JP3878563B2 - Optical transmission circuit - Google Patents

Optical transmission circuit Download PDF

Info

Publication number
JP3878563B2
JP3878563B2 JP2003048870A JP2003048870A JP3878563B2 JP 3878563 B2 JP3878563 B2 JP 3878563B2 JP 2003048870 A JP2003048870 A JP 2003048870A JP 2003048870 A JP2003048870 A JP 2003048870A JP 3878563 B2 JP3878563 B2 JP 3878563B2
Authority
JP
Japan
Prior art keywords
optical
transmission circuit
light
modulator
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003048870A
Other languages
Japanese (ja)
Other versions
JP2004260542A (en
Inventor
智由 片岡
俊哉 松田
暁彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003048870A priority Critical patent/JP3878563B2/en
Publication of JP2004260542A publication Critical patent/JP2004260542A/en
Application granted granted Critical
Publication of JP3878563B2 publication Critical patent/JP3878563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超高速・波長多重光通信システムに用いる光送信回路に関する。特に、外部変調方式を用い、高品質な光変調信号を生成する光送信回路に関する。
【0002】
【従来の技術】
近年の光ファイバ通信システムは、波長多重伝送技術の進展で大容量化が加速しているが、並行して1波長当たりの信号速度の高速化も進んでいる。商用レベルでは1波長当たり1Gbit/s が実現されており、すでに1波長当たり40Gbit/s が研究開発されている。1波長当たりの信号速度の向上は、周波数利用効率を比較的容易に向上できることから大容量化に有利と見られている。実際に、総容量3Tbit/s を越えるような伝送実験の報告では、ほとんどが1波長当たり40〜43Gbit/s の光送信回路を使用している。
【0003】
このような超高速の光変調信号を生成する光送信回路には、外部変調器としてニオブ酸リチウムの電気光学効果を用いたマッハツェンダ型光変調器(LN製MZM)や、半導体の電界吸収効果を用いた電界吸収型光変調器が用いられる。このような外部変調器を用いた光送信回路は、直接変調方式に比べて生成される光変調信号のチャーピング等が小さいので、信号の高速化に伴って伝送路媒質の群速度分散によって引き起こされる波形劣化の影響を抑えることができ、伝送距離の長距離化に有利になっている。
【0004】
ところで、外部変調器は、印加する電気信号の電圧が3〜6Vp-p と比較的高いために、広帯域な周波数特性をもつ高出力の変調器駆動回路が必要となる。また、変調器駆動回路に入力される電気信号の振幅は 0.5〜1Vp-p と小さいために、利得も大きくなくてはならない。変調器駆動回路は、このような広帯域、高出力、高利得の3つの要件を満たす必要があり、40Gbit/s の光送信回路に用いる変調器駆動回路の実現は容易ではない。また、今後 100Gbit/s を越える光変調信号を生成する光送信回路を実現する場合には、対応する変調器駆動回路の実現が大きな課題になる。
【0005】
一方、変調器駆動回路の出力が外部変調器の駆動に必要な電圧よりも小さい場合には、出力される光変調信号のオン/オフ比(消光比)として十分なものが得られない。光変調信号のオン/オフ比が十分でなければ、伝送可能な距離が短くなる。すなわち、外部変調器を用いることによる高速化と長距離化は、変調器駆動回路の性能によってトレードオフの関係になっていた。
【0006】
この光変調信号のオン/オフ比を改善する方法として、光変調信号とCW光を非線形媒質(分散シフトファイバ)に入力して四光波混合光を発生させ、その四光波混合光を伝送に使用する構成が提案されている(非特許文献1)。
【0007】
【非特許文献1】
A.Argyris et.al.,"Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre", Electronics Letters, vol.39, no.2, 23rd January 2003
【0008】
【発明が解決しようとする課題】
四光波混合光は、非線形媒質に信号光とポンプ光を同時に入力すると発生するが、信号光の強度の二乗に比例し、ポンプ光の強度に比例する性質を有する。非特許文献1に記載の構成において、光変調信号を信号光とし、CW光をポンプ光とすると、発生する四光波混合光の強度は光変調信号の強度の二乗に比例することになり、その範囲で光変調信号のオン/オフ比(消光比)を改善することができるが、それ以上の改善は困難である。
【0009】
本発明は、外部変調器を用いる光送信回路において、変調器駆動回路の出力振幅が不十分で、十分なオン/オフ比が得られない光変調信号のオン/オフ比を大幅に改善することができる光送信回路を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の光送信回路は、2波長光源から出力される光周波数f1 とf2(f2−f1 =Δf≠0)の連続光を外部変調器で電気信号(送信信号)により同時に強度変調し、その強度変調された光周波数f1 とf2 の光変調信号を非線形媒質に入力して光周波数f3(=2f2−f1 )の四光波混合光を発生させ、光フィルタを介して四光波混合光のみを選択して出力する構成である。
【0011】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の光送信回路の第1の実施形態を示す。図において、光送信回路は、光周波数f1 とf2 (f2−f1=Δf≠0)の連続光を同時に出力する2波長光源1と、この光周波数f1 とf2 の連続光を入力して同時に強度変調する外部変調器2と、送信する電気信号を外部変調器2に印加する変調器駆動回路3と、電気信号により強度変調された光周波数f1 とf2 の光変調信号を入力して光周波数f3(=2f2−f1 )の四光波混合光を発生させる非線形媒質4と、光周波数f3 の四光波混合光のみを選択して出力する光フィルタ5により構成される。
【0012】
四光波混合光は、非線形媒質に信号光とポンプ光を同時に入力すると発生する極めて高速の非線形光学現象であり、信号光の強度の二乗に比例し、ポンプ光の強度に比例する。本発明は、同時に強度変調された2つの光変調信号の一方を信号光、他方をポンプ光として四光波混合光を発生させるものであるので、そのオン/オフ比(消光比)は光変調信号の三乗に比例することになる。すなわち、外部変調器2から出力される光周波数f1 ,f2 の各光変調信号のオン/オフ比が十分でない場合でも、図1のアイパターンの例で示すように、光周波数f3 の四光波混合光を取り出すことによりオン/オフ比の大幅な改善(後述する図4の光出力特性によれば3dBから9dBへの改善)を図ることができる。
【0013】
図2は、2波長光源1の構成例を示す。図2(1) に示す2波長光源1は、光周波数f1 とf2 の連続光をそれぞれ出力するレーザ光源11,12と、その出力光を合波する光合波器(例えば偏波保持光カプラ)13により構成される。レーザ光源11,12は、DFBレーザまたは外部共振型のレーザであり、発振光周波数が安定化されているものとする。
【0014】
図2(2) に示す2波長光源1は、光周波数f1+Δf/2 の連続光を出力するレーザ光源14と、その出力光を周波数Δf/2のクロック信号で変調するマッハツェンダ型光変調器15により構成される。これは、CS−RZ光源と呼ばれるものであり、光周波数差Δfの光周波数f1 とf2 の連続光を同時発生する。
【0015】
光周波数f1 とf2 の連続光を同時発生するこの他の2波長光源1としては、2ビートパルス発生するモードロックレーザや、スーパーコンティニウム光源や光周波数コム発生器の出力光から所定の2光周波数の連続光を選択出力する構成のものを用いることができる。
【0016】
外部変調器2は、マッハツェンダ型光変調器または電界吸収型光変調器を用いることができる。
【0017】
非線形媒質4は、光ファイバまたは半導体光増幅器(SOA)を用いることができる。ただし、四光波混合光を効率より発生させ、かつ2つの光変調信号の伝播速度が同一であることが望ましいので、零分散光周波数が(f1+f2)/2の近傍にあるものが望ましい。
【0018】
なお、外部変調器2を電界吸収型光変調器で構成し、非線形媒質4を半導体光増幅器で構成することにより、それらを集積化することができる。さらに、図3に示すように、2波長光源1として2ビートパルス発生モードロックレーザを用いることにより、外部変調器2を構成する電界吸収型光変調器と、非線形媒質4を構成する半導体光増幅器の3つを集積化することができる。
【0019】
外部変調器2にマッハツェンダ型光変調器を適用した場合の本発明の光送信回路の光出力特性を図4に示す。横軸は外部変調器への印加電圧をVπ(最大光出力と最小光出力を与える外部変調器の印加電圧の差)で規格化している。縦軸は出力パワーの相対値を示す。消光比は、外部変調器の印加電圧に依存するが、印加電圧を0〜Vπ/2とすると、従来構成では消光比は3dBとなるが、本発明構成では9dBとなり、小さな印加電圧でも高い消光比が得られていることがわかる。
【0020】
本発明の光送信回路の効果を確認する実験結果を図5に示す。実験系は、図1の構成において、非線形媒質4として長さ20kmの G.653ファイバ(零分散波長:1551nm)を用い、光周波数f1 ,f2 に対応する光波長λ1 ,λ2 を1551.5nm、1550.7nmとして光周波数差Δfを約 100GHzに設定した。外部変調器2にはマッハツェンダ型光変調器(Vπは 4.4V)を用い、駆動信号は10Gbit/s 、振幅はVπ/2の 2.2Vp-p とした。また、実験では観測に十分な四光波混合光を得るために、非線形媒質4の前段に光増幅器(EDFA)を配置して光変調信号を増幅した。
【0021】
図5の実験結果は、外部変調器2のバイアス電圧を変えて消光比を測定した結果である。バイアス電圧をVπ/4とすると、従来構成と本発明構成のそれぞれの理論値は3dB、9dBとなり、実験値は2.72dB、7.07dBとなり、本発明の効果を確認することができた。なお、本発明構成の実験値が理論的な消光比に比べて低い値になっているのは、実験で用いた光増幅器のASE雑音の影響によるものと考えられる。
【0022】
(第2の実施形態)
図6は、本発明の光送信回路の第2の実施形態を示す。本実施形態の特徴は、外部変調器2と非線形媒質4との間に外部変調器6を配置し、変調器駆動回路7を介して外部変調器6にクロック信号を印加し、外部変調器2から出力される光変調信号を強度変調するところにある。なお、外部変調器6は、外部変調器2の入力側に配置し、外部変調器2に入力する連続光をクロック信号で強度変調してもよい。これにより、外部変調器2から出力される光周波数f1 ,f2 の光変調信号をRZ(Return-to-Zero) 符号化することができる。
【0023】
なお、外部変調器6は、外部変調器2と同様にマッハツェンダ型光変調器または電界吸収型光変調器を用いることができる。また、外部変調器2,6をともに電界吸収型光変調器で構成し、それらを集積化した構成としてもよい。さらに、図3に示すように、2波長光源1および非線形媒質4を含めて集積化することも可能である。
【0024】
【発明の効果】
以上説明したように、本発明の光送信回路は、同時に強度変調された光周波数f1 とf2 の光変調信号を非線形媒質に入力し、一方を信号光、他方をポンプ光として四光波混合光を発生させる構成である。この四光波混合光の強度は光変調信号の強度の三乗に比例するので、外部変調器の駆動電圧が低く非線形媒質に入力する光変調信号の消光比が十分でなくても、高い消光比の光変調信号(四光波混合光)に変換することができる。しかも四光波混合過程はテラビットクラスの光信号に対しても動作可能であるので、高速信号にも十分に対応することができる。
【図面の簡単な説明】
【図1】本発明の光送信回路の第1の実施形態を示す図。
【図2】2波長光源1の構成例を示す図。
【図3】本発明の光送信回路の集積化例を示す図。
【図4】本発明の光送信回路の光出力特性を示す図。
【図5】本発明の光送信回路の効果を確認する実験結果を示す図。
【図6】本発明の光送信回路の第2の実施形態を示す図。
【符号の説明】
1 2波長光源
2,6 外部変調器
3,7 変調器駆動回路
4 非線形媒質
5 光フィルタ
11,12,14 レーザ光源
13 光合波器
15 マッハツェンダ型光変調器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical transmission circuit used in an ultra-high speed / wavelength multiplexing optical communication system. In particular, the present invention relates to an optical transmission circuit that generates a high-quality optical modulation signal using an external modulation system.
[0002]
[Prior art]
In recent optical fiber communication systems, the increase in capacity has been accelerated by the progress of wavelength multiplexing transmission technology, but at the same time, the signal speed per wavelength has been increased. At the commercial level, 1 Gbit / s per wavelength has been realized, and 40 Gbit / s per wavelength has already been researched and developed. An improvement in the signal speed per wavelength is considered advantageous for increasing the capacity because the frequency utilization efficiency can be improved relatively easily. Actually, most reports of transmission experiments exceeding the total capacity of 3 Tbit / s use an optical transmission circuit of 40 to 43 Gbit / s per wavelength.
[0003]
In an optical transmission circuit that generates such an ultra-high-speed optical modulation signal, a Mach-Zehnder optical modulator (LN MZM) that uses the electro-optic effect of lithium niobate as an external modulator, or an electroabsorption effect of a semiconductor The electroabsorption optical modulator used is used. In such an optical transmitter circuit using an external modulator, the chirping of the optical modulation signal generated is smaller than that in the direct modulation method, and this is caused by the group velocity dispersion of the transmission path medium as the signal speed increases. Therefore, it is possible to suppress the influence of waveform deterioration, which is advantageous for increasing the transmission distance.
[0004]
By the way, since the external modulator has a relatively high voltage of an applied electric signal of 3 to 6 Vp-p, a high-output modulator driving circuit having a broadband frequency characteristic is required. Moreover, since the amplitude of the electric signal input to the modulator driving circuit is as small as 0.5 to 1 Vp-p, the gain must be large. The modulator driving circuit needs to satisfy these three requirements of wideband, high output, and high gain, and it is not easy to realize the modulator driving circuit used for the 40 Gbit / s optical transmission circuit. Further, in the future, when realizing an optical transmission circuit that generates an optical modulation signal exceeding 100 Gbit / s, it becomes a big problem to realize a corresponding modulator driving circuit.
[0005]
On the other hand, when the output of the modulator driving circuit is smaller than the voltage required for driving the external modulator, a sufficient on / off ratio (extinction ratio) of the output optical modulation signal cannot be obtained. If the on / off ratio of the light modulation signal is not sufficient, the transmittable distance is shortened. That is, speeding up and lengthening by using an external modulator have a trade-off relationship depending on the performance of the modulator driving circuit.
[0006]
As a method for improving the on / off ratio of this optical modulation signal, the optical modulation signal and CW light are input to a nonlinear medium (dispersion shift fiber) to generate four-wave mixed light, and the four-wave mixed light is used for transmission. The structure which performs is proposed (nonpatent literature 1).
[0007]
[Non-Patent Document 1]
A. Argyris et.al., "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber", Electronics Letters, vol.39, no.2, 23rd January 2003
[0008]
[Problems to be solved by the invention]
Four-wave mixed light is generated when signal light and pump light are simultaneously input to a nonlinear medium, and is proportional to the square of the intensity of the signal light and proportional to the intensity of the pump light. In the configuration described in Non-Patent Document 1, when the light modulation signal is signal light and the CW light is pump light, the intensity of the generated four-wave mixed light is proportional to the square of the intensity of the light modulation signal. The on / off ratio (extinction ratio) of the light modulation signal can be improved within the range, but further improvement is difficult.
[0009]
The present invention significantly improves the on / off ratio of an optical modulation signal in which an output amplitude of the modulator driving circuit is insufficient and a sufficient on / off ratio cannot be obtained in an optical transmission circuit using an external modulator. An object of the present invention is to provide an optical transmission circuit capable of performing
[0010]
[Means for Solving the Problems]
In the optical transmission circuit of the present invention, continuous light of optical frequencies f 1 and f 2 (f 2 −f 1 = Δf ≠ 0) output from a two-wavelength light source is simultaneously intensified by an electric signal (transmission signal) with an external modulator. The modulated optical signals of the optical frequencies f 1 and f 2 whose intensity are modulated are input to the nonlinear medium to generate four-wave mixed light having the optical frequency f 3 (= 2f 2 −f 1 ). In this configuration, only the four-wave mixed light is selected and output.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows a first embodiment of an optical transmission circuit of the present invention. In the figure, an optical transmission circuit includes a two-wavelength light source 1 that simultaneously outputs continuous light having optical frequencies f 1 and f 2 (f 2 −f 1 = Δf ≠ 0), and continuous light having optical frequencies f 1 and f 2 . An external modulator 2 that simultaneously modulates the intensity of the input signal, a modulator driving circuit 3 that applies an electric signal to be transmitted to the external modulator 2 , and optical modulation of the optical frequencies f 1 and f 2 that are intensity-modulated by the electric signal A nonlinear medium 4 that generates a four-wave mixed light having an optical frequency f 3 (= 2f 2 −f 1 ) by inputting a signal and an optical filter 5 that selects and outputs only the four-wave mixed light having an optical frequency f 3. Composed.
[0012]
Four-wave mixed light is an extremely fast nonlinear optical phenomenon that occurs when signal light and pump light are simultaneously input to a nonlinear medium, and is proportional to the square of the intensity of the signal light and proportional to the intensity of the pump light. Since the present invention generates four-wave mixed light by using one of two light modulation signals whose intensity is modulated simultaneously as signal light and the other as pump light, its on / off ratio (extinction ratio) is the light modulation signal. It is proportional to the cube of. That is, even when the on / off ratio of each optical modulation signal of the optical frequency f 1, f 2 output from the external modulator 2 is not sufficient, as shown by the example of the eye pattern of FIG. 1, the optical frequency f 3 By taking out the four-wave mixed light, the on / off ratio can be greatly improved (from 3 dB to 9 dB according to the light output characteristics of FIG. 4 described later).
[0013]
FIG. 2 shows a configuration example of the two-wavelength light source 1. The two-wavelength light source 1 shown in FIG. 2 (1) includes laser light sources 11 and 12 that output continuous light of optical frequencies f 1 and f 2 , respectively, and an optical multiplexer that combines the output light (for example, polarization maintaining light). Coupler) 13. The laser light sources 11 and 12 are DFB lasers or external resonance lasers, and the oscillation light frequency is stabilized.
[0014]
A two-wavelength light source 1 shown in FIG. 2 (2) includes a laser light source 14 that outputs continuous light having an optical frequency f 1 + Δf / 2, and a Mach-Zehnder optical modulator that modulates the output light with a clock signal having a frequency Δf / 2. 15. This is called a CS-RZ light source, and simultaneously generates continuous light having optical frequencies f 1 and f 2 with an optical frequency difference Δf.
[0015]
As another two-wavelength light source 1 for simultaneously generating continuous light of optical frequencies f 1 and f 2, a predetermined frequency is selected from output light from a mode-locked laser that generates two beat pulses, a supercontinuum light source, or an optical frequency comb generator The thing of the structure which selectively outputs the continuous light of 2 optical frequencies can be used.
[0016]
As the external modulator 2, a Mach-Zehnder optical modulator or an electroabsorption optical modulator can be used.
[0017]
As the nonlinear medium 4, an optical fiber or a semiconductor optical amplifier (SOA) can be used. However, since it is desirable that the four-wave mixing light is generated from the efficiency and the propagation speeds of the two optical modulation signals are the same, it is desirable that the zero dispersion optical frequency is in the vicinity of (f 1 + f 2 ) / 2. .
[0018]
The external modulator 2 can be integrated with an electroabsorption optical modulator and the nonlinear medium 4 can be integrated with a semiconductor optical amplifier. Further, as shown in FIG. 3, by using a two-beat pulse generation mode-locked laser as the two-wavelength light source 1, an electroabsorption optical modulator constituting the external modulator 2 and a semiconductor optical amplifier constituting the nonlinear medium 4 are used. These three can be integrated.
[0019]
FIG. 4 shows the optical output characteristics of the optical transmission circuit of the present invention when a Mach-Zehnder type optical modulator is applied to the external modulator 2. The horizontal axis normalizes the voltage applied to the external modulator by Vπ (difference in voltage applied to the external modulator that gives the maximum light output and the minimum light output). The vertical axis represents the relative value of output power. Although the extinction ratio depends on the applied voltage of the external modulator, if the applied voltage is 0 to Vπ / 2, the extinction ratio is 3 dB in the conventional configuration, but 9 dB in the configuration of the present invention, and high extinction is achieved even with a small applied voltage. It can be seen that the ratio is obtained.
[0020]
An experimental result for confirming the effect of the optical transmission circuit of the present invention is shown in FIG. Experimental system, in the configuration of FIG. 1, G.653 fiber length 20km as the nonlinear medium 4 (zero-dispersion wavelength: 1551 nm) using a light wavelength lambda 1 that corresponds to the optical frequencies f 1, f 2, the lambda 2 The optical frequency difference Δf was set to about 100 GHz at 1551.5 nm and 1550.7 nm. The external modulator 2 is a Mach-Zehnder type optical modulator (Vπ is 4.4 V), the drive signal is 10 Gbit / s, and the amplitude is Vπ / 2, 2.2 Vp-p. Further, in the experiment, in order to obtain four-wave mixed light sufficient for observation, an optical amplifier (EDFA) was placed in front of the nonlinear medium 4 to amplify the light modulation signal.
[0021]
The experimental result of FIG. 5 is a result of measuring the extinction ratio by changing the bias voltage of the external modulator 2. When the bias voltage is Vπ / 4, the theoretical values of the conventional configuration and the configuration of the present invention are 3 dB and 9 dB, respectively, and the experimental values are 2.72 dB and 7.07 dB, confirming the effect of the present invention. The reason why the experimental value of the configuration of the present invention is lower than the theoretical extinction ratio is considered to be due to the influence of the ASE noise of the optical amplifier used in the experiment.
[0022]
(Second Embodiment)
FIG. 6 shows a second embodiment of the optical transmission circuit of the present invention. A feature of the present embodiment is that an external modulator 6 is disposed between the external modulator 2 and the nonlinear medium 4, a clock signal is applied to the external modulator 6 via the modulator driving circuit 7, and the external modulator 2 The intensity of the light modulation signal output from is modulated. The external modulator 6 may be disposed on the input side of the external modulator 2 and intensity-modulated with continuous clock light input to the external modulator 2 using a clock signal. As a result, the optical modulation signals of the optical frequencies f 1 and f 2 output from the external modulator 2 can be RZ (Return-to-Zero) encoded.
[0023]
As the external modulator 6, a Mach-Zehnder optical modulator or an electroabsorption optical modulator can be used as in the external modulator 2. Alternatively, both the external modulators 2 and 6 may be configured by electroabsorption optical modulators and integrated. Further, as shown in FIG. 3, the two-wavelength light source 1 and the nonlinear medium 4 can be integrated.
[0024]
【The invention's effect】
As described above, the optical transmission circuit of the present invention inputs the optical modulation signals of the optical frequencies f 1 and f 2 that are simultaneously intensity-modulated into the nonlinear medium, and mixes four light waves using one as signal light and the other as pump light. It is the structure which generates light. Since the intensity of this four-wave mixed light is proportional to the cube of the intensity of the optical modulation signal, even if the extinction ratio of the optical modulation signal input to the nonlinear medium is low and the driving voltage of the external modulator is low, the high extinction ratio is high. Can be converted into a light modulation signal (four-wave mixed light). In addition, the four-wave mixing process can operate on terabit-class optical signals, and therefore can sufficiently handle high-speed signals.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of an optical transmission circuit of the present invention.
FIG. 2 is a diagram showing a configuration example of a two-wavelength light source 1;
FIG. 3 is a diagram showing an example of integration of the optical transmission circuit of the present invention.
FIG. 4 is a diagram showing optical output characteristics of the optical transmission circuit of the present invention.
FIG. 5 is a diagram showing experimental results for confirming the effect of the optical transmission circuit of the present invention.
FIG. 6 is a diagram showing a second embodiment of the optical transmission circuit of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 2 wavelength light sources 2, 6 External modulator 3, 7 Modulator drive circuit 4 Non-linear medium 5 Optical filter 11, 12, 14 Laser light source 13 Optical multiplexer 15 Mach-Zehnder type optical modulator

Claims (9)

光周波数f1 とf2 (f2−f1=Δf≠0)の連続光を同時に出力する2波長光源と、
前記光周波数f1 とf2 の連続光を入力し、外部から印加される電気信号により同時に強度変調する外部変調器と、
送信する電気信号を前記外部変調器に印加する変調器駆動回路と、
前記電気信号により強度変調された光周波数f1 とf2 の光変調信号を入力して光周波数f3(=2f2−f1 )の四光波混合光を発生させる非線形媒質と、
前記非線形媒質の出力光から前記光周波数f3 の四光波混合光のみを選択して出力する光フィルタと
を備えたことを特徴とする光送信回路。
A two-wavelength light source that simultaneously outputs continuous light of optical frequencies f 1 and f 2 (f 2 −f 1 = Δf ≠ 0);
An external modulator that inputs continuous light of the optical frequencies f 1 and f 2 and simultaneously modulates the intensity with an externally applied electrical signal;
A modulator driving circuit for applying an electric signal to be transmitted to the external modulator;
A non-linear medium for generating a four-wave mixed light having an optical frequency f 3 (= 2f 2 −f 1 ) by inputting an optical modulation signal having optical frequencies f 1 and f 2 intensity-modulated by the electric signal;
An optical transmission circuit comprising: an optical filter that selects and outputs only the four-wave mixed light having the optical frequency f 3 from the output light of the nonlinear medium.
請求項1に記載の光送信回路において、
前記2波長光源は、光周波数f1 とf2 の連続光をそれぞれ出力するレーザ光源と、その出力光を合波する光合波器により構成されたことを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The two-wavelength light source is constituted by a laser light source that outputs continuous light of optical frequencies f 1 and f 2 , respectively, and an optical multiplexer that multiplexes the output light.
請求項1に記載の光送信回路において、
前記2波長光源は、光周波数f1+Δf/2 の連続光を出力するレーザ光源と、その出力光を周波数Δf/2のクロック信号で変調し、光周波数f1 とf1 +Δf(=f2 )の連続光を出力するマッハツェンダ型光変調器により構成されたことを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The two-wavelength light source is a laser light source that outputs continuous light having an optical frequency f 1 + Δf / 2, and modulates the output light with a clock signal having a frequency Δf / 2, so that the optical frequencies f 1 and f 1 + Δf (= f 2 ), A Mach-Zehnder type optical modulator that outputs continuous light.
請求項1に記載の光送信回路において、
前記外部変調器は、電界吸収型光変調器であることを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The optical transmitter circuit, wherein the external modulator is an electroabsorption optical modulator.
請求項1に記載の光送信回路において、
前記非線形媒質は、光ファイバであることを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The optical transmission circuit, wherein the nonlinear medium is an optical fiber.
請求項1に記載の光送信回路において、
前記非線形媒質は、半導体光増幅器であることを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
An optical transmission circuit, wherein the nonlinear medium is a semiconductor optical amplifier.
請求項1に記載の光送信回路において、
前記外部変調器は電界吸収型光変調器であり、前記非線形媒質は半導体光増幅器であり、それらが集積化された構成であることを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The optical transmitter circuit, wherein the external modulator is an electroabsorption optical modulator, the nonlinear medium is a semiconductor optical amplifier, and these are integrated.
請求項1に記載の光送信回路において、
前記外部変調器を第1の外部変調器とし、その入力側または出力側に前記連続光または前記光変調信号を所定のクロック信号で変調してパルス化する第2の外部変調器を備えたことを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The external modulator is a first external modulator, and a second external modulator that modulates and pulses the continuous light or the optical modulation signal with a predetermined clock signal is provided on the input side or output side of the external modulator. An optical transmission circuit characterized by the above.
請求項8に記載の光送信回路において、
前記第1の外部変調器および前記第2の外部変調器はともに電界吸収型光変調器であり、それらが集積化された構成であることを特徴とする光送信回路。
The optical transmission circuit according to claim 8, wherein
The first external modulator and the second external modulator are both electro-absorption optical modulators, and are configured to be integrated.
JP2003048870A 2003-02-26 2003-02-26 Optical transmission circuit Expired - Fee Related JP3878563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048870A JP3878563B2 (en) 2003-02-26 2003-02-26 Optical transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048870A JP3878563B2 (en) 2003-02-26 2003-02-26 Optical transmission circuit

Publications (2)

Publication Number Publication Date
JP2004260542A JP2004260542A (en) 2004-09-16
JP3878563B2 true JP3878563B2 (en) 2007-02-07

Family

ID=33114709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048870A Expired - Fee Related JP3878563B2 (en) 2003-02-26 2003-02-26 Optical transmission circuit

Country Status (1)

Country Link
JP (1) JP3878563B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598615B2 (en) * 2005-07-07 2010-12-15 日本電信電話株式会社 Optical wavelength division multiplexing signal transmitter / receiver

Also Published As

Publication number Publication date
JP2004260542A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
Durhuus et al. All-optical wavelength conversion by semiconductor optical amplifiers
JP5185939B2 (en) Interference operation of electroabsorption modulator
Joergensen et al. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers
EP2672318B1 (en) Optical amplifier
JP3784585B2 (en) Method, optical device and system for optical fiber transmission
US6987607B2 (en) Optical AND gate and waveform shaping device
US6963436B2 (en) Method and device for waveform shaping of signal light
Oxenløwe et al. Silicon photonics for signal processing of Tbit/s serial data signals
JPH06326387A (en) Optical soliton generator
JP2007531022A (en) Light modulator
US7099359B2 (en) Optical pulse train generator
CN103997375B (en) A kind of method and system producing quadruple frequency light load millimeter wave
CN108153000A (en) A kind of spectral line interval is equal to the frequency comb generator of optical fiber Brillouin frequency displacement
Wang et al. Dynamic control of phase matching in four-wave mixing wavelength conversion of amplitude-and phase-modulated signals
US6535316B1 (en) Generation of high-speed digital optical signals
JP3878563B2 (en) Optical transmission circuit
JP3524005B2 (en) Optical pulse generator
JP5312821B2 (en) Optical pulse speed control device and optical pulse speed control method
US11588557B2 (en) Apparatus and method for shifting a frequency of an optical signal
KR100557111B1 (en) Duo-binary optical transmitter
Pelusi 160-Gb/s optical time-division demultiplexing using a Mach–Zehnder modulator in a fiber loop
US8396367B2 (en) High frequency optical processing
Nazneen et al. Cascading of dual drive mach zehnder modulator and electro absorption modulator for producing an optical comb
Torii et al. Efficiency improvement of optical fiber wavelength converter without spectral spread using synchronous phase/frequency modulations
Said et al. Performance evaluation of wavelength conversion using a wideband semiconductor optical amplifier at 40 gbit/s

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees