser Arg に、第713位 Leu Pro にそれぞれ置換した、配列番号1のアミノ酸配列からなる請求項1の改変型 PfuDNA合成酵素。 Furthermore, the 710-position Pro to Arg, the # 712 Ser to Arg, the # 713 Leu was substituted respectively Pro, modified Pfu DNA synthetase of claim 1 comprising the amino acid sequence of SEQ ID NO: 1. 配列番号2のアミノ酸配列をコードするDNA DNA encoding the amino acid sequence of SEQ ID NO: 2. 配列番号1のアミノ酸配列をコードするDNA DNA encoding the amino acid sequence of SEQ ID NO: 1. 請求項3のDNAを含む組換え体ベクター。A recombinant vector comprising the DNA of claim 3. 請求項4のDNAを含む組換え体ベクター。A recombinant vector comprising the DNA of claim 4. 大腸菌HMS174(DE3)/pDP5C4(FERM BP-6190)が保有する組換え体プラスミドpDP5C4である請求項5の組換え体ベクター。The recombinant vector according to claim 5, which is a recombinant plasmid pDP5C4 carried by E. coli HMS174 (DE3) / pDP5C4 ( FERM BP-6190). 大腸菌HMS174(DE3)/pDP5b17(FERM BP-6189)が保有する組換え体プラスミドpDP5b17である請求項6の組換え体ベクター。The recombinant vector according to claim 6, which is a recombinant plasmid pDP5b17 possessed by E. coli HMS174 (DE3) / pDP5b17 (FERM BP-6189). 請求項3または4に記載のDNAを含む発現ベクターにより形質転換した細胞を培養し、培地中に生産された目的酵素を単離・精製することを特徴とする改変型 PfuDNA合成酵素の製造方法。A method for producing a modified Pfu DNA synthase comprising culturing cells transformed with an expression vector containing the DNA according to claim 3 or 4, and isolating and purifying the target enzyme produced in the medium. .
JP33210097A 1997-01-31 1997-12-02 DNA synthase Expired - Lifetime JP3880173B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP33210097A JP3880173B2 (en) 1997-12-02 1997-12-02 DNA synthase
PCT/JP1998/000430 WO1998033900A1 (en) 1997-01-31 1998-02-02 Method and apparatus for predicting protein function site, method for improving protein function, and function-improved protein
EP98901095A EP1013759B1 (en) 1997-01-31 1998-02-02 Method and apparatus for predicting protein function site, method for improving protein function, and function-improved protein
EP05005854A EP1564288B1 (en) 1997-01-31 1998-02-02 Function-modified thermophilic DNA polymerase
DE69841602T DE69841602D1 (en) 1997-01-31 1998-02-02 Thermophilic DNA polymerase with modified function
DE69836971T DE69836971T2 (en) 1997-01-31 1998-02-02 METHOD AND APPARATUS FOR PREDICTING FUNCTIONAL PROTEINDOMAINS, METHOD FOR IMPROVING THE PROTEIN FUNCTION, AND FUNCTIONALLY IMPROVED PROTEIN
US10/345,205 US7231301B2 (en) 1997-01-31 2003-01-16 Method and a system for predicting protein functional site, a method for improving protein function, and a function-modified protein
US11/806,448 US7820423B2 (en) 1997-01-31 2007-05-31 Method and a system for predicting protein functional site, a method for improving protein function, and a function-modified protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33210097A JP3880173B2 (en) 1997-12-02 1997-12-02 DNA synthase

Publications (2)

Publication Number Publication Date
JPH11155578A JPH11155578A (en) 1999-06-15
JP3880173B2 true JP3880173B2 (en) 2007-02-14

Family

ID=18251156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33210097A Expired - Lifetime JP3880173B2 (en) 1997-01-31 1997-12-02 DNA synthase

Country Status (1)

Country Link
JP (1) JP3880173B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177996B2 (en) * 2006-11-02 2013-04-10 セレスター・レキシコ・サイエンシズ株式会社 Protein with DNA replication activity

Also Published As

Publication number Publication date
JPH11155578A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
CA2073630C (en) Method for synthesizing single-stranded stem-loop dnas, the products and uses therefor
JPH09506783A (en) DNA polymerase cloned from Thermotoga neapolitana and variants thereof
CN110229799B (en) Argonaute protein mutant and application thereof
JP2000501616A (en) Thermostable DNA polymerase from Thermoanaerobacter thermohydrosulfuricas and its mutant enzymes with exonuclease activity removed
JPWO2010016621A1 (en) RNA polymerase variants with improved function
US5175101A (en) Recombinant restriction enzyme sau3ai
EP1154017B1 (en) Modified thermostable dna polymerase from pyrococcus kodakarensis
JP4486009B2 (en) DNA ligase mutant
Wurgler et al. Structure and regulation of the gene for dGTP triphosphohydrolase from Escherichia coli.
Gursinsky et al. A selDABC cluster for selenocysteine incorporation in Eubacterium acidaminophilum
EP0877084B1 (en) Thermostable diaphorase gene
CN109868271B (en) Method for de novo synthesis of DNA shuffling libraries using on-chip synthetic oligonucleotide libraries
JP3891330B2 (en) Modified thermostable DNA polymerase
CN113166741A (en) Multiple deterministic assembly of DNA libraries
JP3880173B2 (en) DNA synthase
WO2009113718A1 (en) Rna polymerase mutant having improved functions
JP4465741B2 (en) Ligation at the end of a double-stranded DNA fragment
JP3679536B2 (en) Thermostable DNA synthase
JP3549210B2 (en) Plasmid
WO2007117331A2 (en) Novel dna polymerase from thermoanaerobacter tengcongenesis
JPH04252180A (en) Method for obtaining glucose-6-phosphoric acid dehydrogenase dna, microorganism and dna, method for obtaining glucose-6-phosphoric acid dehydro- nase and method and reagent for enzymatic measure- ment of glucose-6-phosphoric acid content in sample solution
US20050053989A1 (en) Libraries of recombinant chimeric proteins
JP4808361B2 (en) New DNA synthase
CN114574464B (en) High-fidelity DNA polymerase mutant and application thereof
US11697805B2 (en) High-fidelity polymerase with preference for gapped DNA and use thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term