JP2004260542A - Optical transmission circuit - Google Patents

Optical transmission circuit Download PDF

Info

Publication number
JP2004260542A
JP2004260542A JP2003048870A JP2003048870A JP2004260542A JP 2004260542 A JP2004260542 A JP 2004260542A JP 2003048870 A JP2003048870 A JP 2003048870A JP 2003048870 A JP2003048870 A JP 2003048870A JP 2004260542 A JP2004260542 A JP 2004260542A
Authority
JP
Japan
Prior art keywords
optical
light
transmission circuit
optical transmission
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003048870A
Other languages
Japanese (ja)
Other versions
JP3878563B2 (en
Inventor
Tomoyoshi Kataoka
智由 片岡
Toshiya Matsuda
俊哉 松田
Akihiko Matsuura
暁彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003048870A priority Critical patent/JP3878563B2/en
Publication of JP2004260542A publication Critical patent/JP2004260542A/en
Application granted granted Critical
Publication of JP3878563B2 publication Critical patent/JP3878563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve an on/off ratio of an optical modulation signal from which a sufficient on/off ratio can not be obtained, wherein the output amplitude of a modulator drive circuit is not sufficient in an optical transmission circuit that uses an external modulator. <P>SOLUTION: The external modulator simultaneously modulates the intensity of continuous light of optical frequencies f<SB>1</SB>and f<SB>2</SB>(f<SB>2</SB>-f<SB>1</SB>=Δf≠0) outputted from a two-wavelength light source by an electrical signal (transmission signal), an optical modulated signal of the optical frequencies f<SB>1</SB>and f<SB>2</SB>subjected to intensity modulation is inputted to a nonlinear medium to generate four-wave mixed light of an optical frequency f<SB>3</SB>(= 2f<SB>2</SB>-f<SB>1</SB>), and only the four-wave mixed light is selected through an optical filter and outputted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超高速・波長多重光通信システムに用いる光送信回路に関する。特に、外部変調方式を用い、高品質な光変調信号を生成する光送信回路に関する。
【0002】
【従来の技術】
近年の光ファイバ通信システムは、波長多重伝送技術の進展で大容量化が加速しているが、並行して1波長当たりの信号速度の高速化も進んでいる。商用レベルでは1波長当たり1Gbit/s が実現されており、すでに1波長当たり40Gbit/s が研究開発されている。1波長当たりの信号速度の向上は、周波数利用効率を比較的容易に向上できることから大容量化に有利と見られている。実際に、総容量3Tbit/s を越えるような伝送実験の報告では、ほとんどが1波長当たり40〜43Gbit/s の光送信回路を使用している。
【0003】
このような超高速の光変調信号を生成する光送信回路には、外部変調器としてニオブ酸リチウムの電気光学効果を用いたマッハツェンダ型光変調器(LN製MZM)や、半導体の電界吸収効果を用いた電界吸収型光変調器が用いられる。このような外部変調器を用いた光送信回路は、直接変調方式に比べて生成される光変調信号のチャーピング等が小さいので、信号の高速化に伴って伝送路媒質の群速度分散によって引き起こされる波形劣化の影響を抑えることができ、伝送距離の長距離化に有利になっている。
【0004】
ところで、外部変調器は、印加する電気信号の電圧が3〜6Vp−p と比較的高いために、広帯域な周波数特性をもつ高出力の変調器駆動回路が必要となる。また、変調器駆動回路に入力される電気信号の振幅は 0.5〜1Vp−p と小さいために、利得も大きくなくてはならない。変調器駆動回路は、このような広帯域、高出力、高利得の3つの要件を満たす必要があり、40Gbit/s の光送信回路に用いる変調器駆動回路の実現は容易ではない。また、今後 100Gbit/s を越える光変調信号を生成する光送信回路を実現する場合には、対応する変調器駆動回路の実現が大きな課題になる。
【0005】
一方、変調器駆動回路の出力が外部変調器の駆動に必要な電圧よりも小さい場合には、出力される光変調信号のオン/オフ比(消光比)として十分なものが得られない。光変調信号のオン/オフ比が十分でなければ、伝送可能な距離が短くなる。すなわち、外部変調器を用いることによる高速化と長距離化は、変調器駆動回路の性能によってトレードオフの関係になっていた。
【0006】
この光変調信号のオン/オフ比を改善する方法として、光変調信号とCW光を非線形媒質(分散シフトファイバ)に入力して四光波混合光を発生させ、その四光波混合光を伝送に使用する構成が提案されている(非特許文献1)。
【0007】
【非特許文献1】
A.Argyris et.al.,”Extinction ratio improvement by four−wave mixing in dispersion−shifted fibre”, Electronics Letters, vol.39, no.2, 23rd January 2003
【0008】
【発明が解決しようとする課題】
四光波混合光は、非線形媒質に信号光とポンプ光を同時に入力すると発生するが、信号光の強度の二乗に比例し、ポンプ光の強度に比例する性質を有する。非特許文献1に記載の構成において、光変調信号を信号光とし、CW光をポンプ光とすると、発生する四光波混合光の強度は光変調信号の強度の二乗に比例することになり、その範囲で光変調信号のオン/オフ比(消光比)を改善することができるが、それ以上の改善は困難である。
【0009】
本発明は、外部変調器を用いる光送信回路において、変調器駆動回路の出力振幅が不十分で、十分なオン/オフ比が得られない光変調信号のオン/オフ比を大幅に改善することができる光送信回路を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の光送信回路は、2波長光源から出力される光周波数fとf(f−f=Δf≠0)の連続光を外部変調器で電気信号(送信信号)により同時に強度変調し、その強度変調された光周波数fとfの光変調信号を非線形媒質に入力して光周波数f(=2f−f)の四光波混合光を発生させ、光フィルタを介して四光波混合光のみを選択して出力する構成である。
【0011】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の光送信回路の第1の実施形態を示す。図において、光送信回路は、光周波数fとf(f−f=Δf≠0)の連続光を同時に出力する2波長光源1と、この光周波数fとfの連続光を入力して同時に強度変調する外部変調器2と、送信する電気信号を外部変調器2に印加する変調器駆動回路3と、電気信号により強度変調された光周波数fとfの光変調信号を入力して光周波数f(=2f−f)の四光波混合光を発生させる非線形媒質4と、光周波数fの四光波混合光のみを選択して出力する光フィルタ5により構成される。
【0012】
四光波混合光は、非線形媒質に信号光とポンプ光を同時に入力すると発生する極めて高速の非線形光学現象であり、信号光の強度の二乗に比例し、ポンプ光の強度に比例する。本発明は、同時に強度変調された2つの光変調信号の一方を信号光、他方をポンプ光として四光波混合光を発生させるものであるので、そのオン/オフ比(消光比)は光変調信号の三乗に比例することになる。すなわち、外部変調器2から出力される光周波数f,fの各光変調信号のオン/オフ比が十分でない場合でも、図1のアイパターンの例で示すように、光周波数fの四光波混合光を取り出すことによりオン/オフ比の大幅な改善(後述する図4の光出力特性によれば3dBから9dBへの改善)を図ることができる。
【0013】
図2は、2波長光源1の構成例を示す。図2(1) に示す2波長光源1は、光周波数fとfの連続光をそれぞれ出力するレーザ光源11,12と、その出力光を合波する光合波器(例えば偏波保持光カプラ)13により構成される。レーザ光源11,12は、DFBレーザまたは外部共振型のレーザであり、発振光周波数が安定化されているものとする。
【0014】
図2(2) に示す2波長光源1は、光周波数f+Δf/2 の連続光を出力するレーザ光源14と、その出力光を周波数Δf/2のクロック信号で変調するマッハツェンダ型光変調器15により構成される。これは、CS−RZ光源と呼ばれるものであり、光周波数差Δfの光周波数fとfの連続光を同時発生する。
【0015】
光周波数fとfの連続光を同時発生するこの他の2波長光源1としては、2ビートパルス発生するモードロックレーザや、スーパーコンティニウム光源や光周波数コム発生器の出力光から所定の2光周波数の連続光を選択出力する構成のものを用いることができる。
【0016】
外部変調器2は、マッハツェンダ型光変調器または電界吸収型光変調器を用いることができる。
【0017】
非線形媒質4は、光ファイバまたは半導体光増幅器(SOA)を用いることができる。ただし、四光波混合光を効率より発生させ、かつ2つの光変調信号の伝播速度が同一であることが望ましいので、零分散光周波数が(f+f)/2の近傍にあるものが望ましい。
【0018】
なお、外部変調器2を電界吸収型光変調器で構成し、非線形媒質4を半導体光増幅器で構成することにより、それらを集積化することができる。さらに、図3に示すように、2波長光源1として2ビートパルス発生モードロックレーザを用いることにより、外部変調器2を構成する電界吸収型光変調器と、非線形媒質4を構成する半導体光増幅器の3つを集積化することができる。
【0019】
外部変調器2にマッハツェンダ型光変調器を適用した場合の本発明の光送信回路の光出力特性を図4に示す。横軸は外部変調器への印加電圧をVπ(最大光出力と最小光出力を与える外部変調器の印加電圧の差)で規格化している。縦軸は出力パワーの相対値を示す。消光比は、外部変調器の印加電圧に依存するが、印加電圧を0〜Vπ/2とすると、従来構成では消光比は3dBとなるが、本発明構成では9dBとなり、小さな印加電圧でも高い消光比が得られていることがわかる。
【0020】
本発明の光送信回路の効果を確認する実験結果を図5に示す。実験系は、図1の構成において、非線形媒質4として長さ20kmの G.653ファイバ(零分散波長:1551nm)を用い、光周波数f,fに対応する光波長λ,λを1551.5nm、1550.7nmとして光周波数差Δfを約 100GHzに設定した。外部変調器2にはマッハツェンダ型光変調器(Vπは 4.4V)を用い、駆動信号は10Gbit/s 、振幅はVπ/2の 2.2Vp−p とした。また、実験では観測に十分な四光波混合光を得るために、非線形媒質4の前段に光増幅器(EDFA)を配置して光変調信号を増幅した。
【0021】
図5の実験結果は、外部変調器2のバイアス電圧を変えて消光比を測定した結果である。バイアス電圧をVπ/4とすると、従来構成と本発明構成のそれぞれの理論値は3dB、9dBとなり、実験値は2.72dB、7.07dBとなり、本発明の効果を確認することができた。なお、本発明構成の実験値が理論的な消光比に比べて低い値になっているのは、実験で用いた光増幅器のASE雑音の影響によるものと考えられる。
【0022】
(第2の実施形態)
図6は、本発明の光送信回路の第2の実施形態を示す。本実施形態の特徴は、外部変調器2と非線形媒質4との間に外部変調器6を配置し、変調器駆動回路7を介して外部変調器6にクロック信号を印加し、外部変調器2から出力される光変調信号を強度変調するところにある。なお、外部変調器6は、外部変調器2の入力側に配置し、外部変調器2に入力する連続光をクロック信号で強度変調してもよい。これにより、外部変調器2から出力される光周波数f,fの光変調信号をRZ(Return−to−Zero) 符号化することができる。
【0023】
なお、外部変調器6は、外部変調器2と同様にマッハツェンダ型光変調器または電界吸収型光変調器を用いることができる。また、外部変調器2,6をともに電界吸収型光変調器で構成し、それらを集積化した構成としてもよい。さらに、図3に示すように、2波長光源1および非線形媒質4を含めて集積化することも可能である。
【0024】
【発明の効果】
以上説明したように、本発明の光送信回路は、同時に強度変調された光周波数fとfの光変調信号を非線形媒質に入力し、一方を信号光、他方をポンプ光として四光波混合光を発生させる構成である。この四光波混合光の強度は光変調信号の強度の三乗に比例するので、外部変調器の駆動電圧が低く非線形媒質に入力する光変調信号の消光比が十分でなくても、高い消光比の光変調信号(四光波混合光)に変換することができる。しかも四光波混合過程はテラビットクラスの光信号に対しても動作可能であるので、高速信号にも十分に対応することができる。
【図面の簡単な説明】
【図1】本発明の光送信回路の第1の実施形態を示す図。
【図2】2波長光源1の構成例を示す図。
【図3】本発明の光送信回路の集積化例を示す図。
【図4】本発明の光送信回路の光出力特性を示す図。
【図5】本発明の光送信回路の効果を確認する実験結果を示す図。
【図6】本発明の光送信回路の第2の実施形態を示す図。
【符号の説明】
1 2波長光源
2,6 外部変調器
3,7 変調器駆動回路
4 非線形媒質
5 光フィルタ
11,12,14 レーザ光源
13 光合波器
15 マッハツェンダ型光変調器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical transmission circuit used in an ultra-high speed / wavelength multiplex optical communication system. In particular, the present invention relates to an optical transmission circuit that generates a high-quality optical modulation signal using an external modulation method.
[0002]
[Prior art]
In recent years, the capacity of optical fiber communication systems has been accelerated due to the development of wavelength division multiplexing technology, but the signal speed per wavelength has also been increasing. At the commercial level, 1 Gbit / s per wavelength has been realized, and 40 Gbit / s per wavelength has already been researched and developed. Improvement of the signal speed per wavelength is considered to be advantageous for increasing the capacity since the frequency use efficiency can be relatively easily improved. In fact, most of the reports on transmission experiments in which the total capacity exceeds 3 Tbit / s use an optical transmission circuit of 40 to 43 Gbit / s per wavelength.
[0003]
An optical transmission circuit that generates such an ultra-high-speed optical modulation signal includes a Mach-Zehnder optical modulator (MNM manufactured by LN) using an electro-optic effect of lithium niobate as an external modulator, and an electric field absorption effect of a semiconductor. The used electro-absorption type optical modulator is used. Since the optical transmission circuit using such an external modulator has a smaller chirping or the like of the generated optical modulation signal than the direct modulation method, it is caused by the group velocity dispersion of the transmission path medium as the signal speed increases. This can suppress the influence of waveform deterioration, which is advantageous for increasing the transmission distance.
[0004]
By the way, since the voltage of the applied electric signal is relatively high at 3 to 6 Vp-p, the external modulator requires a high-output modulator drive circuit having a wide frequency characteristic. Further, since the amplitude of the electric signal input to the modulator driving circuit is as small as 0.5 to 1 Vp-p, the gain must be large. The modulator drive circuit needs to satisfy these three requirements of a wide band, a high output, and a high gain, and it is not easy to realize a modulator drive circuit used for a 40 Gbit / s optical transmission circuit. In the case where an optical transmission circuit that generates an optical modulation signal exceeding 100 Gbit / s will be realized in the future, the realization of a corresponding modulator driving circuit will be a major issue.
[0005]
On the other hand, if the output of the modulator drive circuit is smaller than the voltage required for driving the external modulator, a sufficient ON / OFF ratio (extinction ratio) of the output optical modulation signal cannot be obtained. If the ON / OFF ratio of the optical modulation signal is not sufficient, the transmittable distance becomes short. That is, there is a trade-off between the speedup and the long distance by using the external modulator depending on the performance of the modulator driving circuit.
[0006]
As a method of improving the on / off ratio of the optical modulation signal, the optical modulation signal and CW light are input to a nonlinear medium (dispersion shift fiber) to generate four-wave mixing light, and the four-wave mixing light is used for transmission. (Non-Patent Document 1).
[0007]
[Non-patent document 1]
A. Argyris et. al. , "Extension ratio improvement by four-wave mixing in dispersion-shifted fiber", Electronics Letters, vol. 39, no. 2, 23rd January 2003
[0008]
[Problems to be solved by the invention]
Four-wave mixing light is generated when signal light and pump light are simultaneously input to a nonlinear medium, and has the property of being proportional to the square of the intensity of the signal light and proportional to the intensity of the pump light. In the configuration described in Non-Patent Document 1, if the optical modulation signal is signal light and the CW light is pump light, the intensity of the generated four-wave mixing light is proportional to the square of the intensity of the optical modulation signal. The on / off ratio (extinction ratio) of the optical modulation signal can be improved within the range, but further improvement is difficult.
[0009]
The present invention significantly improves the on / off ratio of an optical modulation signal in which an output amplitude of a modulator driving circuit is insufficient and a sufficient on / off ratio cannot be obtained in an optical transmission circuit using an external modulator. It is an object of the present invention to provide an optical transmission circuit capable of performing the following.
[0010]
[Means for Solving the Problems]
Optical transmitter circuit of the present invention, at the same time strength by an electrical signal (transmission signal) optical frequency f 1 output from the two-wavelength light source and f 2 the continuous light (f 2 -f 1 = Δf ≠ 0) with an external modulator modulated, to generate four-wave mixed light of the light frequency f 3 (= 2f 2 -f 1 ) enter the optical modulation signal of the intensity-modulated optical frequency f 1 and f 2 to the nonlinear medium, an optical filter In this configuration, only four-wave mixing light is selected and output.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
FIG. 1 shows a first embodiment of the optical transmission circuit of the present invention. In the figure, an optical transmission circuit includes a two-wavelength light source 1 that simultaneously outputs continuous light having optical frequencies f 1 and f 2 (f 2 −f 1 = Δf ≠ 0), and continuous light having optical frequencies f 1 and f 2 . enter the intensity modulation at the same time as the external modulator 2, a modulator driving circuit 3 for applying an electrical signal to be transmitted to the external modulator 2, the intensity-modulated light modulated in optical frequency f 1 and f 2 by an electrical signal A nonlinear medium 4 for inputting a signal to generate four-wave mixed light of an optical frequency f 3 (= 2f 2 −f 1 ) and an optical filter 5 for selecting and outputting only the four-wave mixed light of an optical frequency f 3 Be composed.
[0012]
Four-wave mixing light is an extremely high-speed nonlinear optical phenomenon that occurs when signal light and pump light are simultaneously input to a nonlinear medium, and is proportional to the square of the intensity of the signal light and proportional to the intensity of the pump light. Since the present invention generates four-wave mixing light using one of two optically modulated signals simultaneously modulated as signal light and the other as pump light, the on / off ratio (extinction ratio) of the optical modulation signal is Is proportional to the cube of. That is, even when the on / off ratio of each optical modulation signal of the optical frequency f 1, f 2 output from the external modulator 2 is not sufficient, as shown by the example of the eye pattern of FIG. 1, the optical frequency f 3 By extracting the four-wave mixing light, the on / off ratio can be significantly improved (from 3 dB to 9 dB according to the optical output characteristics of FIG. 4 described later).
[0013]
FIG. 2 shows a configuration example of the two-wavelength light source 1. 2-wavelength light source 1 shown in FIG. 2 (1) includes a laser light source 11 and 12 to the output of the optical frequency f 1 and f 2 the continuous light, respectively, an optical multiplexer for multiplexing the output light (e.g., polarization-maintaining optical Coupler 13). The laser light sources 11 and 12 are DFB lasers or external resonance type lasers, and assume that the oscillation light frequency is stabilized.
[0014]
The two-wavelength light source 1 shown in FIG. 2B includes a laser light source 14 that outputs continuous light having an optical frequency of f 1 + Δf / 2, and a Mach-Zehnder optical modulator that modulates the output light with a clock signal having a frequency Δf / 2. 15. This is what is referred to as CS-RZ light source, simultaneously generating continuous light of the optical frequency f 1 and f 2 of the optical frequency difference Delta] f.
[0015]
The double-wavelength light source 1 of this addition to concurrent continuous light of optical frequencies f 1 and f 2, 2 and beat pulses generated mode-locked laser, supercontinuum light source or from the output light from a predetermined optical frequency comb generator A configuration that selectively outputs continuous light having two light frequencies can be used.
[0016]
As the external modulator 2, a Mach-Zehnder optical modulator or an electroabsorption optical modulator can be used.
[0017]
As the nonlinear medium 4, an optical fiber or a semiconductor optical amplifier (SOA) can be used. However, since it is desirable that the four-wave mixing light is generated from the efficiency and that the propagation speeds of the two optical modulation signals are the same, it is desirable that the zero-dispersion optical frequency is close to (f 1 + f 2 ) / 2. .
[0018]
By configuring the external modulator 2 by an electro-absorption optical modulator and configuring the nonlinear medium 4 by a semiconductor optical amplifier, they can be integrated. Further, as shown in FIG. 3, by using a two-beat pulse generating mode-locked laser as the two-wavelength light source 1, an electro-absorption optical modulator constituting the external modulator 2 and a semiconductor optical amplifier constituting the nonlinear medium 4 Can be integrated.
[0019]
FIG. 4 shows the optical output characteristics of the optical transmission circuit of the present invention when a Mach-Zehnder optical modulator is applied to the external modulator 2. The horizontal axis represents the voltage applied to the external modulator normalized by Vπ (the difference between the voltage applied to the external modulator that gives the maximum light output and the minimum light output). The vertical axis indicates the relative value of the output power. The extinction ratio depends on the applied voltage of the external modulator. When the applied voltage is 0 to Vπ / 2, the extinction ratio is 3 dB in the conventional configuration, but 9 dB in the configuration of the present invention, and is high even with a small applied voltage. It can be seen that the ratio has been obtained.
[0020]
FIG. 5 shows an experimental result for confirming the effect of the optical transmission circuit of the present invention. In the experimental system, a G. G. having a length of 20 km as the nonlinear medium 4 in the configuration of FIG. Using a 653 fiber (zero dispersion wavelength: 1551 nm), the optical wavelengths λ 1 and λ 2 corresponding to the optical frequencies f 1 and f 2 were set to 1551.5 nm and 1550.7 nm, and the optical frequency difference Δf was set to about 100 GHz. A Mach-Zehnder optical modulator (Vπ is 4.4 V) was used as the external modulator 2, the drive signal was 10 Gbit / s, and the amplitude was 2.2 Vp-p of Vπ / 2. In the experiment, in order to obtain four-wave mixing light sufficient for observation, an optical amplifier (EDFA) was arranged in front of the nonlinear medium 4 to amplify the optical modulation signal.
[0021]
The experimental result of FIG. 5 is a result of measuring the extinction ratio while changing the bias voltage of the external modulator 2. Assuming that the bias voltage is Vπ / 4, the theoretical values of the conventional configuration and the configuration of the present invention are 3 dB and 9 dB, respectively, and the experimental values are 2.72 dB and 7.07 dB, thereby confirming the effects of the present invention. The reason why the experimental value of the configuration of the present invention is lower than the theoretical extinction ratio is considered to be due to the influence of ASE noise of the optical amplifier used in the experiment.
[0022]
(Second embodiment)
FIG. 6 shows a second embodiment of the optical transmission circuit of the present invention. This embodiment is characterized in that an external modulator 6 is arranged between the external modulator 2 and the nonlinear medium 4, a clock signal is applied to the external modulator 6 via a modulator driving circuit 7, Is to modulate the intensity of the light modulation signal output from the device. Note that the external modulator 6 may be arranged on the input side of the external modulator 2, and the intensity of continuous light input to the external modulator 2 may be modulated by a clock signal. Thus, the optical modulation signals of the optical frequencies f 1 and f 2 output from the external modulator 2 can be RZ (Return-to-Zero) encoded.
[0023]
As the external modulator 6, a Mach-Zehnder type optical modulator or an electro-absorption type optical modulator can be used similarly to the external modulator 2. Further, the external modulators 2 and 6 may both be formed of an electro-absorption type optical modulator, and may be configured to be integrated. Further, as shown in FIG. 3, it is possible to integrate the two-wavelength light source 1 and the nonlinear medium 4 together.
[0024]
【The invention's effect】
As described above, the light transmitting circuit of the present invention, at the same time an intensity-modulated optical-modulated signal of the optical frequency f 1 and f 2 inputted to the nonlinear medium, four-wave mixing one signal light, and the other as a pump light This is a configuration for generating light. Since the intensity of this four-wave mixing light is proportional to the cube of the intensity of the optical modulation signal, a high extinction ratio can be obtained even if the driving voltage of the external modulator is low and the extinction ratio of the optical modulation signal input to the nonlinear medium is not sufficient. (A four-wave mixing light). In addition, since the four-wave mixing process can operate on a terabit-class optical signal, it can sufficiently cope with a high-speed signal.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of an optical transmission circuit of the present invention.
FIG. 2 is a diagram showing a configuration example of a two-wavelength light source 1;
FIG. 3 is a diagram showing an example of integration of the optical transmission circuit of the present invention.
FIG. 4 is a diagram showing optical output characteristics of the optical transmission circuit of the present invention.
FIG. 5 is a diagram showing experimental results for confirming the effect of the optical transmission circuit of the present invention.
FIG. 6 is a diagram showing a second embodiment of the optical transmission circuit of the present invention.
[Explanation of symbols]
1 Two-wavelength light source 2, 6 External modulator 3, 7 Modulator driving circuit 4 Nonlinear medium 5 Optical filter 11, 12, 14 Laser light source 13 Optical multiplexer 15 Mach-Zehnder type optical modulator

Claims (9)

光周波数fとf(f−f=Δf≠0)の連続光を同時に出力する2波長光源と、
前記光周波数fとfの連続光を入力し、外部から印加される電気信号により同時に強度変調する外部変調器と、
送信する電気信号を前記外部変調器に印加する変調器駆動回路と、
前記電気信号により強度変調された光周波数fとfの光変調信号を入力して光周波数f(=2f−f)の四光波混合光を発生させる非線形媒質と、
前記非線形媒質の出力光から前記光周波数fの四光波混合光のみを選択して出力する光フィルタとを備えたことを特徴とする光送信回路。
A two-wavelength light source that simultaneously outputs continuous light having optical frequencies f 1 and f 2 (f 2 −f 1 = Δf ≠ 0);
Enter the continuous light of the optical frequencies f 1 and f 2, and an external modulator for intensity modulation at the same time by an electric signal applied from the outside,
A modulator driving circuit for applying an electric signal to be transmitted to the external modulator;
A non-linear medium that receives light modulation signals of the light frequencies f 1 and f 2 intensity-modulated by the electric signal and generates four-wave mixing light of the light frequency f 3 (= 2f 2 −f 1 );
The optical transmitter circuit characterized by comprising an optical filter which selects and outputs only four-wave mixed light of the light frequency f 3 from the output light of the nonlinear medium.
請求項1に記載の光送信回路において、
前記2波長光源は、光周波数fとfの連続光をそれぞれ出力するレーザ光源と、その出力光を合波する光合波器により構成されたことを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The two-wavelength light source, a laser light source for outputting the optical frequency f 1 and f 2 the continuous light, respectively, the light transmitting circuit, characterized in that the output light is constituted by an optical multiplexer for multiplexing.
請求項1に記載の光送信回路において、
前記2波長光源は、光周波数f+Δf/2 の連続光を出力するレーザ光源と、その出力光を周波数Δf/2のクロック信号で変調し、光周波数fとf+Δf(=f)の連続光を出力するマッハツェンダ型光変調器により構成されたことを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The two-wavelength light source includes a laser light source that outputs continuous light having an optical frequency of f 1 + Δf / 2, and modulates the output light with a clock signal having a frequency of Δf / 2 to generate optical frequencies f 1 and f 1 + Δf (= f 2). An optical transmission circuit comprising a Mach-Zehnder type optical modulator that outputs continuous light.
請求項1に記載の光送信回路において、
前記外部変調器は、電界吸収型光変調器であることを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
An optical transmission circuit, wherein the external modulator is an electro-absorption type optical modulator.
請求項1に記載の光送信回路において、
前記非線形媒質は、光ファイバであることを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The optical transmission circuit, wherein the nonlinear medium is an optical fiber.
請求項1に記載の光送信回路において、
前記非線形媒質は、半導体光増幅器であることを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The optical transmission circuit, wherein the nonlinear medium is a semiconductor optical amplifier.
請求項1に記載の光送信回路において、
前記外部変調器は電界吸収型光変調器であり、前記非線形媒質は半導体光増幅器であり、それらが集積化された構成であることを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The optical transmission circuit, wherein the external modulator is an electro-absorption optical modulator, the nonlinear medium is a semiconductor optical amplifier, and they are integrated.
請求項1に記載の光送信回路において、
前記外部変調器を第1の外部変調器とし、その入力側または出力側に前記連続光または前記光変調信号を所定のクロック信号で変調してパルス化する第2の外部変調器を備えたことを特徴とする光送信回路。
The optical transmission circuit according to claim 1,
The external modulator is a first external modulator, and a second external modulator for modulating the continuous light or the optical modulation signal with a predetermined clock signal to form a pulse is provided on an input side or an output side thereof. An optical transmission circuit characterized by the above-mentioned.
請求項8に記載の光送信回路において、
前記第1の外部変調器および前記第2の外部変調器はともに電界吸収型光変調器であり、それらが集積化された構成であることを特徴とする光送信回路。
The optical transmission circuit according to claim 8,
An optical transmission circuit, wherein the first external modulator and the second external modulator are both electro-absorption optical modulators, and have an integrated configuration.
JP2003048870A 2003-02-26 2003-02-26 Optical transmission circuit Expired - Fee Related JP3878563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048870A JP3878563B2 (en) 2003-02-26 2003-02-26 Optical transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048870A JP3878563B2 (en) 2003-02-26 2003-02-26 Optical transmission circuit

Publications (2)

Publication Number Publication Date
JP2004260542A true JP2004260542A (en) 2004-09-16
JP3878563B2 JP3878563B2 (en) 2007-02-07

Family

ID=33114709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048870A Expired - Fee Related JP3878563B2 (en) 2003-02-26 2003-02-26 Optical transmission circuit

Country Status (1)

Country Link
JP (1) JP3878563B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019858A (en) * 2005-07-07 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiple signal transmitter/receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019858A (en) * 2005-07-07 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiple signal transmitter/receiver
JP4598615B2 (en) * 2005-07-07 2010-12-15 日本電信電話株式会社 Optical wavelength division multiplexing signal transmitter / receiver

Also Published As

Publication number Publication date
JP3878563B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
US6847758B1 (en) Method, optical device, and system for optical fiber transmission
EP2672318B1 (en) Optical amplifier
Durhuus et al. All-optical wavelength conversion by semiconductor optical amplifiers
US5515196A (en) Optical intensity and phase modulators in an optical transmitter apparatus
KR101106933B1 (en) Interferometric operation of electroabsorption modulators
JP2004037985A (en) Optical and gate and waveform shaping device
EP0828174A2 (en) Optical wavelength converter device and optical pulse phase detecting circuit
JPH06326387A (en) Optical soliton generator
US7099359B2 (en) Optical pulse train generator
JP2004129261A (en) Duo binary optical transmission apparatus
US20070104492A1 (en) System for and method of single slideband modulation for analog optical link
US6535316B1 (en) Generation of high-speed digital optical signals
JP2004140833A (en) Optical transmission system
JP3524005B2 (en) Optical pulse generator
JP5312821B2 (en) Optical pulse speed control device and optical pulse speed control method
US11588557B2 (en) Apparatus and method for shifting a frequency of an optical signal
KR100557111B1 (en) Duo-binary optical transmitter
CN107534488A (en) Virtual optical generating means, light transmitting device and virtual optical generation method
US7412173B2 (en) Apparatus for generating optical carrier suppressed return-to-zero
JP3878563B2 (en) Optical transmission circuit
US20030043431A1 (en) Simultaneous demultiplexing and clock recovery of high-speed OTDM signals using a tandem electro-absorption modulator
US20020057478A1 (en) System and transmitter for transmitting optical data
Pelusi 160-Gb/s optical time-division demultiplexing using a Mach–Zehnder modulator in a fiber loop
US8396367B2 (en) High frequency optical processing
JP3786901B2 (en) Optical transmitter and optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees