JP3879952B2 - Fuel supply device - Google Patents

Fuel supply device Download PDF

Info

Publication number
JP3879952B2
JP3879952B2 JP24082297A JP24082297A JP3879952B2 JP 3879952 B2 JP3879952 B2 JP 3879952B2 JP 24082297 A JP24082297 A JP 24082297A JP 24082297 A JP24082297 A JP 24082297A JP 3879952 B2 JP3879952 B2 JP 3879952B2
Authority
JP
Japan
Prior art keywords
fuel
chamber
pressure
passage
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24082297A
Other languages
Japanese (ja)
Other versions
JPH1182237A (en
Inventor
禎次 稲熊
宏史 井上
信男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP24082297A priority Critical patent/JP3879952B2/en
Priority to US09/146,196 priority patent/US6123059A/en
Priority to DE69832833T priority patent/DE69832833T2/en
Priority to EP98116770A priority patent/EP0900934B1/en
Priority to EP04009230A priority patent/EP1452728B1/en
Priority to DE69827564T priority patent/DE69827564T2/en
Publication of JPH1182237A publication Critical patent/JPH1182237A/en
Application granted granted Critical
Publication of JP3879952B2 publication Critical patent/JP3879952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、燃料供給装置に関し、特に所定時間当たりの燃料吐出量を増加する燃料供給装置に関する。
【0002】
【従来の技術】
従来より、電磁弁の開弁時にプランジャが下降することにより燃料加圧室に燃料を吸入し、電磁弁の閉弁時にプランジャが上昇することにより燃料を加圧する高圧燃料ポンプとして、特開平8−14140号公報に開示されているものが知られている。このような高圧燃料ポンプでは、図7に示すように、電磁弁110の開弁に伴いプランジャ101が図7の下方に下降すると、燃料吸入通路102から燃料導入室103、電磁弁110の弁部材111と弁座112との開口部を経て燃料加圧室104に低圧燃料が吸入される。
【0003】
しかし、所定時間当たりの高圧燃料ポンプ100の燃料吐出量を増加するためにプランジャ101を往復駆動するカムの山数を増加し、プランジャ101の往復移動速度を増加させると、一回の吸入行程当たりの燃料吸入時間が短縮される。高圧燃料ポンプ100は、電磁弁110の開弁時に弁部材111と弁座112との開口部から燃料加圧室104に燃料を吸入する吸入経路が一経路だけであるから、燃料吸入時間が短縮されると吸入不良を起こし必要な燃料量を吸入できない恐れがある。吸入不良を回避するためには電磁弁の弁部材のリフト量を大きくしたり、電磁弁の弁部材のシート径を大きくして開口面積を大きくすることが考えられるが、従来の電磁弁の構成を大幅に変更する必要があり、かつ電磁弁が大型化し製造コストが増加するという問題がある。さらに、電磁弁の大型化に伴い電磁弁の応答性が低下するという問題がある。
【0004】
そこで、燃料吸入時間の短縮に伴う燃料の吸入不良を回避するために、図8に示すような高圧燃料ポンプ120が考えられる。電磁弁110の開弁中にプランジャ101が下降すると、燃料吸入通路121から燃料導入室103、弁部材111と弁座112との開口部を経て燃料加圧室104に低圧燃料が吸入されることに加え、プランジャ101が図8に示す位置まで下降すると燃料吸入通路122から直接燃料加圧室104に低圧燃料が吸入される。これにより燃料の吸入経路が二経路になるので、燃料吸入時間が短縮されても一回の吸入行程当たりの燃料吸入量の減少を防止し、所定時間当たりの燃料吐出量が増加することが望まれる。
【0005】
【発明が解決しようとする課題】
しかしながら、プランジャ101が上昇するのに伴いプランジャ101の外壁が燃料吸入通路122を閉塞しないと燃料の加圧圧送行程が開始されない。さらに、加圧圧送行程においてプランジャ101の外壁により燃料吸入通路122を閉塞するので、プランジャ101が燃料吸入通路122を閉塞してからさらに上昇し、燃料吸入通路122に対するシール長が確保されるまでは十分に燃料を加圧できない。したがって、プランジャ101が下死点に達したときの燃料加圧室104の容積に対する燃料吐出量、つまり吐出効率が低下するという問題がある。
【0006】
本発明の目的は、簡単な構造で大型化することなく所定時間当たりの燃料吐出量を増加可能な燃料供給装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の請求項1記載の燃料供給装置によると、燃料吸入行程において、燃料導入室から電磁弁の開口部を経て燃料加圧室に低圧燃料を吸入する第1の吸入経路と、逆止弁の開口部を経て燃料吸入通路の低圧燃料を燃料加圧室に吸入する第2の吸入経路とを有し、前記燃料吸入通路には低圧ポンプにより燃料タンクから組み上げられた低圧燃料が吸入され、前記第1の吸入経路および前記第2の吸入経路は、互いに分岐し、独立して前記燃料加圧室に連通しているている。燃料加圧室への燃料吸入経路が二経路になるので、カムの山数の増加等によりプランジャの往復移動速度を上昇しても、装置全体の体格を大きくすることなく製造コストの増加を防止し、簡単な構成で一回の吸入行程当たりに必要な燃料吸入量を確保することができる。
【0008】
さらに、プランジャが上昇し電磁弁が閉弁して燃料加圧室の燃料が加圧されると燃料吸入通路に設けた逆止弁が閉弁するので、電磁弁の閉弁に伴い加圧圧送行程が速やかに開始する。これにより、所定時間当たりの燃料吐出量を増加することができる。
本発明の請求項2記載の燃料供給装置によると、燃料導入室が電磁弁と接して設けられ、燃料吸入通路が燃料導入室と連通している。つまり、燃料吸入通路に向けて燃料導入室内を比較的低温の吸入燃料が流れることにより電磁弁のソレノイド部が冷却されるので、温度上昇に伴う電磁弁の作動不良を防止することができる。
【0009】
本発明の請求項3記載の燃料供給装置によると、燃料吸入通路がシリンダ部のプランジャとの非摺動部に開口しているので、燃料吸入通路がプランジャの移動位置に係わらず閉塞されない。したがって、プランジャの下降に伴い燃料吸入通路から十分な燃料量を吸入することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を示す複数の実施例について図面に基づいて説明する。
(第1実施例)
本発明の第1実施例による燃料供給装置としての高圧燃料ポンプを図1に示す。高圧燃料ポンプ1は、図示しない低圧ポンプにより図示しない燃料タンクから汲み上げられた低圧燃料を吸入し、高圧燃料ポンプ1で加圧した高圧燃料を図示しない分配管に供給する。分配管には燃料噴射装置としての気筒数分のインジェクタが取り付けられている。
【0011】
高圧燃料ポンプ1のハウジング11内にシリンダ部としてのシリンダ12が固定されている。シリンダ12の小径部12aはプランジャ13と摺動し、小径部12aがプランジャ13を往復移動自在に支持している。プランジャ13はスプリング14により図1の下方に付勢されており、図1の下方に位置する図示しない例えば4山のカムにより往復駆動される。
【0012】
シリンダ12の内壁によりプランジャ13の端部に燃料加圧室15が形成されている。プランジャ13の下降により燃料加圧室15に吸入された低圧燃料は、プランジャ13の上昇により加圧される。
電磁弁20はハウジング11の上方に配設されており、電磁弁20とハウジング11との間に燃料導入室としての環状燃料室25が形成されている。ソレノイド部23への通電オフ時、弁部材21はスプリング22により図1の下方に付勢されており、電磁弁20は開弁している。このとき、環状燃料室25と燃料加圧室15とは連通している。電磁弁20の開弁時に環状燃料室25から電磁弁20の開口部を経て燃料加圧室15に低圧燃料を吸入する経路は第1の吸入経路を構成している。ソレノイド部23への通電をオンすると、スプリング22の付勢力に抗して弁部材21が上方に吸引され弁座24に着座する。すると、環状燃料室25と燃料加圧室15との連通が遮断される。
【0013】
燃料吸入通路30は燃料吸入通路31と燃料吸入通路32とに分岐している。燃料吸入通路31は環状燃料室25と連通している。燃料吸入通路32はシリンダ12の非摺動部としての大径部12bに開口して燃料加圧室15と連通しており、燃料加圧室15から燃料吸入通路32への燃料の逆流を防止する逆止弁40が燃料吸入通路32に配設されている。逆止弁40の開口部を経て燃料吸入通路32内の低圧燃料を燃料加圧室15に吸入する経路は第2の吸入経路を構成している。シリンダ12の大径部12bは小径部12aよりも大径であるため、プランジャ13と摺動しない。したがって、プランジャ13の上昇側端面が燃料吸入通路32よりも図1の上方に移動しても燃料吸入通路32はプランジャ13に閉塞されない。
【0014】
燃料吐出通路33は燃料加圧室15に連通しており、燃料吐出通路33にデリバリバルブ41が配設されている。デリバリバルブ41は燃料加圧室15の燃圧が所定圧以上に上昇すると開弁し、燃料吐出通路33から高圧燃料が分配管に供給される。
燃料排出通路34は環状燃料室25に連通しており、燃料排出通路34にプレッシャレギュレータ42が配設されている。プレッシャレギュレータ42は、燃料吸入通路31から環状燃料室25に導入される燃料の圧力が所定圧以上になると開弁して余剰燃料を図示しない燃料タンクにリターンし、環状燃料室25の燃圧を必要圧力にせしめる機能を有する。
【0015】
次に、高圧燃料ポンプ1の作動について説明する。
(1) 吸入行程
ソレノイド部23への通電オフ中、弁部材21は弁座24から離座し電磁弁20は開弁している。この状態でプランジャ13が下死点に向けて下降すると燃料加圧室15の容積が増大するので、▲1▼環状燃料室25から弁部材21と弁座24との開口部を通る経路と、▲2▼燃料吸入通路32を通る経路との二経路から低圧燃料が燃料加圧室15に吸入される。吸入行程において逆止弁40は開弁している。
【0016】
(2) 加圧圧送行程
プランジャ13が下死点に達した後、上死点に向けて上昇する行程において所望の燃料吐出量に対応した位置にプランジャ13が到達したとき、ソレノイド部23への通電をオンする。ソレノイド部23への通電オンにより発生した磁力により弁部材21がスプリング23の付勢力に抗してリフトし弁座24に着座し電磁弁20が閉弁すると、環状燃料室25と燃料加圧室15との連通が遮断される。さらにプランジャ13が上昇すると、逆止弁32が閉弁しプランジャ13の上昇に伴い燃料加圧室15内の燃料が加圧される。燃料加圧室15内の燃圧が所定圧以上になるとデリバリバルブ41が開弁し、燃料吐出通路33から高圧燃料が吐出され、分配管に圧送される。
【0017】
第1実施例では、電磁弁20の開弁時に環状燃料室25から電磁弁20の弁部材21と弁座24との開口部を通って燃料加圧室15に低圧燃料を吸入する第1の吸入経路に加え、逆止弁40の開口部を経て燃料吸入通路32内の低圧燃料を燃料加圧室15に直接吸入する第2の吸入経路を設けている。したがって、所定時間当たりの燃料吐出量を増加するためにカムの山数を増加してプランジャ13の往復移動速度を上昇しても、一回当たりの吸入行程で必要な燃料量を吸入できる。しかも、燃料加圧室15と連通する燃料吸入通路32を追加し、この燃料吸入通路32に逆止弁40を設けるという簡単な構成で燃料吐出量を増加できるので、高圧燃料ポンプの体格を大型化することなく製造コストの上昇を抑えることができる。
【0018】
(第2実施例)
本発明の第2実施例を図2に示す。第1実施例と実質的に同一構成部分には同一符号を付す。
燃料吸入通路50は環状燃料室25に連通している。燃料吸入通路51は、燃料吸入通路50の環状燃料室25との連通部とほぼ径方向反対側で環状燃料室25と連通し、環状燃料室25と燃料加圧室15とを連通している。逆止弁40は燃料吸入通路51に設けられている。逆止弁40の開口部を経て燃料吸入通路51内の低圧燃料を燃料加圧室15に吸入する経路は第2の吸入経路を構成している。
【0019】
第2実施例では、環状燃料室25を通る燃料は、電磁弁20の弁部材21と弁座24との開口部を経て燃料加圧室15に吸入される燃料と、燃料吸入通路51から燃料加圧室15に吸入される燃料と、燃料吐出通路33を経てポンプ外へ排出される燃料、つまりはポンプに供給されるすべての燃料である。この多量の燃料が電磁弁20に接触してから燃料吸入通路51に供給される。これにより、電磁弁20のソレノイド部23が燃料により冷却されるので、温度上昇に伴う電磁弁20の作動不良を防止することができる。
【0020】
(第3実施例)
本発明の第3実施例を図3に示す。第2実施例と実質的に同一構成部分には同一符号を付す。
第2実施例ではプレッシャレギュレータ42を高圧燃料ポンプ2のハウジング11に直接取り付けたが、第3実施例では高圧燃料ポンプ3に接続している燃料配管にプレッシャレギュレータ42を取付けている。これにより、高圧燃料ポンプ3周囲の専有スペースを小さくすることができる。
【0021】
(第4実施例)
本発明の第4実施例を図4、図5および図6に示す。第1実施例と実質的に同一構成部分には同一符号を付す。高圧燃料ポンプ4を駆動するカム100は4山である。
図4に示すように、燃料入口50a、逆止弁40、デリバリバルブ41およびプレッシャレギュレータ42は、図5および図6に示す仮想直線110を含む高圧燃料ポンプ4の横断面上でハウジング11に形成または取り付けられている。さらに、低圧側の燃料入口50aとプレッシャレギュレータ42、ならびに逆止弁40の高圧側とデリバリバルブ41は互いに対向している。また、燃料入口50aと逆止弁40、ならびにデリバリバルブ41とプレッシャレギュレータ42はそれぞれ平行に形成または取り付けられている。したがって、燃料配管を同一方向で取り付けることができるので、燃料配管の取付けが容易になる。さらに、燃料入口50aおよび各弁の周囲のハウジング量が減少するので、高圧燃料ポンプ4の体格を小型化できる。
【0022】
そして、燃料入口50aに接続する燃料配管のハウジング11への取付け座面、ならびに逆止弁40、デリバリバルブ41およびプレッシャレギュレータ42のハウジング11への取付け座面の仮想延長領域は、プランジャ13とシリンダ12との摺動部よりも径方向外側に位置している。したがって、燃料配管または各弁をハウジング11にねじ締めする際の軸力がプランジャ13とシリンダ12との摺動部に加わらない。これにより、シリンダ12の摺動面の変形を防ぐことができるので、シリンダ12とプランジャ13との摺動クリアランスを所定量に保持できる。したがって、シリンダ12とプランジャ13とが焼きつくことを防止できる。
【0023】
燃料吸入通路52は、環状燃料室25と逆止弁40とを接続しており、燃料吸入通路53は逆止弁40とデリバリバルブ41とを接続しており、燃料吸入通路54はデリバリバルブ41と燃料加圧室15とを接続している。燃料吸入通路52、53および54は第2の吸入経路を構成している。燃料吸入通路54は燃料吐出通路を兼ねているので、燃料通路を形成する加工工数が減少する。
【0024】
以上説明した本発明の実施の形態を示す上記複数の実施例では、燃料加圧室15に燃料を吸入する経路を二経路設けたので、所定時間当たりの吐出量を増加するためにプランジャ13の往復速度を速めても、一回の吸入行程当たりに必要な燃料量を吸入することができる。さらに、燃料加圧室15に直接連通する燃料吸入通路に逆止弁40を設けたことにより、プランジャ13が上死点に向かい上昇するときに電磁弁20を閉弁すれば燃料加圧室15の燃圧により逆止弁40が閉弁し燃料加圧室15が密封されるので、電磁弁20の閉弁後速やかに加圧圧送行程が開始される。これにより、吐出効率を低下することなく所定時間当たり多量の燃料を吐出することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例による高圧燃料ポンプを示す縦断面図である。
【図2】本発明の第2実施例による高圧燃料ポンプを示す縦断面図である。
【図3】本発明の第3実施例による高圧燃料ポンプを示す縦断面図である。
【図4】本発明の第4実施例による高圧燃料ポンプを示す横断面図である。
【図5】図4のV−V線断面図である。
【図6】図4のVI−VI線断面図である。
【図7】従来例1による高圧燃料ポンプを示す縦断面図である。
【図8】従来例2による高圧燃料ポンプを示す縦断面図である。
【符号の説明】
10 高圧燃料ポンプ(燃料供給装置)
12 シリンダ(シリンダ部)
13 プランジャ
15 燃料加圧室
20 電磁弁(第1の吸入経路)
21 弁部材
24 弁座
25 環状燃料室(燃料導入室、第1の吸入経路)
32 燃料吸入通路(第2の吸入経路)
33 燃料吐出通路
34 燃料排出通路
40 逆止弁(第2の吸入経路)
51 燃料吸入通路(第2の吸入経路)
52、53、54 燃料吸入通路(第2の吸入経路)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel supply apparatus, and more particularly to a fuel supply apparatus that increases a fuel discharge amount per predetermined time.
[0002]
[Prior art]
Conventionally, as a high-pressure fuel pump that sucks fuel into a fuel pressurizing chamber when the plunger is lowered when the solenoid valve is opened, and pressurizes the fuel when the plunger is raised when the solenoid valve is closed, Japanese Patent Laid-Open No. Hei 8- What is disclosed in Japanese Patent No. 14140 is known. In such a high-pressure fuel pump, as shown in FIG. 7, when the plunger 101 descends downward in FIG. 7 as the electromagnetic valve 110 is opened, the fuel introduction chamber 103 and the valve member of the electromagnetic valve 110 are discharged from the fuel intake passage 102. Low-pressure fuel is sucked into the fuel pressurizing chamber 104 through an opening between the valve 111 and the valve seat 112.
[0003]
However, if the number of cams for reciprocating the plunger 101 is increased to increase the fuel discharge amount of the high-pressure fuel pump 100 per predetermined time and the reciprocating speed of the plunger 101 is increased, the amount per one intake stroke is increased. The fuel intake time is shortened. Since the high-pressure fuel pump 100 has only one suction path for sucking fuel into the fuel pressurizing chamber 104 from the opening between the valve member 111 and the valve seat 112 when the solenoid valve 110 is opened, the fuel suction time is shortened. Doing so may cause inhalation failure and prevent the necessary amount of fuel from being inhaled. In order to avoid poor suction, it is conceivable to increase the lift amount of the valve member of the solenoid valve or increase the seat diameter of the valve member of the solenoid valve to increase the opening area. There is a problem that it is necessary to significantly change the valve, and the solenoid valve becomes large and the manufacturing cost increases. Furthermore, there is a problem that the responsiveness of the solenoid valve is reduced with the increase in size of the solenoid valve.
[0004]
Thus, in order to avoid fuel intake failure due to shortening of the fuel intake time, a high-pressure fuel pump 120 as shown in FIG. 8 can be considered. When the plunger 101 descends while the solenoid valve 110 is opened, low pressure fuel is sucked into the fuel pressurizing chamber 104 from the fuel suction passage 121 through the fuel introduction chamber 103, the valve member 111 and the valve seat 112. In addition, when the plunger 101 is lowered to the position shown in FIG. 8, the low pressure fuel is sucked directly into the fuel pressurizing chamber 104 from the fuel suction passage 122. As a result, the fuel intake path becomes two paths, so that it is desirable to prevent a decrease in the fuel intake amount per one intake stroke and increase the fuel discharge amount per predetermined time even if the fuel intake time is shortened. It is.
[0005]
[Problems to be solved by the invention]
However, if the outer wall of the plunger 101 does not close the fuel suction passage 122 as the plunger 101 moves up, the pressurized pressure feeding stroke of the fuel is not started. Further, since the fuel suction passage 122 is closed by the outer wall of the plunger 101 in the pressurizing and pressure feeding stroke, the plunger 101 further rises after closing the fuel suction passage 122 until the seal length for the fuel suction passage 122 is secured. Insufficient fuel pressure. Therefore, there is a problem that the fuel discharge amount with respect to the volume of the fuel pressurizing chamber 104 when the plunger 101 reaches the bottom dead center, that is, the discharge efficiency is lowered.
[0006]
An object of the present invention is to provide a fuel supply device that can increase the amount of fuel discharged per predetermined time without increasing the size with a simple structure.
[0007]
[Means for Solving the Problems]
According to the fuel supply device of the first aspect of the present invention, in the fuel intake stroke, the first intake path for sucking the low-pressure fuel from the fuel introduction chamber into the fuel pressurizing chamber through the opening of the electromagnetic valve, and the check valve through an opening low pressure fuel in the fuel suction passage have a second suction passage for sucking the fuel pressurizing chamber, the low pressure fuel that has been assembled from the fuel tank is sucked by the low-pressure pump to the fuel intake passage, The first suction path and the second suction path branch from each other and communicate with the fuel pressurizing chamber independently . Since there are two fuel intake paths to the fuel pressurization chamber, increasing the reciprocating speed of the plunger due to an increase in the number of cam ridges, etc. prevents an increase in manufacturing cost without increasing the overall size of the device In addition, it is possible to secure the fuel intake amount necessary for one intake stroke with a simple configuration.
[0008]
Further, when the plunger rises and the solenoid valve closes and the fuel in the fuel pressurizing chamber is pressurized, the check valve provided in the fuel intake passage is closed. The process starts quickly. Thereby, the fuel discharge amount per predetermined time can be increased.
According to the fuel supply device of the second aspect of the present invention, the fuel introduction chamber is provided in contact with the electromagnetic valve, and the fuel intake passage communicates with the fuel introduction chamber. That is, since the solenoid portion of the solenoid valve is cooled by the relatively low temperature intake fuel flowing in the fuel introduction chamber toward the fuel suction passage, it is possible to prevent malfunction of the solenoid valve due to temperature rise.
[0009]
According to the fuel supply device of the third aspect of the present invention, since the fuel intake passage is opened in the non-sliding portion with the plunger of the cylinder portion, the fuel intake passage is not closed regardless of the movement position of the plunger. Accordingly, a sufficient amount of fuel can be sucked from the fuel suction passage as the plunger moves down.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of examples showing embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a high-pressure fuel pump as a fuel supply device according to a first embodiment of the present invention. The high-pressure fuel pump 1 sucks low-pressure fuel pumped from a fuel tank (not shown) by a low-pressure pump (not shown), and supplies the high-pressure fuel pressurized by the high-pressure fuel pump 1 to a distribution pipe (not shown). As many fuel injectors as the number of cylinders are attached to the distribution pipe.
[0011]
A cylinder 12 as a cylinder portion is fixed in the housing 11 of the high-pressure fuel pump 1. The small-diameter portion 12a of the cylinder 12 slides with the plunger 13, and the small-diameter portion 12a supports the plunger 13 so as to be reciprocally movable. The plunger 13 is urged downward in FIG. 1 by a spring 14 and is reciprocated by, for example, four cams (not shown) located in the lower part of FIG.
[0012]
A fuel pressurizing chamber 15 is formed at the end of the plunger 13 by the inner wall of the cylinder 12. The low pressure fuel sucked into the fuel pressurizing chamber 15 by the lowering of the plunger 13 is pressurized by the raising of the plunger 13.
The solenoid valve 20 is disposed above the housing 11, and an annular fuel chamber 25 as a fuel introduction chamber is formed between the solenoid valve 20 and the housing 11. When the energization of the solenoid portion 23 is turned off, the valve member 21 is biased downward in FIG. 1 by the spring 22 and the electromagnetic valve 20 is opened. At this time, the annular fuel chamber 25 and the fuel pressurizing chamber 15 communicate with each other. A path through which low-pressure fuel is sucked into the fuel pressurizing chamber 15 from the annular fuel chamber 25 through the opening of the solenoid valve 20 when the solenoid valve 20 is opened constitutes a first suction path. When energization of the solenoid portion 23 is turned on, the valve member 21 is attracted upward and seated on the valve seat 24 against the urging force of the spring 22. Then, the communication between the annular fuel chamber 25 and the fuel pressurizing chamber 15 is blocked.
[0013]
The fuel intake passage 30 is branched into a fuel intake passage 31 and a fuel intake passage 32. The fuel intake passage 31 communicates with the annular fuel chamber 25. The fuel intake passage 32 opens to a large diameter portion 12b as a non-sliding portion of the cylinder 12 and communicates with the fuel pressurization chamber 15 to prevent backflow of fuel from the fuel pressurization chamber 15 to the fuel intake passage 32. A check valve 40 is disposed in the fuel intake passage 32. A path through which the low-pressure fuel in the fuel suction passage 32 is sucked into the fuel pressurizing chamber 15 through the opening of the check valve 40 constitutes a second suction path. Since the large diameter portion 12b of the cylinder 12 has a larger diameter than the small diameter portion 12a, it does not slide with the plunger 13. Therefore, even if the ascending side end surface of the plunger 13 moves upward in FIG. 1 from the fuel intake passage 32, the fuel intake passage 32 is not blocked by the plunger 13.
[0014]
The fuel discharge passage 33 communicates with the fuel pressurizing chamber 15, and a delivery valve 41 is disposed in the fuel discharge passage 33. The delivery valve 41 opens when the fuel pressure in the fuel pressurizing chamber 15 rises above a predetermined pressure, and high-pressure fuel is supplied from the fuel discharge passage 33 to the distribution pipe.
The fuel discharge passage 34 communicates with the annular fuel chamber 25, and a pressure regulator 42 is disposed in the fuel discharge passage 34. The pressure regulator 42 opens when the pressure of the fuel introduced into the annular fuel chamber 25 from the fuel intake passage 31 exceeds a predetermined pressure, and returns the surplus fuel to a fuel tank (not shown), so that the fuel pressure in the annular fuel chamber 25 is required. It has a function of damaging pressure.
[0015]
Next, the operation of the high pressure fuel pump 1 will be described.
(1) While energization to the suction stroke solenoid unit 23 is turned off, the valve member 21 is separated from the valve seat 24 and the solenoid valve 20 is opened. When the plunger 13 is lowered toward the bottom dead center in this state, the volume of the fuel pressurizing chamber 15 is increased. (1) A path from the annular fuel chamber 25 through the opening of the valve member 21 and the valve seat 24; (2) Low-pressure fuel is sucked into the fuel pressurizing chamber 15 through two paths including a path passing through the fuel suction passage 32. In the intake stroke, the check valve 40 is opened.
[0016]
(2) After the pressure / pressure feed stroke plunger 13 reaches the bottom dead center, when the plunger 13 reaches the position corresponding to the desired fuel discharge amount in the stroke rising toward the top dead center, Turn on the power. When the valve member 21 is lifted against the urging force of the spring 23 by the magnetic force generated by energization of the solenoid 23 and seated on the valve seat 24 and the solenoid valve 20 is closed, the annular fuel chamber 25 and the fuel pressurizing chamber are closed. Communication with 15 is cut off. When the plunger 13 is further raised, the check valve 32 is closed and the fuel in the fuel pressurizing chamber 15 is pressurized as the plunger 13 is raised. When the fuel pressure in the fuel pressurizing chamber 15 exceeds a predetermined pressure, the delivery valve 41 is opened, high-pressure fuel is discharged from the fuel discharge passage 33, and is pumped to the distribution pipe.
[0017]
In the first embodiment, when the electromagnetic valve 20 is opened, the low pressure fuel is sucked from the annular fuel chamber 25 into the fuel pressurizing chamber 15 through the opening of the valve member 21 and the valve seat 24 of the electromagnetic valve 20. In addition to the suction path, a second suction path for directly sucking low-pressure fuel in the fuel suction passage 32 through the opening of the check valve 40 into the fuel pressurizing chamber 15 is provided. Therefore, even if the number of cams is increased to increase the reciprocating speed of the plunger 13 in order to increase the fuel discharge amount per predetermined time, the necessary fuel amount can be sucked in one suction stroke. In addition, since the fuel discharge amount can be increased with a simple configuration in which the fuel suction passage 32 communicating with the fuel pressurizing chamber 15 is added and the check valve 40 is provided in the fuel suction passage 32, the size of the high-pressure fuel pump can be increased. It is possible to suppress an increase in manufacturing cost without being changed.
[0018]
(Second embodiment)
A second embodiment of the present invention is shown in FIG. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals.
The fuel intake passage 50 communicates with the annular fuel chamber 25. The fuel suction passage 51 communicates with the annular fuel chamber 25 on the substantially opposite side of the communication portion of the fuel suction passage 50 with the annular fuel chamber 25, and communicates the annular fuel chamber 25 with the fuel pressurization chamber 15. . The check valve 40 is provided in the fuel intake passage 51. A path through which the low-pressure fuel in the fuel suction passage 51 is sucked into the fuel pressurizing chamber 15 through the opening of the check valve 40 constitutes a second suction path.
[0019]
In the second embodiment, the fuel passing through the annular fuel chamber 25 passes through the openings of the valve member 21 and the valve seat 24 of the electromagnetic valve 20 and is sucked into the fuel pressurizing chamber 15 and fuel from the fuel suction passage 51. The fuel sucked into the pressurizing chamber 15 and the fuel discharged to the outside of the pump through the fuel discharge passage 33, that is, all the fuel supplied to the pump. The large amount of fuel is supplied to the fuel intake passage 51 after contacting the electromagnetic valve 20. Thereby, since the solenoid part 23 of the solenoid valve 20 is cooled by fuel, the malfunction of the solenoid valve 20 accompanying a temperature rise can be prevented.
[0020]
(Third embodiment)
A third embodiment of the present invention is shown in FIG. Components that are substantially the same as those of the second embodiment are denoted by the same reference numerals.
In the second embodiment, the pressure regulator 42 is directly attached to the housing 11 of the high-pressure fuel pump 2, but in the third embodiment, the pressure regulator 42 is attached to the fuel pipe connected to the high-pressure fuel pump 3. Thereby, the exclusive space around the high-pressure fuel pump 3 can be reduced.
[0021]
(Fourth embodiment)
A fourth embodiment of the present invention is shown in FIGS. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals. There are four cams 100 for driving the high-pressure fuel pump 4.
As shown in FIG. 4, the fuel inlet 50a, the check valve 40, the delivery valve 41, and the pressure regulator 42 are formed in the housing 11 on the cross section of the high-pressure fuel pump 4 including the virtual straight line 110 shown in FIGS. Or attached. Further, the low pressure side fuel inlet 50a and the pressure regulator 42, and the high pressure side of the check valve 40 and the delivery valve 41 are opposed to each other. The fuel inlet 50a and the check valve 40, and the delivery valve 41 and the pressure regulator 42 are formed or attached in parallel. Accordingly, since the fuel pipe can be attached in the same direction, the fuel pipe can be easily attached. Further, since the amount of housing around the fuel inlet 50a and each valve is reduced, the size of the high-pressure fuel pump 4 can be reduced.
[0022]
The virtual extension region of the mounting seat surface of the fuel pipe connected to the fuel inlet 50a to the housing 11 and the mounting seat surface of the check valve 40, the delivery valve 41 and the pressure regulator 42 to the housing 11 includes the plunger 13 and the cylinder. 12 is located radially outside the sliding portion. Therefore, the axial force when screwing the fuel pipe or each valve to the housing 11 is not applied to the sliding portion between the plunger 13 and the cylinder 12. Thereby, since the deformation | transformation of the sliding surface of the cylinder 12 can be prevented, the sliding clearance between the cylinder 12 and the plunger 13 can be maintained at a predetermined amount. Therefore, it is possible to prevent the cylinder 12 and the plunger 13 from burning.
[0023]
The fuel suction passage 52 connects the annular fuel chamber 25 and the check valve 40, the fuel suction passage 53 connects the check valve 40 and the delivery valve 41, and the fuel suction passage 54 is the delivery valve 41. Are connected to the fuel pressurizing chamber 15. The fuel suction passages 52, 53, and 54 constitute a second suction path. Since the fuel suction passage 54 also serves as a fuel discharge passage, the number of processing steps for forming the fuel passage is reduced.
[0024]
In the above-described plurality of examples showing the embodiment of the present invention described above, since the fuel pressurizing chamber 15 is provided with two paths for sucking fuel, in order to increase the discharge amount per predetermined time, the plunger 13 Even if the reciprocating speed is increased, the amount of fuel required per one intake stroke can be sucked. Further, by providing the check valve 40 in the fuel intake passage that directly communicates with the fuel pressurizing chamber 15, the fuel pressurizing chamber 15 can be provided by closing the solenoid valve 20 when the plunger 13 rises toward the top dead center. Since the check valve 40 is closed by the fuel pressure and the fuel pressurization chamber 15 is sealed, the pressurization and pressure feed stroke is started immediately after the solenoid valve 20 is closed. Thereby, a large amount of fuel can be discharged per predetermined time without lowering the discharge efficiency.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a high-pressure fuel pump according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a high-pressure fuel pump according to a second embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing a high-pressure fuel pump according to a third embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a high-pressure fuel pump according to a fourth embodiment of the present invention.
5 is a cross-sectional view taken along line VV in FIG.
6 is a cross-sectional view taken along line VI-VI in FIG.
7 is a longitudinal sectional view showing a high-pressure fuel pump according to Conventional Example 1. FIG.
8 is a longitudinal sectional view showing a high-pressure fuel pump according to Conventional Example 2. FIG.
[Explanation of symbols]
10 High-pressure fuel pump (fuel supply device)
12 cylinder (cylinder part)
13 Plunger 15 Fuel pressurizing chamber 20 Solenoid valve (first suction path)
21 Valve member 24 Valve seat 25 Annular fuel chamber (fuel introduction chamber, first suction path)
32 Fuel intake passage (second intake route)
33 Fuel discharge passage 34 Fuel discharge passage 40 Check valve (second suction passage)
51 Fuel intake passage (second intake passage)
52, 53, 54 Fuel intake passage (second intake passage)

Claims (3)

内燃機関の燃料噴射装置に高圧燃料を供給する燃料供給装置であって、
シリンダ部と、
前記シリンダ部に往復移動自在に支持され、燃料加圧室に吸入した燃料を加圧するプランジャと、
前記燃料加圧室に低圧燃料を導入可能な燃料導入室と前記燃料加圧室とを断続する電磁弁とを備え、
前記燃料加圧室と連通し通路中に逆止弁を設けた燃料吸入通路を有し、燃料吸入行程において、前記燃料導入室から前記電磁弁の開口部を経て前記燃料加圧室に低圧燃料を吸入する第1の吸入経路と、前記逆止弁の開口部を経て前記燃料吸入通路の低圧燃料を前記燃料加圧室に吸入する第2の吸入経路とを有し、
前記燃料吸入通路には低圧ポンプにより燃料タンクから汲み上げられた低圧燃料が吸入され、前記第1の吸入経路および前記第2の吸入経路は、互いに分岐し、独立して前記燃料加圧室に連通していることを特徴とする燃料供給装置。
A fuel supply device for supplying high pressure fuel to a fuel injection device of an internal combustion engine,
A cylinder part;
A plunger that is reciprocally supported by the cylinder portion and pressurizes the fuel sucked into the fuel pressurizing chamber;
A fuel introduction chamber capable of introducing low-pressure fuel into the fuel pressurization chamber and an electromagnetic valve that intermittently connects the fuel pressurization chamber;
A fuel suction passage provided with a check valve in a passage communicating with the fuel pressurization chamber, and a low pressure fuel is supplied from the fuel introduction chamber to the fuel pressurization chamber through the opening of the electromagnetic valve in the fuel suction stroke; possess a first suction passage for sucking and a second suction passage for sucking the low pressure fuel in the fuel intake passage through the opening of the check valve to the fuel pressurizing chamber, and
Low pressure fuel pumped from a fuel tank by a low pressure pump is sucked into the fuel suction passage, and the first suction path and the second suction path are branched from each other and communicated independently with the fuel pressurizing chamber. The fuel supply apparatus characterized by the above-mentioned .
前記燃料導入室は前記電磁弁に接して設けられており、前記燃料吸入通路は前記燃料導入室と連通することを特徴とする請求項1記載の燃料供給装置。  2. The fuel supply apparatus according to claim 1, wherein the fuel introduction chamber is provided in contact with the electromagnetic valve, and the fuel intake passage communicates with the fuel introduction chamber. 前記燃料吸入通路は前記シリンダ部の前記プランジャとの非摺動部に開口していることを特徴とする請求項1または2記載の燃料供給装置。  The fuel supply device according to claim 1 or 2, wherein the fuel intake passage is opened in a non-sliding portion of the cylinder portion with respect to the plunger.
JP24082297A 1997-09-05 1997-09-05 Fuel supply device Expired - Fee Related JP3879952B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24082297A JP3879952B2 (en) 1997-09-05 1997-09-05 Fuel supply device
US09/146,196 US6123059A (en) 1997-09-05 1998-09-03 Fuel supply apparatus
DE69832833T DE69832833T2 (en) 1997-09-05 1998-09-04 Fuel supply means
EP98116770A EP0900934B1 (en) 1997-09-05 1998-09-04 Fuel supply apparatus
EP04009230A EP1452728B1 (en) 1997-09-05 1998-09-04 Fuel supply apparatus
DE69827564T DE69827564T2 (en) 1997-09-05 1998-09-04 Fuel supply means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24082297A JP3879952B2 (en) 1997-09-05 1997-09-05 Fuel supply device

Publications (2)

Publication Number Publication Date
JPH1182237A JPH1182237A (en) 1999-03-26
JP3879952B2 true JP3879952B2 (en) 2007-02-14

Family

ID=17065221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24082297A Expired - Fee Related JP3879952B2 (en) 1997-09-05 1997-09-05 Fuel supply device

Country Status (1)

Country Link
JP (1) JP3879952B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047888A1 (en) * 1999-02-09 2000-08-17 Hitachi, Ltd. High-pressure fuel feed pump of internal combustion engine
JP2007332795A (en) * 2006-06-12 2007-12-27 Toyota Motor Corp Fuel pump and fuel supply system
JP5020767B2 (en) * 2007-10-05 2012-09-05 ヤンマー株式会社 Supply pump
JP2010065638A (en) * 2008-09-12 2010-03-25 Bosch Corp Accumulator fuel supply system for liquefied gas fuel, and high-pressure pump for liquefied gas fuel
JP2010196687A (en) * 2009-02-27 2010-09-09 Denso Corp High-pressure pump
JP5003720B2 (en) 2009-05-12 2012-08-15 株式会社デンソー Fuel pumping system
DE102012203703A1 (en) * 2012-03-08 2013-09-12 Man Diesel & Turbo Se Block-shaped fluid line part and common rail fuel system
USD808799S1 (en) 2015-11-17 2018-01-30 Hunter Fan Company Carton with color striping

Also Published As

Publication number Publication date
JPH1182237A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
JP2007138762A (en) High-pressure fuel supply pump
CN109154264B (en) High-pressure fuel supply pump
JP2000186649A (en) Variable discharge quantity control type high pressure fuel pump
JP2004218547A (en) High pressure fuel pump
JPH062664A (en) Diaphragm type pump
KR101787595B1 (en) High pressure fuel pump for direct injection type gasoline engine
KR20120018396A (en) High presure fuel pump for direct injection type gasoline engine
JP3879952B2 (en) Fuel supply device
EP3653867B1 (en) High-pressure fuel pump
JP2003314409A (en) Fuel injection system for internal combustion engine
EP1255037A1 (en) Fuel injection device
JP3884252B2 (en) High pressure fuel supply solenoid valve
JP3630407B2 (en) High pressure fuel supply device
JP4872962B2 (en) High pressure fuel pump
JP4861958B2 (en) High pressure fuel pump
JP7316466B2 (en) Fuel pump
JP2001173540A (en) High pressure fuel pump
EP0900934B1 (en) Fuel supply apparatus
JP4045382B2 (en) Fuel supply device
JP2001355542A (en) High-pressure fuel pump
JP3835755B2 (en) Fuel supply pump
JPH11280930A (en) Gas bleeding device
JP2000297710A (en) Returnless fuel system
JPH11280603A (en) High pressure fuel supply pump
JPH11351094A (en) Fuel supply system and method of assembling same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees