JP3879312B2 - Film forming method and device manufacturing method - Google Patents

Film forming method and device manufacturing method Download PDF

Info

Publication number
JP3879312B2
JP3879312B2 JP9434999A JP9434999A JP3879312B2 JP 3879312 B2 JP3879312 B2 JP 3879312B2 JP 9434999 A JP9434999 A JP 9434999A JP 9434999 A JP9434999 A JP 9434999A JP 3879312 B2 JP3879312 B2 JP 3879312B2
Authority
JP
Japan
Prior art keywords
film
substrate
forming
monomolecular film
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9434999A
Other languages
Japanese (ja)
Other versions
JP2000282240A (en
Inventor
達也 下田
悟 宮下
治 高井
博之 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9434999A priority Critical patent/JP3879312B2/en
Publication of JP2000282240A publication Critical patent/JP2000282240A/en
Application granted granted Critical
Publication of JP3879312B2 publication Critical patent/JP3879312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は親水化処理の可能な基板上に簡単な方法により、稠密な単分子膜を形成できる方法、ならびに形成された単分子膜をパターニングする方法に関するものである。さらに詳しく言うと、フッ化アルキルシランの単分子膜を簡単な方法で形成し、それを簡便な方法でパターニングして基板上に親水性と撥水性の領域を任意に作り出す方法、あるいは摩擦の大きな領域と小さな領域を任意に作り出す方法に関するものである。
【0002】
【従来の技術】
有機単分子膜を形成する方法として、従来からシランカップリング材、チタンカップリング材等が知られており、工業的に広く用いられている。これらの分子は基板上に単分子吸着ならびに結合するが、密度的にはそれほど高くなく基板の原子数百個に対して一つの分子が吸着している程度で,ミクロ的にみれば疎である。近年になり、より稠密な単分子膜が分子の自己集積化技術(SAM: Self Assembling Molecule)という方法で作製できるようになってきた。
【0003】
自己集積分子には長鎖アルキルカルボン酸化合物(―COOH)、チオール化合物(―SH)等が知られている。前者は、LB(Langmuir-Blodgett)法を用いて単分子膜を形成できる。すなわち水面上にあらかじめ単分子膜を形成し、基板表面に垂直引き上げまたは水平転写により転写する方法である。しかしながらLB法で形成した単分子膜は、基板との密着性が低い、塩を用いるため高純度化が難しい、生産性が低く均一性が悪い、材料の制約が多いという欠点を有していおり、工業用途にむかない。
【0004】
一方後者のチオール化合物は、その溶液中に浸漬するだけで金の表面にチオール化合物が自己集積し、水素が取れて硫黄が金と共有結合的に結びつく。この金チオール単分子膜はきわめて稠密に自己集積することが確かめられている。ほぼ、金原子一つに対して分子一つが対応する。また、いろいろな種類のチオール分子が合成されていて、それらを自己集積させると分子の末端官能基が表面に出るので、金の表面は種々の性質を持った表面に変えることができる。例えば、フッ化炭素を末端に持つチオール分子を用いると、良質な撥水性の表面を作製することができる。同じようにして完全な親水性の表面もできる(特開平9−827059等)。
しかしながら、金チオール自己集積化膜は金の表面がなくてはならない点にある。そのため、あらかじめある程度の膜厚の金膜を形成する必要がある。また、後に金膜を部分的に取り除いたりする作業が必要になったり、撥水性や親水性を利用してデバイス等を作製するとき、金が下地に残ってしまうという不都合さがある。このため、金チオール自己集積化膜の適応の範囲は限られるという欠点がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、稠密な単分子膜を簡便な方法で基板上に自己集積させる方法を提供することにある。該基板表面は金のような特殊なものではなく、ある程度一般的にみられるような性質を持つものであることが望ましい。また、撥水性や親水性を利用してデバイス等を作製するとき、下地に著しい不純物が残らないような基板表面であることが望ましいし、工業的に生産性が高いことも勿論必要となる。
【0006】
また有機単分子膜を精度良く、簡便な方法でパターニングできれば応用分野が拓けてくるが、従来パターニングの 方法は提言されて来なかった。
【0007】
【課題を解決するための手段】
前記問題点を解決するため、本発明の膜の形成方法は次のようなことを特徴とする。
【0008】
本発明に係る膜の形成方法は、基板の表面にフッ化アルキルシランの単分子膜からなる撥水性の領域である第1の膜を化学気相蒸着法で形成する工程と、前記第1の膜に光を照射し前記基板の表面の一部を露出する工程と、前記基板の表面の露出した部分に3−アミノプロピルトリエトキシシラン若しくはトリメチルクロロシランからなる第2の膜、またはフッ素原子を含有しないケイ素化合物である親水性の領域である第2の膜を形成する工程と、を有することを特徴とする。
【0009】
本発明に係る膜の形成方法は、基板の表面にフッ化アルキルシランの単分子膜からなる撥水性の領域である第1の膜を化学気相蒸着法で形成する工程と、前記第1の膜の一部を除去し、前記基板の表面に前記第1の膜が残存した第1の部分と前記第1の膜が除去された第2の部分とを形成する工程と、前記第2の部分に3−アミノプロピルトリエトキシシラン若しくはトリメチルクロロシランからなる第2の膜、またはフッ素原子を含有しないケイ素化合物である親水性の領域である第2の膜を形成する工程と、を有することを特徴とする。
【0013】
上記膜の形成方法において、前記基板の表面が自然酸化膜に覆われたアルミニウム電極であることが好ましい。
【0014】
上記膜の形成方法において、前記基板がシリコン基板または石英ガラス基板からなり、前記基板の表面が酸化シリコンを含むことが好ましい。
【0015】
上記膜の形成方法において、前記第1の膜の一部が紫外光の照射によって除去されることが好ましい。
【0017】
上記膜の形成方法において、前記第1の膜の形成に先立ち、前記基板の表面にOH基を形成する工程と、を含むことが好ましい。
【0019】
【発明の実施の形態】
酸化物表面にXe2エキシマランプ(ウシオ社製)を用いて、172nmの紫外光を大気圧下2分間照射すると、光洗浄が起こり結果的に-OH基が高密度で形成される。赤外分光、昇温脱離法(TDS)等の分析結果から水酸基の密度が-OH6個/nm2と、ケイ素化合物単分子膜を細密に充填するに十分な結合基が、発生していたことがわかった。この効果は、用いる紫外光の波長に依存するものの、同様に認められた。また、酸素プラズマ処理でも親水化の効果は認められた。
【0020】
続けてフッ化アルキルシランを蒸発させ、該基板上に化学気相蒸着させると、非常に緻密な単分子膜を形成できることが判明した。以下実施例に基づき、本発明を詳細いに説明する。基板の洗浄方法、用いるフッ化アルキルシラン材料、化学気相蒸着法の条件は、なんら限定されるものではない。
【0021】
(実施例1)
有機単分子膜の材料として、3,3,3-トリフルオロプロピルトリメトキシシラン(以後FAS-3と記載)、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリメトキシシラン(以後FAS-13と記載)、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリメトキシシラン(以後FAS-17と記載)の3種のフッ化アルキルシランを用意した。表1に用いた材料の化学式、分子量、沸点/圧力を示した。
【0022】
【表1】

Figure 0003879312
【0023】
基板として単結晶シリコンを用いた。該シリコン基板表面を、まず紫外光(波長172nm)を用いて基板洗浄し、有機不純物を除去し清浄表面にした。該基板表面は自然酸化膜(SiO2)に覆われているので、基板表面には直ちに大気中の水蒸気が吸着して表面がOH基で覆われ親水性表面になる。次に、図2のような装置を用い、親水化した該シリコン基板上にフッ化アルキルシラン分子を化学気相蒸着法により堆積した。まずテフロン製密閉容器の中に、フッ化アルキルシランを入れたビーカーとSi基板を入れ、つぎに容器全体を電気炉中に置き、温度を上げるとフッ化アルキルシランは蒸発して、基板上に化学気相蒸着した。
【0024】
密閉容器内の温度は100℃とした。図3に堆積時間と膜厚との関係を示す。膜厚はエリプソメータで測定した。原子力顕微鏡(AFM)、X線を用いた測定(XPS)により単分子膜の形成が同定された。作製した単分子膜の吸着後の構造を図1に示す。7時間堆積させた後の各単分子膜の表面エネルギーを水、ヨウ化メチレン、ヘキサデカンとの接触角から算出したところ、 FAS-3は30mN/m、FAS-13は20mN/m 、FAS-17は16mN/mであった。単分子膜を形成しないSi-OHは80mN/mであった。
【0025】
次に3種の材料の摩擦力をLEM(Lateral Force Microscopy)で調べた。この方法は、原子力顕微鏡を変形した装置で,図4に示すように縦方向のたわみと横方向のたわみを同時に計測し、試料表面に働く摩擦力を検出できる。図1に示すように、各々の材料の末端部分はフッ化炭素鎖なので、もし基板が密にフッ化アルキルシランで覆われていれば、摩擦力は大変低くなり、もし基板上にSiO2の面が出ていると摩擦力は高くなる。フッ化アルキルシランの被覆度合いにより摩擦力はそれらの中間値を取る。測定の結果、摩擦力は相対的に、
Si-OH>FAS-3>>FAS-13≧FAS-17
のようになった。この結果から、FAS-3においては被覆率が低く、十分稠密な単分子膜が形成されていないと推測される。FAS-13とFAS-17について膜厚と分子長を見てみると表2に有るような結果になった。
【0026】
【表2】
Figure 0003879312
【0027】
この結果より、FAS-17においては分子は基板と垂直に集積化されており、集積率はかなり高いレベルにあると推測される。すなわち,密な単分子膜が形成されている。一方、FAS-13については、基板に斜めに形成されているようで、被覆率は多少FAS-17に較べて劣ると思われる。XPSによってもこの結果は確認された。
【0028】
フッ化アルキルシラン単分子膜は、フッ化アルキルシラン分子同士および酸化シリコンとの間でシロキサン結合(Si-O-Si)を形成し、シリコン基板表面に共有結合で強く結合しており、機械的強度が強かった。また、酸、アルカリ、有機溶剤に浸漬しても、化学的に大変安定であった。
【0029】
(実施例2)
実施例1と同様の方法でシリコン基板表面を、まず紫外光(波長172nm)を用いて基板洗浄し、有機不純物を除去し清浄表面にした。該基板表面は自然酸化膜(SiO2)に覆われているので、基板表面には直ちに大気中の水蒸気が吸着して表面がOH基で覆われ親水性表面になる。次に、親水化した該シリコン基板上にFAS-17を化学気相蒸着法により100℃で2時間堆積し、単分子膜を形成した。
【0030】
石英ガラスにクロムの遮光薄膜を、5ミクロン幅10ミクロンピッチにパターン形成して、フォトマスクとした。シリコン基板表面にフォトマスクを密着させ、マスク越しに紫外光(波長172nm)を照射した。照射強度は10mW/cm2で照射時間は10分間行った。光照射領域では紫外光によってC-C結合が切断されるため、フッ化アルキルシラン単分子膜が分解・除去される。
【0031】
光照射領域で単分子膜が除去されたことは、AFMおよびLFMで確認された。LFMによる摩擦力の結果から、単分子膜が除去された基板表面はSi-OHであることがわかった。この結果5ミクロン間隔で表面エネルギー16mN/mの撥水性領域と、80mN/mの親水性領域を、交互に形成することができた。
【0032】
(実施例3)実施例2でFAS-17パターニングしたシリコン基板上に、FAS-3を化学気相蒸着法により100℃で2時間堆積した。 AFMおよびLFMの測定結果から、FAS-17の単分子膜はそのまま残り、除去された領域のみFAS-3の単分子膜が形成されていることが確認された。シリコン基板上に親水性と撥水性の領域、あるいは摩擦の大きな領域と小さな領域を任意に作り出すことができた。
【0033】
(実施例4)
ガラス基板を酸素プラズマに曝して洗浄し、親水化させた。ステンレス製真空閉容器の中に、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシランを入れたビーカーと親水化させたガラス基板を入れ、つぎに容器全体を電気炉中に置いた。該フッ化アルキルシランの分子量は510.36、1.5mmHgにおける沸点は86℃である。真空容器内を10Torrに減圧し、温度を100℃まで上げ10分間保持するとフッ化アルキルシランは蒸発して、基板上に化学気相蒸着した。
【0034】
表面エネルギーを水、ヨウ化メチレン、ヘキサデカンとの接触角から算出したところ25mN/mであり、単分子膜を形成しないSi-OHは75mN/mであった。実施例1に比べ、単分子膜の密度が低いことが予想されるが、機械的耐久性・耐薬品性も十分に有り、通常の撥水・撥油処理として工業的に使用できる。
【0035】
(実施例5)
ポリエチレンフィルムをまず紫外光(波長172nm)を用いて基板洗浄し、清浄表面にした。紫外光は表面付近で吸収され、表面のみ親水化が起こり、フィルム自体の物性はかわらなかった。フッ化アルキルシランとして(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)トリクロロシラン、(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)メチルジクロロシラン、(トリデカフルオロ-1,1,2,2-テトラヒドロオクチル)ジメチルクロロシランを用意した。分子量はそれぞれ481.54、461.12、440.70で1気圧における沸点はそれぞれ192-3℃、189-90℃、189-91℃である。テフロン製密閉容器の中に、各フッ化アルキルシランを入れたビーカーと親水化させたポリエチレンフィルムを入れ、つぎに容器全体を電気炉中に置いた。温度を80℃まで上げ1時間間保持するとフッ化アルキルシランは蒸発して、フィルム上に化学気相蒸着した。
【0036】
各フッ化アルキルシランを堆積させたフィルムの表面エネルギーを水、ヨウ化メチレン、ヘキサデカンとの接触角から算出したところどれも25mN/mであり、差異は認められなかった。単分子膜を形成しないポリエチレンフィルム表面(C-OHまたはC-OOH)は60mN/mであった。実施例1のSiO2上と比べ単分子膜の密度が低いことが予想されるが、機械的耐久性・耐薬品性も十分に有り、通常の撥水・撥油処理として工業的に使用できる。
【0037】
(実施例6)
ITO透明電極が成膜されたガラス基板表面に紫外光(波長172nm)を照射して洗浄し、親水化させた。トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシランをインクジェットヘッドから噴射させ、該ITO付きガラス基板上に10ピコリットルづつ、140ミクロン間隔で散布した。ガラス製密閉容器の中に該基板を1cmづつ間隔を開け、20枚重ねて水平に置いた。密閉容器内の温度を180℃まで上げ2時間保持するとフッ化アルキルシランは全て蒸発して、各基板上に化学気相蒸着した。
【0038】
AFM、LEM、XPSにより単分子膜の形成を確認し、実施例1におけるFAS-13と全く同じ単分子膜であると同定された。表面エネルギーを水、ヨウ化メチレン、ヘキサデカンとの接触角から算出したところ20mN/mであり、単分子膜を形成しないITO表面(In-OHまたはSn-OH)は70mN/mであった。
【0039】
(実施例7)
1ミクロン幅のアルミニウム電極がパターン成膜された石英ガラス基板表面に紫外光(波長172nm)を照射して、有機不純物を除去し清浄表面にした。該アルミニウム電極表面は自然酸化膜(Al2O3)に覆われているので、基板表面には直ちに大気中の水蒸気が吸着して表面がOH基で覆われ親水性表面になる。トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリアミノシランをテトラリンに5重量部溶解させてインクジェットヘッドから噴射させ、該アルミニウム電極付き石英ガラス基板上に10ピコリットルづつ、70ミクロン間隔で散布した。ガラス製密閉容器の中に該基板を1cmづつ間隔を開け、20枚重ねて水平に置いた。密閉容器内の温度を180℃まで上げ2時間保持するとフッ化アルキルシランは全て蒸発して、各基板上に化学気相蒸着した。
【0040】
AFM、LEM、XPSによりアルミニウム電極上も石英ガラス上も単分子膜の形成を確認し、実施例1におけるFAS-13と全く同じ単分子膜であると同定された。表面エネルギーを水、ヨウ化メチレン、ヘキサデカンとの接触角から算出したところアルミニウム電極上も石英ガラス上も20mN/mであった。
【0041】
該アルミニウム電極がパターン成膜された石英ガラス基板の裏面から紫外光(波長172nm)を照射した。照射強度は10mW/cm2で照射時間は10分間行った。アルミニウム電極上のフッ化アルキルシラン単分子膜はそのまま維持され、石英カラス表面のフッ化アルキルシラン単分子膜のみが分解・除去された。
【0042】
3-アミノプロピルトリエトキシシランのエタノール溶液に、該パターニング基板を30分浸漬し、80℃で1時間加熱した。その結果石英ガラス表面だけにアミノアルキルシランが形成され、安定的な親水表面となった。アルミニウム電極上の1ミクロン幅の領域のみ、撥水性が維持された。
【0043】
(実施例8)
シリコン基板表面を、まず紫外光(波長172nm)を用いて洗浄し、親水化させた後、ステンレス製真空閉容器の中に、パーフルオロオクチルトリメトキシシランを入れたビーカーと親水化させたガラス基板を入れ、つぎに容器全体を電気炉中に置いた。真空容器内を100Torrに減圧し、温度を100℃まで上げ5分間保持するとフッ化アルキルシランは蒸発して、基板上に化学気相蒸着した。
【0044】
得られたフッ化アルキルシランの単分子膜に対し、任意の位置に電子ビームを照射して、0.1ミクロンの幅で単分子膜の除去を行った。単分子膜は0.6nmの膜厚であり、大変エッジ形状や 寸法精度良くパターニングできた。
【0045】
パターニングした該シリコン基板上に、 トリメチルクロロシランを化学気相蒸着法により、大気圧下80℃で1時間堆積した。 トリメチルシリル基は除去された部分にのみ形成され、シリコン基板上に親油性と撥油性の領域、あるいは摩擦の大きな領域と小さな領域を任意に作り出すことができた。
【0046】
(実施例9)
シリコン基板表面を、まず紫外光(波長172nm)を用いて基板洗浄し、有機不純物を除去し清浄表面にした。該基板表面は自然酸化膜(SiO2)に覆われているので、基板表面には直ちに大気中の水蒸気が吸着して表面がOH基で覆われ親水性表面になる。次に、親水化した該シリコン基板上にFAS-17を化学気相蒸着法により100℃で2時間堆積し、単分子膜を形成した。
【0047】
石英ガラスにクロムの遮光薄膜を、0.3ミクロン幅1ミクロンピッチにパターン形成して、フォトマスクとした。シリコン基板表面にフォトマスクを密着させ、マスク越しに紫外光(波長172nm)を照射した。照射強度は10mW/cm2で照射時間は10分間行った。光照射領域では紫外光によってC-C結合が切断されるため、フッ化アルキルシラン単分子膜が分解・除去される。
【0048】
光照射領域で単分子膜が除去されたことは、AFMおよびLFMで確認された。LFMによる摩擦力の結果から、単分子膜が除去された基板表面はSi-OHであることがわかった。この結果サブミクロンの精度で表面エネルギー16mN/mの撥水性領域と、80mN/mの親水性領域を、交互に形成することができた。
【0049】
(実施例10)
実施例9でFAS-17パターニングしたシリコン基板上を、0.5%のフッ酸エッチング液に浸漬した。シリコン表面の自然酸化膜(SiO2)は厚みが2nmであり、エッチング速度は5nm/minであるので、浸漬時間は30秒間とした。 FAS-17単分子膜がエッチング液のダメージを受け、下地が露出するまでには10分以上を要するため、リソグラフィ用レジスト膜として十分に機能した。
【0050】
エッチングの結果、0.3ミクロン幅1ミクロンピッチのパターンで、シリコン表面の自然酸化膜(SiO2)を除去できた。
【0051】
【発明の効果】
以上述べたように本発明により、稠密な単分子膜を簡便な方法で基板上に自己集積させる方法を提供できた。該基板表面は金のような特殊なものではなく、ある程度一般的にみられるような性質を持つものに対し、有機単分子膜を形成できた。生産性が高く、特にインクジェット法を用いるとフッ化アルキルシランの使用量が最小限で済み、大変効率がよかった。
また本発明により有機単分子膜を精度良く、簡便な方法でパターニングする方法を提供できた。それにより基板上に親水性と撥水性の領域、あるいは摩擦の大きな領域と小さな領域を任意に作り出すことができた。またパターニングしたフッ化アルキルシランをリソグラフィ用レジスト膜として応用することができた。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるフッ化アルキルシラン単分子表面を模式的に示す断面図である。
【図2】 本発明の実施例1における化学気相蒸着装置の概容を示す断面図である。
【図3】 本発明の実施例1におけるフッ化アルキルシランの堆積時間と膜厚との関係を示す図である。
【図4】 本発明の実施例1における LEMの測定原理を示す図である。
【符号の説明】
1…テフロン製密閉容器
2…ビーカー
3…フッ化アルキルシラン
4…シリコン基板
5…ヒーター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method capable of forming a dense monomolecular film on a substrate capable of being hydrophilized by a simple method, and a method for patterning the formed monomolecular film. More specifically, a monomolecular film of fluorinated alkylsilane is formed by a simple method and patterned by a simple method to arbitrarily create hydrophilic and water-repellent regions on the substrate, or a large amount of friction. It relates to a method for arbitrarily creating a region and a small region.
[0002]
[Prior art]
As a method for forming an organic monomolecular film, a silane coupling material, a titanium coupling material, and the like are conventionally known and widely used industrially. These molecules adsorb and bind to a single molecule on the substrate, but the density is not so high, and only one molecule is adsorbed to hundreds of atoms on the substrate. . In recent years, denser monolayers can be produced by a method called molecular self-assembly technology (SAM).
[0003]
Long-chain alkyl carboxylic acid compounds (—COOH), thiol compounds (—SH) and the like are known as self-assembling molecules. The former can form a monomolecular film using the LB (Langmuir-Blodgett) method. That is, this is a method in which a monomolecular film is formed in advance on the water surface and transferred onto the substrate surface by vertical pulling or horizontal transfer. However, monomolecular films formed by the LB method have the disadvantages of low adhesion to the substrate, difficulty in achieving high purity due to the use of salts, low productivity and poor uniformity, and many material limitations. Not suitable for industrial use.
[0004]
On the other hand, in the latter thiol compound, the thiol compound is self-assembled on the gold surface simply by dipping in the solution, hydrogen is removed, and sulfur is covalently bonded to gold. It has been confirmed that this gold thiol monolayer self-assembles very densely. Almost one molecule corresponds to one gold atom. In addition, since various kinds of thiol molecules are synthesized and when they are self-assembled, the terminal functional groups of the molecules appear on the surface, so that the gold surface can be changed to a surface having various properties. For example, when a thiol molecule having a fluorocarbon terminal is used, a good water-repellent surface can be produced. A completely hydrophilic surface can be formed in the same manner (Japanese Patent Laid-Open No. 9-827059, etc.).
However, the gold thiol self-assembled film must have a gold surface. Therefore, it is necessary to form a gold film having a certain thickness in advance. In addition, there is a disadvantage in that gold is left on the base when it is necessary to remove the gold film later or when a device or the like is manufactured using water repellency or hydrophilicity. For this reason, there is a drawback that the range of application of the gold thiol self-assembled film is limited.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for self-assembling a dense monomolecular film on a substrate by a simple method. It is desirable that the surface of the substrate is not a special one such as gold and has a property that is generally observed to some extent. Further, when a device or the like is manufactured using water repellency or hydrophilicity, it is desirable that the substrate surface has no significant impurities on the base, and it is of course necessary to have high industrial productivity.
[0006]
In addition, if an organic monomolecular film can be patterned with high accuracy and a simple method, an application field will be developed. However, no patterning method has been proposed in the past.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the film forming method of the present invention is characterized as follows.
[0008]
The method for forming a film according to the present invention includes a step of forming a first film, which is a water-repellent region made of a monomolecular film of fluorinated alkylsilane, on a surface of a substrate by chemical vapor deposition, Irradiating the film with light to expose a part of the surface of the substrate, and the exposed part of the surface of the substrate contains a second film made of 3-aminopropyltriethoxysilane or trimethylchlorosilane, or a fluorine atom Forming a second film which is a hydrophilic region which is a silicon compound which is not used.
[0009]
The method for forming a film according to the present invention includes a step of forming a first film, which is a water-repellent region made of a monomolecular film of fluorinated alkylsilane, on a surface of a substrate by chemical vapor deposition, Removing a part of the film to form a first part where the first film remains on the surface of the substrate and a second part where the first film is removed; Forming a second film made of 3-aminopropyltriethoxysilane or trimethylchlorosilane or a second film which is a hydrophilic region which is a silicon compound containing no fluorine atom. And
[0013]
In the film formation method, it is preferable that the surface of the substrate is an aluminum electrode covered with a natural oxide film.
[0014]
In the method for forming a film, the substrate is preferably made of a silicon substrate or a quartz glass substrate, and the surface of the substrate preferably contains silicon oxide.
[0015]
In the film formation method, it is preferable that a part of the first film is removed by irradiation with ultraviolet light.
[0017]
Preferably, the film formation method includes a step of forming OH groups on the surface of the substrate prior to the formation of the first film.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
When an Xe 2 excimer lamp (manufactured by Ushio Inc.) is used to irradiate the oxide surface with ultraviolet light of 172 nm under atmospheric pressure for 2 minutes, photowashing occurs and as a result, —OH groups are formed in high density. Analysis results such as infrared spectroscopy and temperature programmed desorption (TDS) showed that the density of hydroxyl groups was -OH 6 / nm 2 and sufficient bonding groups were generated to fill the silicon compound monolayer finely. I understood it. This effect was similarly recognized although it depends on the wavelength of the ultraviolet light used. Moreover, the effect of hydrophilization was recognized even in the oxygen plasma treatment.
[0020]
It has been found that if the fluorinated alkylsilane is subsequently evaporated and chemical vapor deposition is performed on the substrate, a very dense monomolecular film can be formed. Hereinafter, the present invention will be described in detail based on examples. The conditions for the substrate cleaning method, the fluorinated alkylsilane material to be used, and the chemical vapor deposition method are not limited at all.
[0021]
Example 1
As materials for organic monolayers, 3,3,3-trifluoropropyltrimethoxysilane (hereinafter referred to as FAS-3), tridecafluoro-1,1,2,2-tetrahydrooctyltrimethoxysilane (hereinafter referred to as FAS-) 13) and three types of fluorinated alkylsilanes, heptadecafluoro-1,1,2,2-tetrahydrodecyltrimethoxysilane (hereinafter referred to as FAS-17), were prepared. Table 1 shows the chemical formula, molecular weight, and boiling point / pressure of the materials used.
[0022]
[Table 1]
Figure 0003879312
[0023]
Single crystal silicon was used as the substrate. The surface of the silicon substrate was first cleaned using ultraviolet light (wavelength 172 nm) to remove organic impurities to obtain a clean surface. Since the substrate surface is covered with a natural oxide film (SiO 2 ), water vapor in the atmosphere is immediately adsorbed on the substrate surface and the surface is covered with OH groups to become a hydrophilic surface. Next, using an apparatus as shown in FIG. 2, fluorinated alkylsilane molecules were deposited on the hydrophilized silicon substrate by chemical vapor deposition. First, place a beaker containing fluorinated alkylsilane and a Si substrate in a Teflon sealed container, and then place the entire container in an electric furnace. When the temperature is raised, the fluorinated alkylsilane evaporates and is deposited on the substrate. Chemical vapor deposition.
[0024]
The temperature in the sealed container was 100 ° C. FIG. 3 shows the relationship between the deposition time and the film thickness. The film thickness was measured with an ellipsometer. Formation of monolayer was identified by atomic force microscope (AFM) and measurement using X-ray (XPS). The structure after adsorption of the produced monomolecular film is shown in FIG. The surface energy of each monomolecular film after deposition for 7 hours was calculated from the contact angle with water, methylene iodide, and hexadecane. FAS-3 was 30 mN / m, FAS-13 was 20 mN / m, FAS-17 Was 16 mN / m. The Si—OH that does not form a monomolecular film was 80 mN / m.
[0025]
Next, the frictional force of the three materials was examined by LEM (Lateral Force Microscopy). This method is a device in which an atomic force microscope is deformed, and as shown in FIG. 4, it can simultaneously measure the vertical deflection and the horizontal deflection to detect the frictional force acting on the sample surface. As shown in FIG. 1, since the end portion of each material is a fluorocarbon chain, if the substrate is densely covered with fluorinated alkylsilane, the frictional force will be very low, and the surface of SiO2 will be on the substrate. The frictional force becomes high when is coming out. The frictional force takes an intermediate value depending on the coating degree of the fluorinated alkylsilane. As a result of the measurement, the frictional force is relatively
Si-OH > FAS-3 >> FAS-13 ≧ FAS-17
It became like this. From this result, it is surmised that FAS-3 has a low coverage and does not form a sufficiently dense monomolecular film. Looking at the film thickness and molecular length of FAS-13 and FAS-17, the results shown in Table 2 were obtained.
[0026]
[Table 2]
Figure 0003879312
[0027]
From this result, in FAS-17, the molecules are integrated perpendicularly to the substrate, and it is estimated that the integration rate is at a considerably high level. That is, a dense monomolecular film is formed. On the other hand, it seems that FAS-13 is formed obliquely on the substrate, and the coverage is somewhat inferior to FAS-17. This result was confirmed by XPS.
[0028]
Fluoroalkylsilane monolayers form siloxane bonds (Si-O-Si) between fluorinated alkylsilane molecules and silicon oxide, and are strongly bonded covalently to the silicon substrate surface. The strength was strong. Further, even when immersed in an acid, alkali, or organic solvent, it was chemically very stable.
[0029]
(Example 2)
In the same manner as in Example 1, the surface of the silicon substrate was first cleaned with ultraviolet light (wavelength 172 nm) to remove organic impurities to obtain a clean surface. Since the substrate surface is covered with a natural oxide film (SiO 2 ), water vapor in the atmosphere is immediately adsorbed on the substrate surface and the surface is covered with OH groups to become a hydrophilic surface. Next, FAS-17 was deposited on the hydrophilized silicon substrate by chemical vapor deposition at 100 ° C. for 2 hours to form a monomolecular film.
[0030]
A photomask was prepared by patterning a light-shielding thin film of chromium on quartz glass with a width of 5 microns and a pitch of 10 microns. A photomask was brought into close contact with the silicon substrate surface, and ultraviolet light (wavelength 172 nm) was irradiated through the mask. The irradiation intensity was 10 mW / cm 2 and the irradiation time was 10 minutes. Since the CC bond is cut by ultraviolet light in the light irradiation region, the fluorinated alkylsilane monomolecular film is decomposed and removed.
[0031]
It was confirmed by AFM and LFM that the monomolecular film was removed in the light irradiation region. From the result of the friction force by LFM, it was found that the substrate surface from which the monomolecular film was removed was Si-OH. As a result, water-repellent regions having a surface energy of 16 mN / m and hydrophilic regions having an 80 mN / m could be alternately formed at intervals of 5 microns.
[0032]
(Example 3) On the silicon substrate patterned with FAS-17 in Example 2, FAS-3 was deposited at 100 ° C for 2 hours by chemical vapor deposition. From the measurement results of AFM and LFM, it was confirmed that the monomolecular film of FAS-17 remained as it was, and the monomolecular film of FAS-3 was formed only in the removed region. It was possible to arbitrarily create hydrophilic and water-repellent areas or areas with large and small friction on the silicon substrate.
[0033]
Example 4
The glass substrate was exposed to oxygen plasma and washed to make it hydrophilic. Place a beaker containing tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane and a hydrophilic glass substrate in a stainless steel vacuum container, and then place the entire container in an electric furnace. It was. The fluorinated alkylsilane has a molecular weight of 510.36 and a boiling point of 86 ° C. at 1.5 mmHg. When the pressure inside the vacuum vessel was reduced to 10 Torr and the temperature was raised to 100 ° C. and held for 10 minutes, the fluorinated alkylsilane evaporated and chemical vapor deposition was performed on the substrate.
[0034]
The surface energy calculated from the contact angle with water, methylene iodide, and hexadecane was 25 mN / m, and Si—OH not forming a monomolecular film was 75 mN / m. Although the density of the monomolecular film is expected to be lower than that of Example 1, it has sufficient mechanical durability and chemical resistance and can be industrially used as a normal water / oil repellent treatment.
[0035]
(Example 5)
The polyethylene film was first cleaned with ultraviolet light (wavelength 172 nm) to give a clean surface. Ultraviolet light was absorbed near the surface, and only the surface was hydrophilized, and the physical properties of the film itself were not affected. (Tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane, (Tridecafluoro-1,1,2,2-tetrahydrooctyl) methyldichlorosilane, (Tridecafluoro-1) 1,2,2-tetrahydrooctyl) dimethylchlorosilane was prepared. The molecular weights are 481.54, 461.12, and 440.70, respectively, and the boiling points at 1 atmosphere are 192-3 ° C, 189-90 ° C, and 189-91 ° C, respectively. A beaker containing each fluorinated alkylsilane and a hydrophilic polyethylene film were placed in a Teflon sealed container, and then the entire container was placed in an electric furnace. When the temperature was raised to 80 ° C. and held for 1 hour, the fluorinated alkylsilane evaporated and chemical vapor deposition was performed on the film.
[0036]
When the surface energy of the film on which each fluorinated alkylsilane was deposited was calculated from the contact angle with water, methylene iodide, and hexadecane, all were 25 mN / m, and no difference was observed. The polyethylene film surface (C-OH or C-OOH) that did not form a monomolecular film was 60 mN / m. Although it is expected that the density of the monomolecular film is lower than that of the SiO2 film of Example 1, it has sufficient mechanical durability and chemical resistance and can be used industrially as a normal water / oil repellent treatment.
[0037]
(Example 6)
The glass substrate surface on which the ITO transparent electrode was formed was irradiated with ultraviolet light (wavelength 172 nm) and washed to make it hydrophilic. Tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane was jetted from an inkjet head and sprayed on the glass substrate with ITO at 10 microliter intervals at 140 micron intervals. The substrates were placed in a glass sealed container at intervals of 1 cm, and 20 substrates were stacked and placed horizontally. When the temperature in the sealed container was raised to 180 ° C. and held for 2 hours, all the fluoroalkylsilane was evaporated and chemical vapor deposition was performed on each substrate.
[0038]
The formation of a monomolecular film was confirmed by AFM, LEM, and XPS, and it was identified as the same monomolecular film as FAS-13 in Example 1. The surface energy calculated from the contact angle with water, methylene iodide, and hexadecane was 20 mN / m, and the ITO surface (In—OH or Sn—OH) that did not form a monomolecular film was 70 mN / m.
[0039]
(Example 7)
The quartz glass substrate surface on which a 1-micron-width aluminum electrode was patterned was irradiated with ultraviolet light (wavelength 172 nm) to remove organic impurities to obtain a clean surface. Since the surface of the aluminum electrode is covered with a natural oxide film (Al 2 O 3 ), water vapor in the atmosphere is immediately adsorbed on the substrate surface and the surface is covered with OH groups to become a hydrophilic surface. 5 parts by weight of tridecafluoro-1,1,2,2-tetrahydrooctyltriaminosilane is dissolved in tetralin and ejected from an ink jet head, and dispersed at 70 micron intervals on the quartz glass substrate with the aluminum electrode in 10 picoliter increments. did. The substrates were placed in a glass sealed container at intervals of 1 cm, and 20 substrates were stacked and placed horizontally. When the temperature in the sealed container was raised to 180 ° C. and held for 2 hours, all the fluoroalkylsilane was evaporated and chemical vapor deposition was performed on each substrate.
[0040]
AFM, LEM, and XPS confirmed the formation of a monomolecular film on both the aluminum electrode and quartz glass, and it was identified as the same monomolecular film as FAS-13 in Example 1. When the surface energy was calculated from the contact angle with water, methylene iodide, and hexadecane, it was 20 mN / m on both the aluminum electrode and quartz glass.
[0041]
Ultraviolet light (wavelength 172 nm) was irradiated from the back surface of the quartz glass substrate on which the aluminum electrode was patterned. The irradiation intensity was 10 mW / cm 2 and the irradiation time was 10 minutes. The fluorinated alkylsilane monomolecular film on the aluminum electrode was maintained as it was, and only the fluorinated alkylsilane monomolecular film on the quartz crow surface was decomposed and removed.
[0042]
The patterning substrate was immersed in an ethanol solution of 3-aminopropyltriethoxysilane for 30 minutes and heated at 80 ° C. for 1 hour. As a result, aminoalkylsilane was formed only on the quartz glass surface, and a stable hydrophilic surface was obtained. Water repellency was maintained only in the 1 micron wide area on the aluminum electrode.
[0043]
(Example 8)
The surface of the silicon substrate is first cleaned with ultraviolet light (wavelength 172 nm) and rendered hydrophilic, and then a beaker containing perfluorooctyltrimethoxysilane and a hydrophilic glass substrate in a stainless steel vacuum closed container And then the entire container was placed in an electric furnace. When the pressure inside the vacuum vessel was reduced to 100 Torr and the temperature was raised to 100 ° C. and held for 5 minutes, the fluorinated alkylsilane evaporated and chemical vapor deposition was performed on the substrate.
[0044]
The obtained monomolecular film of fluorinated alkylsilane was irradiated with an electron beam at an arbitrary position to remove the monomolecular film with a width of 0.1 micron. The monomolecular film has a thickness of 0.6 nm and can be patterned with very good edge shape and dimensional accuracy.
[0045]
Trimethylchlorosilane was deposited on the patterned silicon substrate by chemical vapor deposition at 80 ° C. for 1 hour under atmospheric pressure. The trimethylsilyl group was formed only in the removed part, and it was possible to arbitrarily create lipophilic and oil repellent areas, or areas with large friction and small areas on the silicon substrate.
[0046]
Example 9
The surface of the silicon substrate was first cleaned using ultraviolet light (wavelength 172 nm) to remove organic impurities to obtain a clean surface. Since the substrate surface is covered with a natural oxide film (SiO 2 ), water vapor in the atmosphere is immediately adsorbed on the substrate surface and the surface is covered with OH groups to become a hydrophilic surface. Next, FAS-17 was deposited on the hydrophilized silicon substrate by chemical vapor deposition at 100 ° C. for 2 hours to form a monomolecular film.
[0047]
A photomask was prepared by patterning a light-shielding thin film of chromium on quartz glass at a 0.3 micron width and a 1 micron pitch. A photomask was brought into close contact with the silicon substrate surface, and ultraviolet light (wavelength 172 nm) was irradiated through the mask. The irradiation intensity was 10 mW / cm 2 and the irradiation time was 10 minutes. Since the CC bond is cut by ultraviolet light in the light irradiation region, the fluorinated alkylsilane monomolecular film is decomposed and removed.
[0048]
It was confirmed by AFM and LFM that the monomolecular film was removed in the light irradiation region. From the result of the friction force by LFM, it was found that the substrate surface from which the monomolecular film was removed was Si-OH. As a result, water-repellent regions with surface energy of 16 mN / m and hydrophilic regions with 80 mN / m could be formed alternately with submicron accuracy.
[0049]
(Example 10)
The FAS-17 patterned silicon substrate in Example 9 was immersed in a 0.5% hydrofluoric acid etching solution. Since the natural oxide film (SiO 2 ) on the silicon surface has a thickness of 2 nm and an etching rate of 5 nm / min, the immersion time was set to 30 seconds. Since the FAS-17 monomolecular film was damaged by the etching solution and it took 10 minutes or more for the base to be exposed, it functioned satisfactorily as a resist film for lithography.
[0050]
As a result of etching, the natural oxide film (SiO 2 ) on the silicon surface was removed with a pattern of 0.3 micron width and 1 micron pitch.
[0051]
【The invention's effect】
As described above, according to the present invention, a method for self-assembling a dense monomolecular film on a substrate by a simple method can be provided. The surface of the substrate was not a special one such as gold, and an organic monomolecular film could be formed on the one having properties that are generally observed to some extent. Productivity is high, and particularly when the ink jet method is used, the amount of fluorinated alkylsilane used is minimal, and it is very efficient.
Further, the present invention can provide a method for patterning an organic monomolecular film with high accuracy and a simple method. As a result, hydrophilic and water repellent areas, or areas with large and small friction could be created arbitrarily on the substrate. Moreover, the patterned fluorinated alkylsilane could be applied as a resist film for lithography.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a fluorinated alkylsilane monomolecular surface in Example 1 of the present invention.
FIG. 2 is a cross-sectional view showing an outline of a chemical vapor deposition apparatus in Example 1 of the present invention.
FIG. 3 is a graph showing the relationship between the deposition time and film thickness of fluorinated alkylsilane in Example 1 of the present invention.
FIG. 4 is a diagram showing the measurement principle of LEM in Example 1 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Teflon sealed container 2 ... Beaker 3 ... Fluoroalkylsilane 4 ... Silicon substrate 5 ... Heater

Claims (7)

基板の表面にフッ化アルキルシランの単分子膜からなる撥水性の領域である第1の膜を化学気相蒸着法で形成する工程と、
前記第1の膜に光を照射し前記基板の表面の一部を露出する工程と、
前記基板の表面の露出した部分に3−アミノプロピルトリエトキシシラン若しくはトリメチルクロロシランからなる第2の膜、またはフッ素原子を含有しないケイ素化合物である親水性の領域である第2の膜を形成する工程と、を有することを特徴とする膜の形成方法。
Forming a first film, which is a water-repellent region made of a monomolecular film of fluorinated alkylsilane, on the surface of the substrate by chemical vapor deposition;
Irradiating the first film with light to expose part of the surface of the substrate;
Forming a second film made of 3-aminopropyltriethoxysilane or trimethylchlorosilane on the exposed surface of the substrate or a second film that is a hydrophilic region made of a silicon compound not containing fluorine atoms A method for forming a film, comprising:
基板の表面にフッ化アルキルシランの単分子膜からなる撥水性の領域である第1の膜を化学気相蒸着法で形成する工程と、
前記第1の膜の一部を除去し、前記基板の表面に前記第1の膜が残存した第1の部分と前記第1の膜が除去された第2の部分とを形成する工程と、
前記第2の部分に3−アミノプロピルトリエトキシシラン若しくはトリメチルクロロシランからなる第2の膜、またはフッ素原子を含有しないケイ素化合物である親水性の領域である第2の膜を形成する工程と、を有することを特徴とする膜の形成方法。
Forming a first film, which is a water-repellent region made of a monomolecular film of fluorinated alkylsilane, on the surface of the substrate by chemical vapor deposition;
Removing a part of the first film to form a first part where the first film remains on the surface of the substrate and a second part where the first film is removed;
Forming a second film made of 3-aminopropyltriethoxysilane or trimethylchlorosilane in the second portion, or a second film that is a hydrophilic region that is a silicon compound containing no fluorine atom. A method for forming a film, comprising:
請求項1または2において、
前記基板の表面が自然酸化膜に覆われたアルミニウム電極である、膜の形成方法。
In claim 1 or 2,
A method of forming a film, wherein the surface of the substrate is an aluminum electrode covered with a natural oxide film.
請求項1ないし3のいずれかにおいて、
前記基板がシリコン基板または石英ガラス基板からなり、表面が酸化シリコンを含む、膜の形成方法。
In any of claims 1 to 3,
A method for forming a film, wherein the substrate is made of a silicon substrate or a quartz glass substrate, and the surface thereof includes silicon oxide.
請求項1ないし4のいずれかにおいて、
前記第1の膜の一部が紫外光の照射によって除去される、膜の形成方法。
In any of claims 1 to 4,
A method for forming a film, wherein a part of the first film is removed by irradiation with ultraviolet light.
請求項1ないし5のいずれかにおいて、
前記第1の膜の形成に先立ち、前記基板の表面にOH基を形成する工程と、を含む、膜の形成方法。
In any of claims 1 to 5,
Forming a OH group on the surface of the substrate prior to forming the first film.
請求項1乃至6のいずれかに記載の膜の形成方法を用いることを特徴とするデバイスの製造方法。A device manufacturing method using the film forming method according to claim 1.
JP9434999A 1999-03-31 1999-03-31 Film forming method and device manufacturing method Expired - Fee Related JP3879312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9434999A JP3879312B2 (en) 1999-03-31 1999-03-31 Film forming method and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9434999A JP3879312B2 (en) 1999-03-31 1999-03-31 Film forming method and device manufacturing method

Publications (2)

Publication Number Publication Date
JP2000282240A JP2000282240A (en) 2000-10-10
JP3879312B2 true JP3879312B2 (en) 2007-02-14

Family

ID=14107819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9434999A Expired - Fee Related JP3879312B2 (en) 1999-03-31 1999-03-31 Film forming method and device manufacturing method

Country Status (1)

Country Link
JP (1) JP3879312B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4000853B2 (en) * 2000-12-28 2007-10-31 セイコーエプソン株式会社 Method for forming molecular film pattern, molecular film pattern, and method for manufacturing semiconductor device
JP4660700B2 (en) * 2001-09-03 2011-03-30 独立行政法人産業技術総合研究所 Pattern formation method of organic molecular self-assembled film
US7148148B2 (en) * 2001-12-06 2006-12-12 Seiko Epson Corporation Mask forming and removing method, and semiconductor device, an electric circuit, a display module, a color filter and an emissive device manufactured by the same method
JP2005062356A (en) 2003-08-08 2005-03-10 Seiko Epson Corp Method for forming pattern, method for forming wiring pattern, electro-optic apparatus and electronic appliance
JP4433722B2 (en) 2003-08-12 2010-03-17 セイコーエプソン株式会社 Pattern forming method and wiring pattern forming method
JP4997765B2 (en) 2003-12-04 2012-08-08 旭硝子株式会社 Fluorine-containing compound, water-repellent composition and thin film
DE602005019835D1 (en) * 2004-01-15 2010-04-22 Panasonic Corp STRUCTURE AND PROCESS FOR THEIR MANUFACTURE
WO2005081065A1 (en) * 2004-02-20 2005-09-01 Nippon Soda Co., Ltd. Light-sensitive substrate and method for patterning
JP4654627B2 (en) 2004-07-26 2011-03-23 セイコーエプソン株式会社 Chemical adsorption film forming method and chemical adsorption film
WO2006046699A1 (en) * 2004-10-28 2006-05-04 Asahi Glass Company, Limited Process for production of substrates having water-repellent hydrophilic films on the surface
JP2007100191A (en) * 2005-10-06 2007-04-19 Horiba Ltd Apparatus and method for forming monolayer
TW200804978A (en) 2006-03-06 2008-01-16 Asahi Glass Co Ltd Treated substratum with hydrophilic region and water-repellent region and process for producing the same
JP5167707B2 (en) * 2006-08-04 2013-03-21 株式会社リコー Multilayer structure, multilayer wiring board, active matrix substrate, and electronic display device
WO2008018599A1 (en) 2006-08-11 2008-02-14 Asahi Glass Company, Limited Polymerizable fluorine compounds and treated base materials having hydrophilic regions and water-repellent reginos
JP4640462B2 (en) * 2008-07-10 2011-03-02 セイコーエプソン株式会社 Manufacturing method of liquid crystal device
JP5618524B2 (en) 2009-11-18 2014-11-05 公益財団法人九州先端科学技術研究所 Device, thin film transistor, and manufacturing method thereof
JP2011105655A (en) 2009-11-18 2011-06-02 Institute Of Systems Information Technologies & Nanotechnologies Compound
JP2011111527A (en) 2009-11-26 2011-06-09 Fujifilm Corp Aqueous ink composition and image-forming method
JP5666498B2 (en) 2012-03-22 2015-02-12 富士フイルム株式会社 Ink composition, ink set, and image forming method
KR101823728B1 (en) * 2012-05-24 2018-01-30 가부시키가이샤 니콘 Substrate processing apparatus and device manufacturing method
JPWO2014034688A1 (en) * 2012-08-30 2016-08-08 東京応化工業株式会社 Substrate surface modification method, modified film, and coating solution used for substrate surface modification
JP5675754B2 (en) * 2012-11-12 2015-02-25 トヨタ自動車株式会社 Partial plating of aluminum material
JP6040722B2 (en) * 2012-11-16 2016-12-07 ウシオ電機株式会社 Antifouling layer removing method and antifouling layer forming method
JP2015067802A (en) 2013-09-30 2015-04-13 富士フイルム株式会社 Ink for inkjet recording, ink set, image forming method, and maintenance method

Also Published As

Publication number Publication date
JP2000282240A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3879312B2 (en) Film forming method and device manufacturing method
Sugimura et al. Organosilane monolayer resists for scanning probe lithography
JP4784646B2 (en) Processed substrate having hydrophilic region and water-repellent region and method for producing the same
Pallandre et al. Binary nanopatterned surfaces prepared from silane monolayers
JP4325555B2 (en) Material using pattern surface as template and its manufacturing method
Hirai et al. Mold surface treatment for imprint lithography
JP4208305B2 (en) Method for forming mask pattern
US20060012079A1 (en) Formation of a self-assembled release monolayer in the vapor phase
JP4660700B2 (en) Pattern formation method of organic molecular self-assembled film
JP3566122B2 (en) Method for producing high-density organic molecular thin film
JP3572056B2 (en) Optical patterning of organic monolayer on silicon wafer
KR20120104966A (en) Advanced photomask repair
Sugimura et al. Surface potential microscopy for chemistry of organic self-assembled monolayers in small domains
Sugimura et al. Friction force microscopy study on photodegradation of organosilane self-assembled monolayers irradiated with a vacuum ultraviolet light at 172 nm
JP2006189819A (en) Method for manufacturing substrate with water-repellent and hydrophilic surfaces
Sugimura et al. Organic monolayers covalently bonded to Si as ultra thin photoresist films in vacuum UV lithography
JP2007248726A (en) Processed substrate having hydrophilic area and water-repellent area and method for producing the same
US11332588B2 (en) Process for modification of a solid surface
JP4941693B2 (en) Silicon nanoparticle patterning method and organic molecules used in this method
JP3952455B2 (en) Nano-patterning method using organic monomolecular film as resist
US7687145B2 (en) Compounds containing a thiol protected group bonded to a protecting group via a polarized bond, and structure comprising the compounds on its surface
Sugimura Nanoscopic surface architecture based on molecular self-assembly and scanning probe lithography
Plain et al. Nanotemplated crystallization of organic molecules
JP3929142B2 (en) Method for producing organic monomolecular thin film
Shirahata et al. Atomic scale flattening of organosilane self-assembled monolayer and patterned tin hydroxide thin films

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees