JP3877758B2 - Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production - Google Patents

Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production Download PDF

Info

Publication number
JP3877758B2
JP3877758B2 JP2006146373A JP2006146373A JP3877758B2 JP 3877758 B2 JP3877758 B2 JP 3877758B2 JP 2006146373 A JP2006146373 A JP 2006146373A JP 2006146373 A JP2006146373 A JP 2006146373A JP 3877758 B2 JP3877758 B2 JP 3877758B2
Authority
JP
Japan
Prior art keywords
cleaning
mask
liquid composition
low molecular
cleaning method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006146373A
Other languages
Japanese (ja)
Other versions
JP2006313753A (en
Inventor
典夫 石川
芳孝 木野村
秀樹 泥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Sanyo Electric Co Ltd
Original Assignee
Kanto Chemical Co Inc
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc, Sanyo Electric Co Ltd filed Critical Kanto Chemical Co Inc
Priority to JP2006146373A priority Critical patent/JP3877758B2/en
Publication of JP2006313753A publication Critical patent/JP2006313753A/en
Application granted granted Critical
Publication of JP3877758B2 publication Critical patent/JP3877758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Detergent Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は洗浄液組成物に関するものであって、特に低分子型有機EL素子製造の真空蒸着工程において発生する、マスクに付着する有機EL物質を除去するための洗浄液組成物および洗浄方法に関する。   The present invention relates to a cleaning liquid composition, and more particularly to a cleaning liquid composition and a cleaning method for removing an organic EL substance adhering to a mask, which is generated in a vacuum vapor deposition process of manufacturing a low molecular organic EL element.

フラットパネルディスプレーは、これからの表示装置として注目されているが、その中でも液晶表示装置や有機EL素子を備えた表示装置が優れている。液晶表示装置は低消費電力の反面、明るい画面を得るためには外部照明(バックライト)を必要とするのに対して、有機EL素子を備えた表示装置は、有機EL素子が自己発光型の素子であることから、液晶表示装置のようなバックライトを必要としないため省電力であるという特徴を有しているとともに、さらに高輝度、広視野角という特徴も併せて有している。
有機EL素子はその有機材料の種類により低分子型有機EL素子と高分子型有機EL素子の二つのタイプがあり、素子製造プロセスが異なる。前者は蒸着法により成膜され、後者は溶剤に溶解し回転塗布法やインクジェット法により成膜される。
低分子型有機EL素子は、ガラス基板上に、例えば(1)陽極、(2)正孔注入層、(3)正孔輸送層、(4)発光層、(5)電子輸送層、(6)陰極の順に層状の構造物をマスクを使用して真空蒸着により形成する。
マスクは、0.1mm程度の厚さの、SUS等の金属をエッチング等により加工して製造したメタルマスクが一般に用いられているが、より精度が高い加工が可能なマスクとして、面方位が(100)や(110)である単結晶シリコンを異方性エッチングにより加工して製造したマスクが提案されている(特許文献1〜3)。
Flat panel displays are attracting attention as future display devices. Among them, liquid crystal display devices and display devices including organic EL elements are excellent. While a liquid crystal display device has low power consumption, it requires external illumination (backlight) to obtain a bright screen, whereas a display device having an organic EL element has a self-luminous type. Since it is an element, it does not require a backlight like a liquid crystal display device, and thus has a feature of power saving, and also has features of high brightness and a wide viewing angle.
There are two types of organic EL elements, low molecular organic EL elements and polymer organic EL elements, depending on the type of organic material, and the element manufacturing process is different. The former is formed by vapor deposition, and the latter is dissolved in a solvent and formed by spin coating or ink jet.
The low molecular weight organic EL device has, for example, (1) an anode, (2) a hole injection layer, (3) a hole transport layer, (4) a light emitting layer, (5) an electron transport layer, (6 ) A layered structure in the order of the cathode is formed by vacuum deposition using a mask.
As a mask, a metal mask manufactured by processing a metal such as SUS by etching or the like with a thickness of about 0.1 mm is generally used. However, as a mask capable of processing with higher accuracy, a plane orientation is ( Masks manufactured by processing single crystal silicon (100) and (110) by anisotropic etching have been proposed (Patent Documents 1 to 3).

低分子型有機EL素子の構造の1例としては、(1)陽極は、例えば酸化インジウム錫(ITO)、(2)正孔注入層は、銅(II)フタロシアニン(CuPc)の単一層、(3)正孔輸送層は、N,N′−ジ(ナフタレン−1−イル)−N,N′−ジフェニル−ベンジジン(NPB)の単一層、(4)発光層は、トリス(8−キノリノラト)アルミニウム(Alq3)にクマリン−6を2%添加した層、(4)電子輸送層は、Alq3の単一層、(5)陰極は、Mg/In合金の層からなる多層構造が開示されている(特許文献4)。
上記の例では正孔注入層としてCuPcが使用されているが、正孔注入層を特に設けない場合もある。正孔輸送層には通常NPBが用いられている。
発光層はキレート金属錯体や縮合多環芳香族化合物をホストとして、各種のドーパントをドープして得ている。青色の発光には縮合多環芳香族化合物である2−tert−ブチル−9、10−ジ(ナフタレン−2−イル)アントラセン(TBADN)等が用いられ、赤色、緑色の発光には、キレート金属錯体である、Alq3やビス(ベンゾキノリナト)ベリリウム錯体(BeBq2)等が用いられる。
発光層にTBADNが用いられる場合は、一般に電子輸送層(例えばAlq3)が用いられるが、発光層がAlq3等のキレート金属錯体である場合には電子輸送層は省略されることがある(特許文献5)。
As an example of the structure of the low molecular organic EL element, (1) the anode is, for example, indium tin oxide (ITO), (2) the hole injection layer is a single layer of copper (II) phthalocyanine (CuPc), ( 3) The hole transport layer is a single layer of N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (NPB), and (4) the light-emitting layer is tris (8-quinolinolato). A layer in which 2% of coumarin-6 is added to aluminum (Alq3), (4) the electron transport layer is a single layer of Alq3, and (5) the cathode is a multilayer structure composed of a layer of Mg / In alloy ( Patent Document 4).
In the above example, CuPc is used as the hole injection layer, but the hole injection layer is not particularly provided. NPB is usually used for the hole transport layer.
The light emitting layer is obtained by doping various dopants using a chelate metal complex or a condensed polycyclic aromatic compound as a host. 2-tert-butyl-9, 10-di (naphthalen-2-yl) anthracene (TBADN), which is a condensed polycyclic aromatic compound, is used for blue light emission, and chelate metal for red and green light emission. Complexes such as Alq3 and bis (benzoquinolinato) beryllium complex (BeBq2) are used.
When TBADN is used for the light emitting layer, an electron transport layer (for example, Alq3) is generally used. However, when the light emitting layer is a chelate metal complex such as Alq3, the electron transport layer may be omitted (patent document). 5).

これらの層のパターン形成は、基板にマスクを近づけ、マスクを介して、陰極、正孔注入層、正孔輸送層、発光層、電子輸送層、陽極を真空蒸着により形成することが必要であるが、特にRGB層の微細なパターニングのための蒸着用マスクは高精細であるため製造するのが困難で、さらに非常に高価である。しかし、低分子型有機EL素子における有機層のパターン形成においては、同じマスクを数回用いて蒸着すると、マスク上に有機材料が堆積して付着するので、高精細なマスクのパターンを基板に正確に転写できなくなってしまう。したがって、高精細なマスクパターンを実現するためには、数回用いた高価なマスクを廃棄せざるを得ず、生産コストの面から量産を難しくしている一因となっている。なお開発段階にある有機EL分野において、マスクを反復使用することによりコストを下げようとする試みや検討は現段階においてなされていない。   For pattern formation of these layers, it is necessary to form a cathode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an anode by vacuum deposition through a mask close to a substrate. However, an evaporation mask for fine patterning of the RGB layer in particular is difficult to manufacture because of its high definition, and is very expensive. However, in the pattern formation of the organic layer in the low molecular organic EL element, if the same mask is used for vapor deposition several times, the organic material is deposited and adhered on the mask. It becomes impossible to transfer to. Therefore, in order to realize a high-definition mask pattern, an expensive mask that has been used several times must be discarded, which is one of the reasons that makes mass production difficult in terms of production cost. In the organic EL field in the development stage, no attempt or examination for reducing the cost by repeatedly using the mask has been made at this stage.

特開2002−110345号公報JP 2002-110345 A 特開2002−305079号公報JP 2002-305079 A 特開2002−313564号公報JP 2002-313564 A 特開2003−109757号公報JP 2003-109757 A 特開2003−257664号公報JP 2003-257664 A

前記の現状を踏まえて、本発明者らは、低分子型有機EL素子製造に際し用いられるマスクを、できるだけ回数多く反復使用するという新しい発想のもと、効率のよいマスク用洗浄液を開発することに着目した。即ち、本発明が解決しようとする課題は、低分子型有機EL素子製造の真空蒸着工程においてマスクに付着する種々の有機材料を、効率よく除去することができる洗浄液組成物および洗浄方法を提供するという全く新しい発想に基づくものである。   Based on the above-mentioned present situation, the present inventors have developed an efficient mask cleaning solution based on a new idea of repeatedly using a mask used in manufacturing a low-molecular-type organic EL element as many times as possible. Pay attention. That is, the problem to be solved by the present invention is to provide a cleaning liquid composition and a cleaning method capable of efficiently removing various organic materials adhering to a mask in a vacuum vapor deposition step of manufacturing a low molecular weight organic EL element. This is based on a completely new idea.

本発明者らは、上記課題を解決すべく鋭意研究を重ねる中で、1種類または2種類以上の非プロトン性極性溶剤を含む洗浄液組成物が、低分子型有機EL素子製造の真空蒸着工程においてマスクに付着する種々の有機材料に対して、優れた洗浄力を有することを見い出し、さらに研究を進めた結果、本発明を完成するに至った。   In the vacuum deposition process of manufacturing a low molecular organic EL device, the inventors of the present invention have made extensive studies to solve the above-described problems. As a result of finding further excellent detergency for various organic materials adhering to the mask and further researching, the present invention has been completed.

すなわち、本発明は、低分子型有機EL素子製造の真空蒸着工程において使用するマスクの洗浄液組成物であって、非プロトン性極性溶剤を1種類または2種類以上含む洗浄液組成物に関する。
また、本発明は、低分子型有機EL素子構造が、N,N′−ジ(ナフタレン−1−イル)−N,N′−ジフェニル−ベンジジンおよび銅(II)フタロシアニンおよびトリス(8−キノリノラト)アルミニウムを含む、前記洗浄液組成物に関する。
さらに、本発明は、非プロトン性極性溶剤が、N,N−ジメチルホルムアミド、N−メチル−2−ピロリジノン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、1、4−ジオキサンまたはシクロヘキサノンである、前記洗浄液組成物に関する。
また、本発明は、非プロトン性極性溶剤が、N−メチル−2−ピロリジノンまたはシクロヘキサノンである、前記洗浄液組成物に関する。
さらに、本発明は、洗浄液組成物に含まれる非プロトン性極性溶剤が1種類である、前記洗浄液組成物に関する。
また、本発明は、低分子型有機EL素子製造の真空蒸着工程において使用するマスクの洗浄方法であって、前記洗浄液組成物を用いて、浸漬またはジェット水流により洗浄する、前記洗浄方法に関する。
さらに、本発明は、超音波洗浄を併用する、前記洗浄方法に関する。
また、本発明は、室温で洗浄する、前記洗浄方法に関する。
さらに、本発明は、マスクを洗浄後、ハイドロフルオロエーテルによってリンスする、前記洗浄方法に関する。
That is, the present invention relates to a cleaning liquid composition for a mask used in a vacuum vapor deposition process for producing a low molecular weight organic EL element, and relates to a cleaning liquid composition containing one or more aprotic polar solvents.
Further, according to the present invention, the low molecular organic EL device structure has N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine, copper (II) phthalocyanine and tris (8-quinolinolato). The present invention relates to the cleaning liquid composition containing aluminum.
Furthermore, the present invention relates to the cleaning liquid composition, wherein the aprotic polar solvent is N, N-dimethylformamide, N-methyl-2-pyrrolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, 1,4-dioxane or cyclohexanone. .
The present invention also relates to the cleaning liquid composition, wherein the aprotic polar solvent is N-methyl-2-pyrrolidinone or cyclohexanone.
Furthermore, this invention relates to the said cleaning liquid composition whose aprotic polar solvent contained in a cleaning liquid composition is 1 type.
The present invention also relates to a method for cleaning a mask used in a vacuum vapor deposition step for manufacturing a low molecular weight organic EL device, wherein the cleaning method is performed by immersion or jet water flow.
Furthermore, the present invention relates to the cleaning method using ultrasonic cleaning together.
The present invention also relates to the cleaning method, wherein the cleaning is performed at room temperature.
Furthermore, the present invention relates to the cleaning method, wherein the mask is rinsed with hydrofluoroether after being cleaned.

本発明の洗浄液組成物は、各種のマスク表面に付着した1種類または2種類以上の低分子型有機EL材料を、1種類の洗浄液で除去することができるために、マスクの再使用が可能となる。このことは、高精細なマスクパターンが求められる当該分野においては、マスクの作成やマスクを廃棄する際の費用が大幅に削減されるという、全く予測できない実用上の効果をもたらすものである。しかも、本発明の洗浄液組成物は、1種類の洗浄液で1種類または2種類以上の低分子型有機EL材料を洗浄できるので、洗浄液の種類の異なった洗浄槽を必要としない結果、洗浄プロセスが非常に簡便になる効果をもたらす。そして洗浄液組成物に含まれる非プロトン性有機溶剤が1種類である場合には、蒸留して得られた溶剤の組成を調整することなく、そのまま本発明の洗浄液組成物として再使用することができる。
また、本発明の洗浄液組成物は、室温で洗浄することができるために、マスクの材料が特に金属材料、例えばSUS、ニッケル(Ni)単体、鉄(Fe)などとNiの合金(例えば、Fe−Ni合金)などである場合であっても、マスクパターンの伸縮や歪みが生じず、反復使用の際においても基板にパターンを正確に転写することができる。
さらに、本発明の洗浄液組成物を用いてマスクを洗浄した後、乾燥速度が速いハイドロフルオロエーテルを用いてリンスを行うが、本発明の洗浄液組成物は、ハイドロフルオロエーテルに対して良好な溶解性を有するため、容易にリンスされる。
Since the cleaning liquid composition of the present invention can remove one or more kinds of low molecular organic EL materials adhering to various mask surfaces with one type of cleaning liquid, the mask can be reused. Become. In the field where a high-definition mask pattern is required, this brings about an unpredictable practical effect that the cost for creating and discarding the mask is greatly reduced. Moreover, since the cleaning liquid composition of the present invention can clean one type or two or more types of low-molecular-weight organic EL materials with one type of cleaning liquid, the cleaning process does not require different types of cleaning liquids. The effect is very simple. And when there is one kind of aprotic organic solvent contained in the cleaning liquid composition, it can be reused as it is as the cleaning liquid composition of the present invention without adjusting the composition of the solvent obtained by distillation. .
In addition, since the cleaning liquid composition of the present invention can be cleaned at room temperature, the mask material is particularly a metal material such as SUS, nickel (Ni) alone, iron (Fe), and an alloy of Ni (for example, Fe -Ni alloy) or the like, the mask pattern does not expand or contract, and the pattern can be accurately transferred to the substrate even during repeated use.
Further, after cleaning the mask using the cleaning liquid composition of the present invention, rinsing is performed using hydrofluoroether having a high drying rate. The cleaning liquid composition of the present invention has good solubility in hydrofluoroether. It is easily rinsed.

本発明の洗浄液組成物に用いられる、非プロトン性極性有機溶剤は、例えば、N−メチル−2−ピロリジノン、N,N-ジメチルホルムアミドなどのアミド系溶剤や、シクロヘキサノン、シクロペンタノンのような環状ケトン、1,3−ジオキサン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテルのようなエーテル系溶剤が挙げられ、これらのうち、N−メチル−2−ピロリジノンまたはシクロヘキサノンが特に好ましい。
さらに、当該非プロトン性極性有機溶剤はこれらの1種類を用いることができるだけではなく、これらの有機溶剤の2種類以上を組み合わせた洗浄液組成物も、洗浄能力に優れるので好ましい。
また、使用済みの洗浄液組成物を蒸留して再使用する場合、複数の有機溶剤からなる洗浄液組成物であっても、蒸留して回収した液の組成を調整することにより再使用することが可能である。
Examples of the aprotic polar organic solvent used in the cleaning liquid composition of the present invention include amide solvents such as N-methyl-2-pyrrolidinone and N, N-dimethylformamide, and cyclic solvents such as cyclohexanone and cyclopentanone. Examples include ether solvents such as ketone, 1,3-dioxane, diethylene glycol dimethyl ether, and ethylene glycol dimethyl ether, and among these, N-methyl-2-pyrrolidinone or cyclohexanone is particularly preferable.
Furthermore, not only one of these aprotic polar organic solvents can be used, but also a cleaning liquid composition combining two or more of these organic solvents is preferable because of its excellent cleaning ability.
In addition, when a used cleaning liquid composition is distilled and reused, even a cleaning liquid composition composed of a plurality of organic solvents can be reused by adjusting the composition of the liquid recovered by distillation. It is.

さらに、本発明の洗浄液組成物は、低分子型有機EL素子製造の真空蒸着工程に使用するマスクを浸漬またはジェット水流による洗浄方法により室温で洗浄することができる。このため、洗浄時に高温度にする必要がないので、マスクが洗浄の際に歪むことを防ぐことができる。ここで、室温とは10〜40℃であり、好ましくは20〜30℃であり、さらに好ましくは約25℃である。
また、本発明の洗浄液組成物は、マスク洗浄の際に超音波洗浄を併用することにより、溶解能が向上し、洗浄時間を短縮することができる。
さらに、本発明の洗浄液組成物は、乾燥速度が速い各種のリンス液を使用してリンスを行うことができ、例えば、乾燥速度の速いリンス液として知られているハイドロフルオロエーテルは、リンス液として特に好ましい。
Furthermore, the cleaning liquid composition of the present invention can be cleaned at room temperature by a cleaning method using immersion or jet water flow for a mask used in a vacuum vapor deposition process for producing a low molecular weight organic EL device. For this reason, since it is not necessary to make high temperature at the time of washing | cleaning, it can prevent that a mask is distorted at the time of washing | cleaning. Here, room temperature is 10 to 40 ° C, preferably 20 to 30 ° C, and more preferably about 25 ° C.
Moreover, the cleaning liquid composition of the present invention can improve the dissolving ability and shorten the cleaning time by using ultrasonic cleaning in combination with the mask cleaning.
Furthermore, the cleaning liquid composition of the present invention can be rinsed using various rinsing liquids having a high drying rate. For example, a hydrofluoroether known as a rinsing liquid having a high drying rate can be used as a rinsing liquid. Particularly preferred.

以下に、EL表示装置の製造方法について説明する。ガラス基板上にTFTおよび透明電極を形成し、さらに、ホール輸送層を形成したガラス基板を鉛直下方にして、真空チャンバ内へ挿入する。同チャンバ内には、図1に示す態様にて、予め発光層の形状に合わせて開口されたマスク20が配置されている。詳しくは、このマスク20は、保持台24上に配置されたマスクフレーム21によって固定されている。
この工程は、カラー表示装置としての各原色R、G、Bに対応して各別に行われる。すなわち、ホール輸送層の形成されたガラス基板1は、上記各原色R、G、Bに対応する発光層を形成するための各別の真空チャンバへと順々に挿入される。そして、これら各真空チャンバには、上記マスク20として、上記透明電極(陽極)のうち、所定の原色の発光に用いられる透明電極(陽極)に対応した部分のみが開口されたマスクが備えられている。すなわち、各真空チャンバ内には、R、G、Bのいずれかの色に対応したマスクが備えられている。これにより、各チャンバにおいて、各原色に対応した発光層をそれぞれ所定の位置に形成することができる。
Hereinafter, a method for manufacturing the EL display device will be described. The TFT and the transparent electrode are formed on the glass substrate, and the glass substrate on which the hole transport layer is formed is vertically lowered and inserted into the vacuum chamber. In the chamber, a mask 20 previously opened in accordance with the shape of the light emitting layer is disposed in the manner shown in FIG. Specifically, the mask 20 is fixed by a mask frame 21 disposed on the holding table 24.
This step is performed separately for each of the primary colors R, G, and B as a color display device. That is, the glass substrate 1 on which the hole transport layer is formed is sequentially inserted into separate vacuum chambers for forming the light emitting layers corresponding to the primary colors R, G, and B. Each of these vacuum chambers is provided with a mask in which only a portion corresponding to the transparent electrode (anode) used for light emission of a predetermined primary color is opened as the mask 20 in the transparent electrode (anode). Yes. That is, each vacuum chamber is provided with a mask corresponding to one of R, G, and B colors. Thereby, in each chamber, the light emitting layer corresponding to each primary color can be formed in a predetermined position, respectively.

先の図1において、保持台24の下方に配置された蒸着源(ソース)30から、発光層の材料を加熱して蒸発させることで、上記マスクの開口部を介してガラス基板1表面に同材料を蒸着させる。
このマスク20を介した発光層の形成態様を、図2に模式的に示す。図2に示すように、各透明電極(陽極)のうち、各チャンバ内で該当する原色に対応した透明電極の形成領域以外がマスク20で覆われる。そして、該当する原色に対応したEL材料(有機EL材料)は、ソース30内で加熱され、気化されてマスク20の開口部20hを介してガラス基板1(正確にはそのホール輸送層)上に蒸着形成される。
なお、マスクの材質としては、SUS、Ni単体、FeなどとNiの合金(例えばFe−Ni合金)、またはシリコン等の半導体などが挙げられる。
In FIG. 1 above, the material of the light emitting layer is heated and evaporated from a vapor deposition source (source) 30 disposed below the holding table 24, so that the same material as the surface of the glass substrate 1 is formed through the opening of the mask. Deposit material.
The formation mode of the light emitting layer through the mask 20 is schematically shown in FIG. As shown in FIG. 2, the mask 20 covers the transparent electrode (anode) except for the transparent electrode forming region corresponding to the corresponding primary color in each chamber. Then, the EL material (organic EL material) corresponding to the corresponding primary color is heated and vaporized in the source 30, and is deposited on the glass substrate 1 (more precisely, its hole transport layer) through the opening 20 h of the mask 20. Vapor deposition is formed.
Examples of the material for the mask include SUS, Ni alone, Fe alloy and Ni alloy (for example, Fe-Ni alloy), and semiconductor such as silicon.

以下に本発明の実施例と比較例とを共に示し、本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、当該技術分野における洗浄液として公知のものは従来存在していないところ、参考例で用いられる有機溶媒も、有機EL材料の洗浄用としては新規な溶媒であるが、これらは、他分野の有機化合物を除去するために用いられる一般的な溶媒であり、参考のために実験したものである。   Examples of the present invention and comparative examples are shown below, and the present invention will be described in detail. However, the present invention is not limited to these examples. Although there are no known cleaning liquids in the technical field, the organic solvents used in the reference examples are also novel solvents for cleaning organic EL materials, but these are organic solvents in other fields. It is a common solvent used to remove compounds and is experimental for reference.

低分子型有機EL材料洗浄試験1:洗浄性、リンス性
表1に示す、5種類の低分子型有機EL材料について、洗浄性(除去時間)及びリンス性を調べた。洗浄性については各材料を蒸着した金属片を室温(25℃)で洗浄液に浸漬することにより、また、リンス性については、洗浄後のリンス液として住友スリーエムのノべックHFE7100(ハイドロフルオロエーテル)を用い、室温(25℃)で、リンス液を満たした二つの槽に1分間ずつ浸漬する「2槽処理」により調べた。その結果を表2に示す。
さらに、洗浄性については、浸漬法による洗浄に超音波を併用した場合についても調べた。それらの結果を比較例とともに、表3に示す。
Low molecular organic EL material cleaning test 1: Detergency and rinsing properties The five low molecular organic EL materials shown in Table 1 were examined for cleaning properties (removal time) and rinsing properties. For cleaning properties, the metal pieces deposited with each material were immersed in a cleaning solution at room temperature (25 ° C.). For rinsing properties, Sumitomo 3M Novec HFE7100 (hydrofluoroether) was used as the rinsing solution after cleaning. ) And at room temperature (25 ° C.), it was examined by “two-tank treatment” in which each bath was immersed in two baths filled with the rinse solution for 1 minute. The results are shown in Table 2.
Furthermore, the cleaning property was also examined when ultrasonic waves were used in combination with the cleaning by the dipping method. The results are shown in Table 3 together with comparative examples.

Figure 0003877758
Figure 0003877758

Figure 0003877758
Figure 0003877758

Figure 0003877758
Figure 0003877758

表2、表3に示すように、比較例に挙げた溶剤は、浸漬による洗浄方法によっても、超音波を併用する洗浄方法においても、1種類の溶剤で、室温(25℃)で、A〜Eの、全ての種類の低分子型有機EL材料を除去することは出来なかった。
これに対して実施例の溶剤は、1種類の有機溶剤により、浸漬による洗浄方法を用いて、室温(25℃)で、A〜Eの、全ての種類の低分子型有機EL材料を除去することができた。
また、浸漬による洗浄方法に超音波を併用することにより、室温(25℃)における洗浄性はさらに高まった。
As shown in Tables 2 and 3, the solvents listed in the comparative examples are one kind of solvent at room temperature (25 ° C.), both in the cleaning method by immersion and in the cleaning method using ultrasonic waves. It was not possible to remove all kinds of low molecular organic EL materials of E.
On the other hand, the solvent of an Example removes all kinds of low molecular-type organic EL materials of AE at room temperature (25 degreeC) using the washing | cleaning method by immersion with one type of organic solvent. I was able to.
Moreover, the cleaning performance at room temperature (25 ° C.) was further enhanced by using ultrasonic waves in combination with the cleaning method by immersion.

真空チャンバ内でのマスクとガラス基板との位置合わせ態様を示す斜視図。The perspective view which shows the alignment aspect of the mask and glass substrate in a vacuum chamber. EL素子の蒸着形成態様を模式的に示す側面図。The side view which shows typically the vapor deposition formation aspect of EL element.

符号の説明Explanation of symbols

1・・ガラス基板
1a・・アラインメントマーク
11・・透明電極
20・・マスク
20a・・アラインメントマーク
20h・・開口部
21・・マスクフレーム
22・・CCDカメラ
24・・保持台
30・・ソース
1. Glass substrate 1a Alignment mark 11 Transparent electrode 20 Mask 20a Alignment mark 20h Opening 21 Mask frame 22 CCD camera 24 Holding stand 30 Source

Claims (4)

低分子型有機EL素子製造時の真空蒸着工程において使用するマスクを、非プロトン性極性溶媒を含む洗浄液組成物を用いて浸漬またはジェット水流により洗浄後、ハイドロフルオロエーテルによってリンスする洗浄方法であって、低分子型有機EL素子構造が、N,N′−ジ(ナフタレン−1−イル)−N,N′−ジフェニル−ベンジジン、銅(II)フタロシアニンおよびトリス(8−キノリノラト)アルミニウムを含み、前記非プロトン性極性溶媒が、N,N−ジメチルホルムアミド、N−メチル−2−ピロリジノン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、1、4−ジオキサンおよびシクロヘキサノンからなる群から選択される1種または2種以上である、前記洗浄方法。   A cleaning method of rinsing with a hydrofluoroether after cleaning a mask used in a vacuum deposition process at the time of manufacturing a low molecular weight organic EL device by immersion or jet water flow using a cleaning liquid composition containing an aprotic polar solvent. The low molecular weight organic EL device structure contains N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine, copper (II) phthalocyanine and tris (8-quinolinolato) aluminum, The aprotic polar solvent is one or more selected from the group consisting of N, N-dimethylformamide, N-methyl-2-pyrrolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, 1,4-dioxane and cyclohexanone. The cleaning method. 非プロトン性極性溶媒がN−メチル−2−ピロリジノンである、請求項1に記載の洗浄方法。   The cleaning method according to claim 1, wherein the aprotic polar solvent is N-methyl-2-pyrrolidinone. 浸漬またはジェット水流による洗浄の際に、超音波洗浄を併用する、請求項1または2に記載の洗浄方法。   The cleaning method according to claim 1 or 2, wherein ultrasonic cleaning is used in combination with cleaning by immersion or jet water flow. 10〜40℃で洗浄する、請求項1〜3のいずれかに記載の洗浄方法。   The washing | cleaning method in any one of Claims 1-3 wash | cleaned at 10-40 degreeC.
JP2006146373A 2006-05-26 2006-05-26 Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production Expired - Lifetime JP3877758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146373A JP3877758B2 (en) 2006-05-26 2006-05-26 Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146373A JP3877758B2 (en) 2006-05-26 2006-05-26 Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003406394A Division JP3833650B2 (en) 2003-12-04 2003-12-04 Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production

Publications (2)

Publication Number Publication Date
JP2006313753A JP2006313753A (en) 2006-11-16
JP3877758B2 true JP3877758B2 (en) 2007-02-07

Family

ID=37535132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146373A Expired - Lifetime JP3877758B2 (en) 2006-05-26 2006-05-26 Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production

Country Status (1)

Country Link
JP (1) JP3877758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138580A1 (en) * 2018-01-15 2019-07-18 シャープ株式会社 Method for manufacturing display device, method for cleaning vapor deposition mask, and rinsing liquid
JP7126830B2 (en) * 2018-01-19 2022-08-29 スリーエム イノベイティブ プロパティズ カンパニー Method for regenerating fluorinated liquids and regenerating apparatus using same
JP2021000603A (en) 2019-06-21 2021-01-07 スリーエム イノベイティブ プロパティズ カンパニー Method for purifying fluorinated liquid and purification apparatus using same

Also Published As

Publication number Publication date
JP2006313753A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP3833650B2 (en) Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production
US9564605B2 (en) Transparent display devices including a polymer substrate comprising colored particles with improved flexible and mechanical properties
KR101368158B1 (en) Organic light emitting diodde display and method of fabricating the same
WO2006041027A1 (en) Functional substrate
US10707079B2 (en) Orthogonal patterning method
JP2017524228A (en) Pattern formation of organic EL elements by photolithography
TW200526814A (en) Cleaning method, cleaning apparatus and electro optical device
JP4734508B2 (en) EL display and manufacturing method thereof
JP3877758B2 (en) Cleaning liquid composition and cleaning method for mask used in vacuum deposition process of low molecular organic EL device production
TWI781168B (en) Cleaning method and rinsing composition of mask for vacuum evaporation
Zhou et al. Dewetting‐Assisted Patterning of Organic Semiconductors for Micro‐OLED Arrays with a Pixel Size of 1 µm
TWI705133B (en) Mask cleaning solution composition
KR20070004224A (en) Apparatus and method for purging shadow mask of organic light emitting diode
TWI393774B (en) Detergent
KR20130024590A (en) Mask for manufacturing thin film and method of cleaning the same
JP2014232727A (en) Organic layer etching apparatus and organic layer etching method
KR102079016B1 (en) Fluorous Developer Solutions with Additives for Highly Fluorinated Photoresists and Processing Method for Organic Light-Emitting Diodes display
KR20130068571A (en) Washing method for mask used in vapor deposition step in production of organic el device
JP2005353502A (en) Manufacturing method of organic electroluminescent element
KR102398908B1 (en) Organic light emitting diode and display device comprising the same
JP2006092899A (en) Display element
KR20070065646A (en) Mask cleansing method and mask cleansing apparatus
JP2003217848A (en) Manufacturing method for organic electroluminescence element
KR20080046406A (en) Cleaning solution for shadow mask and cleaning method using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Ref document number: 3877758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term