JP3877386B2 - Method and apparatus for evaluating magnetoresistive head - Google Patents

Method and apparatus for evaluating magnetoresistive head Download PDF

Info

Publication number
JP3877386B2
JP3877386B2 JP23153397A JP23153397A JP3877386B2 JP 3877386 B2 JP3877386 B2 JP 3877386B2 JP 23153397 A JP23153397 A JP 23153397A JP 23153397 A JP23153397 A JP 23153397A JP 3877386 B2 JP3877386 B2 JP 3877386B2
Authority
JP
Japan
Prior art keywords
magnetic field
permanent magnet
longitudinal bias
head
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23153397A
Other languages
Japanese (ja)
Other versions
JPH1173612A (en
Inventor
啓介 深町
千春 三俣
治 下江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP23153397A priority Critical patent/JP3877386B2/en
Publication of JPH1173612A publication Critical patent/JPH1173612A/en
Application granted granted Critical
Publication of JP3877386B2 publication Critical patent/JP3877386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はハードディスク装置、VTRなどの磁気記録装置に使用される磁気ヘッドに係り、特に磁気ヘッドの信号検出部に磁気抵抗効果素子を用いた磁気抵抗効果型ヘッドの評価方法および評価装置に関する。
【0002】
【従来の技術】
ハードディスク装置、VTR等の磁気記録装置の小型大容量化は急激な勢いで進展している。このような動向に呼応して磁気ヘッドの高性能化が進められ、電磁誘導方式である薄膜磁気ヘッドに代わるものとして、強磁性体の薄膜による磁気抵抗効果現象を利用した磁気抵抗効果型磁気ヘッド(Magneto Resistive head 以下、MRヘッドと称す。)へと発展してきた。MRヘッドはパーマロイなどの強磁性体薄膜の磁気抵抗効果を利用したもので、記録媒体との相対速度に依らず大きな再生出力が得られ、高密度記録の再生に適しているが、その反面バルクハウゼンノイズ等による不安定な再生特性を有するヘッドが生成される場合がある。
【0003】
バルクハウゼンノイズは、強磁性体内の磁壁が薄膜の欠陥や夾残物などにひっかかりながら移動することに起因するが、この様なバルクハウゼンノイズが生じるヘッドでは、再生動作に信頼性が期待できない。このバルクハウゼンノイズを抑制するため、縦バイアスを印加する磁区制御膜をMR層の両側に配置し、MR層を単磁区化する素子構造が考案されている。
【0004】
は永久磁石バイアス方式のMRヘッド を記録媒体が対面する側から示した拡大正面図である。永久磁石バイアス方式のMRヘッドでは、磁気抵抗効果を発揮するMR層1、非磁性層であるスペーサ層2、MR層1に対してSALバイアス(y方向の横バイアス磁界)を与えるSAL(Soft Adjacent Layer)3を備えている。この3層構造は上部絶縁層4と下部絶縁層5との間に設けられている。MR層1にx方向の縦バイアス磁界を与えるための永久磁石層7の積層方法にアバッテド接合と呼ばれるものがある。これは、MR層1/スペーサ層2/SAL3の3層にテーパー部を形成し、その上に永久磁石層7を成膜するもので、再生の安定性を向上させる上で有効な構造の一つである。永久磁石層7はx方向へ磁化されており、永久磁石層7からMR層1に磁気異方性磁界を与え、MR層1をx方向へ単磁区化する働きをする。MRヘッドの再生動作の際には、リード層8および永久磁石層7からMR層1にx方向へ定常電流が与えられる。電流がMR層1を流れる際にSAL3がもたらす静磁結合エネルギーにより、MR層1に対して横バイアス磁界がy方向に与えられる。永久磁石層7によりMR層1がx方向に単磁区化され且つSAL3から横バイアス磁界が与えられることにより、MR層1の磁界変化に対する抵抗変化が直線性を有する状態に設定される。
【0005】
【発明が解決しようとする課題】
ところで、MRヘッドは記録媒体上を数十nmと非常に低い所を浮上しながら記録再生動作を行うものである。図10は記録媒体上を浮上している時の再生ヘッドの模式図である。記録媒体29上に書き込まれた記録ビット30からの漏れ磁界31は記録媒体近傍では非常に大きい。このため、ABS(Air BearingSurface)面近傍の永久磁石の磁化状態が、記録ビット30からの漏れ磁界31により変化し、再生の安定性を劣化させる可能性がある。これを回避するためには永久磁石の保磁力を向上させる必要がある。
【0006】
従来、永久磁石の保磁力の測定は、モニタ用のダミー基板上に成膜した永久磁石の単層膜(下地がある場合は下地と永久磁石の2層膜)のB−H曲線を測定するという方法が採られてきた。しかし、縦バイアスに影響を与えるのは、図のMR層1/スペーサ層2/SAL3の近傍の永久磁石であり、微少な領域の永久磁石の特性が重要になる。また、硬磁性体は軟磁性体と接した状態で形成されると接合界面で交換結合し、保磁力や角形性が低下するという現象がある。このため、MR層1、SAL3に接した永久磁石は前記B−H曲線とは異なる特性を示す可能性がある。
【0007】
更に、MR層1/スペーサ層2/SAL3と永久磁石層7のアバッテッド接合の形成工程は、例えば図に示す様なリフトオフ法で行われる。図11(a)において、まずSAL3/スペーサ層2/MR層1の上に感光性レジスト9をコートした後、Si0210をスッパタなどにより成膜する。次にSiO210の余分な部分をエッチングで除去したあと、RIE(Reactive Ion Eching)などによりレジストを選択的にエッチングし、図11(b)の様な形状を形成する。その後イオンミリングでテーパー部を形成した後、下地膜6および永久磁石膜7、電極膜8を順次スパッタなどで成膜し(図11(c))、最後にレジスト9とSiO210を有機溶剤などで除去し、アバッテド接合が形成される(図11(d))。この時問題になるのは、図11(c)の工程でイオンミリングが不十分でSAL3の残りがあると、前述のように保磁力や角形性が劣化する可能性がある。
【0008】
また、永久磁石の特性はその下地となる表面の清浄度や結晶構造などにより敏感に変化する。そのため、永久磁石膜が成膜される表面にSiO210やレジスト9などがミリングにより再付着した場合も、同様に永久磁石の特性が劣化することが考えられる。このため、実素子形状の永久磁石の特性は前記単層膜のB−H曲線で測定できない場合がある。本発明は、かかる従来例の問題点に鑑み創作されたものであり、再生安定性に影響を及ぼす永久磁石の保磁力や角形性などの特性を、実素子形状で測定する評価装置および評価方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明の MRヘッドの第1の評価装置は、前記MRヘッドの縦方向に磁界を印加して永久磁石の着磁状態を変化させるための着磁磁界発生用コイルと、前記MRヘッドの縦方向に交番磁界を印加する手段と、前記交番磁界の変化に対するMRヘッドの抵抗変化を測定する測定手段とを備えたことを特徴とする。
【0010】
本発明のMRヘッドの第2の評価装置は、前記MRヘッドの縦方向に磁界を印加して永久磁石の着磁状態を変化させるための着磁磁界発生用コイルと、前記MRヘッドの横方向に磁界を印加して永久磁石を減磁させるための減磁磁界発生用コイルと、前記MRヘッドの縦方向に交番磁界を印加する手段と、前記交番磁界の変化に対するMRヘッドの抵抗変化を測定する測定手段とを備えたことを特徴とする。
【0011】
本発明のMRヘッドの評価方法は、前記MRヘッドにおいて、縦バイアスを印加する手段である永久磁石に対し外部から着磁磁界を前記縦バイアス方向に印加し、前記永久磁石の磁化状態を変化させた後に、前記MRヘッドの縦方向の交番磁界の変化に対する前記MRヘッドの抵抗変化を測定し、前記抵抗変化から計算される縦バイアス磁界の前記着磁磁界依存性を測定することを特徴とする。
【0012】
または本発明のMRヘッドの評価方法は、前記MRヘッドにおいて、縦バイアスを印加する手段である永久磁石に対し外部から前記縦バイアスにほぼ垂直方向の減磁磁界を印加し、前記永久磁石の磁化状態を変化させた後に、前記MRヘッドの縦方向の交番磁界の変化に対する前記MRヘッドの抵抗変化を測定し、前記抵抗変化から計算される縦バイアス磁界の前記減磁磁界依存性を測定することを特徴とする。
【0013】
【発明の実施形態】
(実施例1)以下図を用いて本発明の構成とその原理を説明する。図は永久磁石バイアス型MRヘッドの再生部分の模式図である。MR層1の両側には永久磁石層7があり、矢印の方向に着磁され、MR層1に対しトラック幅方向(以降、縦方向と称する)に縦バイアス磁界が与えられる。MRヘッドにバイアス電流を通電すると、SAL3がもたらす静磁結合エネルギーによりMR高さ方向(以降、横方向と称する)に横バイアス磁界が発生する。MR層1の磁化の向きθMRを図のように定義すると、MRヘッドの抵抗はθMRに対して図の様な関係になるため、抵抗変化の線形性が良いθMR=45度の状態になるように、前記縦バイアス磁界と横バイアス磁界が設定される。図で永久磁石の着磁の向きと逆方向に外部磁界を加えていくと、θMRはプラス側に回転しθMR=180度で回転は止まる。この時の抵抗は外部磁界が増加するにしたがって図の矢印のように変化し、θMR=90度の時に最小値を示す。
【0014】
は縦方向の外部磁界に対するMRヘッドの抵抗変化の測定結果である。抵抗が最小値を示す状態はθMRが90度であり、永久磁石からのバイアスが打ち消された状態にあるので、この時の外部磁界の大きさが縦バイアス磁界である。縦バイアス磁界は永久磁石層7からMR層1へ供給される磁束の総量に比例するため、永久磁石層の残留磁化膜厚積に比例すると推測される。図に永久磁石の残留磁化膜厚積の変化による縦バイアス磁界の変化を示した。残留磁化膜厚積はモニタ用のダミー基板のB−H曲線から計算される残留磁化の値、縦バイアス磁界はMRヘッドの縦方向外部磁界に対する抵抗変化曲線から計算した。図のように縦バイアス磁界と永久磁石の残留磁化膜厚積が比例していることから、縦バイアス磁界の測定により永久磁石の残留磁化が把握できることが確認できた。このことより、MRヘッド用ウェハ上にMR高さ加工後と同じ形状のテスト素子を配置しておき、ウェハ製造の途中で縦バイアス磁界を測定することで、永久磁石の残留磁化をウェハ段階でモニタできる事が明らかである。
【0015】
以上のように、本発明の第1の実施例により縦バイアス磁界の測定により永久磁石の残留磁化をウェハ段階で把握できることが示された。
【0016】
(実施例2)図は永久磁石の特性モニタ用のダミー基板のB−H曲線である。保磁力が1.5kOeで保磁力角形比SR*も 0.91を示しており十分な特性が得られている。縦バイアス磁界は永久磁石の残留磁化に比例すると考えられるため、外部から永久磁石に縦方向の磁界(以降、着磁磁界と称する)を印加して着磁状態をを変化させた後に、MRヘッドの縦バイアス磁界を測定した。この時縦バイアス磁界の前記着磁磁界の依存性を測定すれば永久磁石の保磁力および保磁力角形比を測定できると考えられる。図(a)は縦バイアス磁界の着磁磁界依存性の測定結果である。測定の手順を以下に示す。まず初期状態として縦方向に+2.5kOeの磁界を与えた後、縦バイアス磁界を測定し、次に−0.1〜−2.5kOeの間を0.1kOeステップで徐々に着磁磁界を減少させ、それぞれのステップで縦バイアス磁界を測定する。つづいて、+0.1〜+2.5kOeの間を0.1kOeステップで徐々に着磁磁界を増加させ、同様に縦バイアス磁界を測定する。このように測定した結果が図(a)であり、縦バイアス磁界が0となる時の着磁磁界の大きさを保磁力Hc、保磁力角形比SR*を図中に示すように、保磁力Hcでの接線および初期状態の縦バイアス磁界との交点と、初期状態との距離をAとしてSR* = A/Hcで定義した。この結果、保磁力は1.5kOe、保磁力角形比は0.87と計算され、図の特性モニタ用のダミー基板とほぼ同様の結果が得られた。
【0017】
次に、特性モニタ用のダミー基板上の永久磁石膜の特性と実際のMRヘッドの永久磁石膜の特性との対応が取れない場合について示す。図(b)はアバッテト゛接合形成時に図11(c)のテーパー部を形成する工程において、イオンミリングが不十分な事によりSAL3が完全に取り除かれていない状態で永久磁石を成膜したウェハについての測定結果である。なお、この時の特性モニタ用のダミーの特性は図9とほとんど同じである。図(b)より保磁力が1.0kOeに低下しており、保磁力近傍の変化が2段になっている。これは、SAL3と永久磁石層7が交換結合をした事に原因があると考えられる。
【0018】
このようにして本発明の第2の実施例により、MRヘッドに対して着磁磁界を印加した後に、MRヘッドの縦バイアス磁界を測定し、この縦バイアス磁界の着磁磁界の依存性を測定することで、実素子形状の永久磁石の保磁力および保磁力角形比などを測定できる事が示された。また、この測定方法は前記MRヘッド用ウェハ上のテスト素子に適用可能であり、ダミー基板上の永久磁石膜のB−H測定よりも正確に永久磁石膜の特性を測定できる評価方法である事が明らかになった。
【0019】
(実施例3)図10のように記録媒体上の記録ビットからの漏れ磁界はMRヘッドに対して横方向に印加され、この影響で永久磁石が減磁し再生特性が不安定になる可能性がある。このため、横方向の磁界(以下、減磁磁界と称する)に対する永久磁石の保磁力も重要である。図は実施例2で測定した2つのMRヘッドについて、縦バイアス磁界の減磁磁界依存性の測定結果である。測定手順は初期状態として、縦方向に+2.5kOeの着磁磁界を与え正規の方向に着磁した後、縦バイアス磁界を測定し、次に横方向の減磁磁界を0.1〜2.5kOeの間で0.1kOeステップで徐々に増加させ、それぞれのステップで縦バイアス磁界を測定した。この後、再度+2.5kOeの着磁磁界を与え永久磁石を正規の方向に着磁した後、今度は横方向の減磁磁界を−0.1〜−2.5kOeの間を0.1kOeステップで徐々に減少させ、実施例2と同様の測定を行った。初期状態の縦バイアス磁界に対して縦バイアス磁界が90%に減磁する時の減磁磁界をこの場合の保磁力とすると、図(a)の永久磁石の特性が良いヘッドは1.0kOe、図(b)の永久磁石の特性が悪いヘッドでは0.6kOeの保磁力になる。これらの結果の違いは実施例2と同じ理由によるものである。この測定方法は実施例2の測定と比較して、永久磁石の外部磁界に対する安定性をより現実に近い形で評価していると考えられる。なお、図の縦バイアス磁界は初期状態の縦バイアス磁界の値で規格化している。
【0020】
このように本発明の第3の実施例によれば、MRヘッドに対し減磁磁界を印加した後に、MRヘッドの縦バイアス磁界を測定し、この縦バイアス磁界の減磁磁界の依存性を測定することで、実素子形状の永久磁石の外部磁界に対する安定性を現実のMRヘッドの動作条件に近い形で評価できる事が示された。
【0021】
(実施例4)図1は本発明の評価装置を概略的に表すブロック図である。図1に おいて、13と14はMRヘッドに対しそれぞれ縦方向、横方向に外部磁界を印加するためのヘルムホルツコイルであり、本実施例では上下が横方向、左右が縦方向となるように設定されている。縦および横方向の外部磁界はヘルムホルツコイル用電源19、20で駆動され、制御用コンピュータ27から設定できるようになっている。ヘルムホルツコイル内にはX−Y−Z−θステージ17があり、その上にMRヘッド用ウェハ11を固定できるようになっている。プローブ12 はヘルムホルツコイルの中心部分に設けられており、ウェハ上のMRヘッドの各電極端子に電気的に接触できるようになっている。このプローブ12と各電極端子とは、X−Y−Z−θステージ17およびこれを制御するX−Y−Z−θコントローラ23によって位置合わせされる。この部分を光学系18を介してCCD カメラ24で撮像し、得られた情報を画像処理などを用いて位置を認識できるようにすれば、位置合わせの自動化も可能となる。
【0022】
プローブ 12を位置合わせした後、定電流源25からMRヘッドの電流端子に対しバイアス電流が通電される。つづいてヘルムホルツコイル13、14によりMRヘッドに縦方向、もしくは横方向の磁界を変化させ、そのときどきにおける出力電圧をプローブ12を介して電圧計26で読み取り、抵抗値の外部磁界依存性を測定する。測定したデータは制御用コンピュータ27に取り込まれ縦バイアス磁界や再生出力、再生波形の対称性などの値が計算され結果表示部28に表示される。
【0023】
着磁磁界用コイル15、および減磁磁界用コイル16はヘルムホルツコイル中央の磁界分布を乱さないように、ヘルムホルツコイル中心から離れた場所に設置されており、それぞれ着磁磁界用コイル電源22、減磁磁界用コイル電源21により駆動される。また、コイルギャップの先端がウェハ上のMRヘッドに物理的に接触しないよう、コイルギャップの先端がプローブ12の先端よりわずかに高い位置になるように設置されている。プローブ位置から着磁磁界用コイル15、減磁磁界用コイル16までのX方向、Y方向の距離に関する情報は、予め制御用コンピュータ27のメモリーに格納されている。実際にウェハ上のMRヘッドに着磁磁界、減磁磁界を印加する場合は、まず対象とするMRヘッドをプローブ12に位置合わせした後、制御用コンピュータのメモリー上に格納された情報を基にX方向、Y方向の距離だけ移動するようX−Y−Z−θコントローラ23へ命令し、続いて、着磁用コイル電源22、減磁用コイル電源21が任意強度の磁界を発生させることで実現できる。なお、ウェハ上のヘッド位置における着磁磁界と減磁磁界は予め校正されている。
【0024】
本実施例でのMRヘッドの評価装置は、MRヘッドの縦バイアス磁界の着 磁磁界依存性、および減磁磁界依存性を測定する事を目的としている。このため、前述のように着磁用コイルおよび減磁用コイルでヘッドの永久磁石の磁化状態を変化させながら、縦方向の外部磁界に対する抵抗変化の測定することで、図10、図11に示す縦バイアス磁界の着磁磁界および減磁磁界依存性を測定でき、永久磁石の保磁力、保磁力角形比などの特性を実素子形状で測定可能となる。
【0025】
このように本発明の第4の実施例によれば、MRヘッドの永久磁石の磁化状態を変化させながら外部磁界に対する抵抗変化を測定し、この抵抗変化から得られる縦バイアス磁界の着磁磁界依存性および減磁磁界依存性を測定することで、永久磁石の保磁力、保磁力角形比などの特性を実素子形状で測定可能となるMRヘッド用ウェハの評価装置が提供できることが示された。
【0026】
【発明の効果】
本発明の評価方法および評価装置によれば、縦バイ アスを印加する手段として永久磁石を用いたMRヘッドについて、永久磁石の着磁状態を変化させながら縦バイアス磁界を測定することにより、永久磁石の保磁 力、角形性などの特性を実素子形状で測定できる。また、MRヘッド用ウェハ上に配置されたMR高さ加工後と同じ形状のテスト素子を、本評価方法および評価 装置で測定することにより、前記永久磁石の特性をウェハ段階で測定可能となる。このため、永久磁石の特性不良に伴うMRヘッドの再生不安定性をMRヘッド 用ウェハ製造工程の早い段階で把握でき、MRヘッドを単体として完成させる前に特性の不良なウェハを選別できるため、不良品に伴う後工程の製造コストが低減できる。
【図面の簡単な説明】
【図1】本発明によるMRヘッドの評価装置の構成の概略ブロック図
【図】永久磁石バイアス型MRヘッドの再生部分の模式図
【図】MR層の磁化の向きと素子抵抗の関係
【図】縦方向の外部磁界に対する素子抵抗の変化
【図】永久磁石の残留磁化膜厚積と縦バイアス磁界との関係
【図】永久磁石の特性モニタ用ダミー基板のB−H曲線
【図】本発明による実素子形状での永久磁石の着磁磁界依存性
【図】本発明による実素子形状での永久磁石の減磁磁界依存性
【図】MRヘッド再生部分の記録媒体対向面から見た拡大図
【図10】MRヘッドの再生動作時の模式図
【図11】アバッテド接合の形成工程
【符号の説明】
1 MR層、2 スペーサ層、3 SAL、4 上部絶縁層、5 下部絶縁層、6 下地層、7 永久磁石層、8 電極層、9 レジスト層、10 SiO2層、 11 MRヘッド用ウェハ、12 プローブ、13 縦方向磁界用ヘルムホルツコイル、14 横方向磁界用ヘルムホルツコイル、15 着磁磁界用コイル、16 減磁磁界用コイル、17 X−Y−Z−θステージ、18 光学系、19 縦方向磁界用ヘルムホルツコイル電源、20 横方向磁界用ヘルムホルツコイル電源、21 着磁磁界用コイル電源、22 減磁磁界用コイル電源、23X−Y−Z−θコントローラ、24 CCDカメラ、25 定電流源、26電圧計、27 制御用コンピュータ、28 結果表示部、29 記録媒体、30記録ビット、31 漏れ磁界
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic head used in a magnetic recording apparatus such as a hard disk device or a VTR, and more particularly to a magnetoresistive head evaluation method and evaluation apparatus using a magnetoresistive element in a signal detection unit of the magnetic head.
[0002]
[Prior art]
Increasing the size and capacity of magnetic recording devices such as hard disk drives and VTRs is rapidly increasing. In response to these trends, the performance of magnetic heads has been improved. Magnetoresistance effect type magnetic heads using the magnetoresistance effect phenomenon due to the thin film of ferromagnetic material can be used as an alternative to thin film magnetic heads using electromagnetic induction. (Magneto Resistive head, hereinafter referred to as MR head). The MR head uses the magnetoresistive effect of a ferromagnetic thin film such as permalloy, and can produce a large reproduction output regardless of the relative speed with the recording medium and is suitable for reproduction of high-density recording. A head having unstable reproduction characteristics due to Hausen noise or the like may be generated.
[0003]
Barkhausen noise is caused by the fact that the domain wall in the ferromagnetic body moves while being caught by defects in the thin film or residues of the thin film. However, in the head in which such Barkhausen noise is generated, reliability in reproducing operation cannot be expected. In order to suppress this Barkhausen noise, an element structure has been devised in which a magnetic domain control film for applying a longitudinal bias is arranged on both sides of the MR layer so that the MR layer is made into a single magnetic domain.
[0004]
FIG. 9 is an enlarged front view showing a permanent magnet bias type MR head from the side where the recording medium faces. In the MR head of the permanent magnet bias system, SAL (Soft Adjacent) that applies SAL bias (lateral bias magnetic field in the y direction) to the MR layer 1 that exhibits the magnetoresistive effect, the spacer layer 2 that is a nonmagnetic layer, and the MR layer 1. Layer) 3. This three-layer structure is provided between the upper insulating layer 4 and the lower insulating layer 5. A method of laminating the permanent magnet layer 7 for applying a longitudinal bias magnetic field in the x direction to the MR layer 1 is called an abutted junction. This is a structure in which a taper portion is formed in three layers of MR layer 1 / spacer layer 2 / SAL 3 and a permanent magnet layer 7 is formed thereon, which is an effective structure for improving reproduction stability. One. The permanent magnet layer 7 is magnetized in the x direction, and applies a magnetic anisotropic magnetic field from the permanent magnet layer 7 to the MR layer 1 to make the MR layer 1 a single magnetic domain in the x direction. During the reproducing operation of the MR head, a steady current is applied from the lead layer 8 and the permanent magnet layer 7 to the MR layer 1 in the x direction. A transverse bias magnetic field is applied to the MR layer 1 in the y direction by magnetostatic coupling energy provided by the SAL 3 when a current flows through the MR layer 1. When the MR layer 1 is single-domained in the x direction by the permanent magnet layer 7 and a lateral bias magnetic field is applied from the SAL 3, the resistance change with respect to the magnetic field change of the MR layer 1 is set in a linear state.
[0005]
[Problems to be solved by the invention]
Incidentally, the MR head performs a recording / reproducing operation while flying over a very low place of several tens of nanometers on the recording medium. FIG. 10 is a schematic diagram of the reproducing head when flying over the recording medium. The leakage magnetic field 31 from the recording bit 30 written on the recording medium 29 is very large in the vicinity of the recording medium. For this reason, there is a possibility that the magnetization state of the permanent magnet near the ABS (Air Bearing Surface) surface changes due to the leakage magnetic field 31 from the recording bit 30 and deteriorates the reproduction stability. In order to avoid this, it is necessary to improve the coercive force of the permanent magnet.
[0006]
Conventionally, the coercive force of a permanent magnet is measured by measuring a BH curve of a single layer film of a permanent magnet formed on a monitor dummy substrate (if there is a base, a two-layer film of the base and permanent magnet). The method has been adopted. However, it is the permanent magnet in the vicinity of MR layer 1 / spacer layer 2 / SAL3 in FIG. 9 that affects the longitudinal bias, and the characteristics of the permanent magnet in a very small region are important. Further, when the hard magnetic material is formed in contact with the soft magnetic material, there is a phenomenon that exchange coupling occurs at the bonding interface, and coercive force and squareness are reduced. For this reason, there is a possibility that the permanent magnets in contact with the MR layer 1 and the SAL 3 exhibit characteristics different from the BH curve.
[0007]
Furthermore, the formation process of Abatteddo junction MR layer 1 / spacer layer 2 / SAL3 and the permanent magnet layer 7 is performed by a lift-off method, such as shown in FIG. 4, for example. 11 (a), the after coating the photosensitive resist 9 on the first SAL3 / spacer layer 2 / MR layer 1 is deposited by like Suppata the Si0 2 10. Then after removal of the excess portion of the SiO 2 10 by etching, selectively etching the resist or the like RIE (Reactive Ion Eching), to form a kind of shape in FIG. 11 (b). After then forming the tapered portion by ion milling, the base film 6 and the permanent magnet film 7 was formed in such sequential sputtering electrode film 8 (FIG. 11 (c)), finally the organic solvent of the resist 9 and SiO 2 10 removed, etc., Abattedo junction is formed (FIG. 11 (d)). Become this time problem, when the ion milling process shown in FIG. 11 (c) there are remaining insufficient SAL3, there is a possibility that the coercive force and squareness is degraded, as described above.
[0008]
In addition, the characteristics of the permanent magnet change sensitively depending on the cleanliness of the underlying surface and the crystal structure. Therefore, even when SiO 2 10 or resist 9 is reattached to the surface on which the permanent magnet film is formed by milling, the characteristics of the permanent magnet may be similarly deteriorated. For this reason, the characteristics of a permanent magnet having an actual element shape may not be measured by the BH curve of the single layer film. The present invention was created in view of the problems of the conventional example, and an evaluation apparatus and an evaluation method for measuring characteristics such as coercive force and squareness of a permanent magnet that affect reproduction stability in an actual element shape. Is to provide.
[0009]
[Means for Solving the Problems]
A first evaluation apparatus for an MR head according to the present invention comprises a magnetizing field generating coil for changing the magnetization state of a permanent magnet by applying a magnetic field in the longitudinal direction of the MR head, and the longitudinal direction of the MR head. Means for applying an alternating magnetic field and measuring means for measuring a resistance change of the MR head with respect to the change of the alternating magnetic field.
[0010]
A second evaluation apparatus for an MR head according to the present invention comprises a magnetizing magnetic field generating coil for changing a magnetization state of a permanent magnet by applying a magnetic field in the longitudinal direction of the MR head, and a lateral direction of the MR head. A coil for generating a demagnetizing magnetic field for demagnetizing the permanent magnet by applying a magnetic field to the magnetic head, means for applying an alternating magnetic field in the longitudinal direction of the MR head, and measuring a resistance change of the MR head with respect to the change of the alternating magnetic field And a measuring means.
[0011]
In the MR head evaluation method of the present invention, in the MR head, a magnetizing magnetic field is applied from the outside to the permanent magnet, which is a means for applying a longitudinal bias, in the longitudinal bias direction to change the magnetization state of the permanent magnet. And measuring a change in resistance of the MR head with respect to a change in the longitudinal alternating magnetic field of the MR head, and measuring the magnetization field dependence of a longitudinal bias magnetic field calculated from the change in resistance. To do.
[0012]
Alternatively, in the MR head evaluation method of the present invention, in the MR head, a demagnetizing magnetic field in a direction substantially perpendicular to the longitudinal bias is externally applied to a permanent magnet that is a means for applying a longitudinal bias, and the magnetization of the permanent magnet is performed. After changing the state, measuring a change in resistance of the MR head with respect to a change in the longitudinal alternating magnetic field of the MR head, and measuring the dependence of the longitudinal bias magnetic field calculated from the change in resistance on the demagnetizing field. It is characterized by.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1) The configuration and principle of the present invention will be described below with reference to the drawings. FIG. 2 is a schematic diagram of a reproducing portion of the permanent magnet bias type MR head. There are permanent magnet layers 7 on both sides of the MR layer 1, which are magnetized in the direction of the arrow, and a longitudinal bias magnetic field is applied to the MR layer 1 in the track width direction (hereinafter referred to as the longitudinal direction). When a bias current is applied to the MR head, a transverse bias magnetic field is generated in the MR height direction (hereinafter referred to as the transverse direction) by magnetostatic coupling energy provided by SAL3. When the magnetization direction θ MR of the MR layer 1 is defined as shown in FIG. 2 , the resistance of the MR head has the relationship as shown in FIG. 3 with respect to θ MR , and therefore the resistance change linearity is good θ MR = 45 degrees The longitudinal bias magnetic field and the lateral bias magnetic field are set so as to satisfy the following conditions. In FIG. 2 , when an external magnetic field is applied in the direction opposite to the direction of magnetization of the permanent magnet, θ MR rotates to the plus side, and rotation stops at θ MR = 180 degrees. The resistance at this time changes as shown by the arrow in FIG. 3 as the external magnetic field increases, and shows a minimum value when θ MR = 90 degrees.
[0014]
FIG. 4 shows the measurement results of the resistance change of the MR head with respect to the external magnetic field in the vertical direction. The state where the resistance shows the minimum value is θ MR of 90 degrees, and the bias from the permanent magnet is cancelled. Therefore, the magnitude of the external magnetic field at this time is the longitudinal bias magnetic field. Since the longitudinal bias magnetic field is proportional to the total amount of magnetic flux supplied from the permanent magnet layer 7 to the MR layer 1, it is estimated that the longitudinal bias magnetic field is proportional to the residual magnetization film thickness product of the permanent magnet layer. FIG. 5 shows the change in the longitudinal bias magnetic field due to the change in the residual magnetization film thickness product of the permanent magnet. The residual magnetization film thickness product was calculated from the residual magnetization value calculated from the BH curve of the dummy substrate for monitoring, and the longitudinal bias magnetic field was calculated from the resistance change curve with respect to the longitudinal external magnetic field of the MR head. As shown in FIG. 5 , since the longitudinal bias magnetic field is proportional to the residual magnetization film thickness product of the permanent magnet, it was confirmed that the residual magnetization of the permanent magnet can be grasped by measuring the longitudinal bias magnetic field. From this, a test element having the same shape as that after MR height processing is placed on the MR head wafer, and the longitudinal bias magnetic field is measured in the course of wafer manufacture, so that the residual magnetization of the permanent magnet can be measured at the wafer stage. Obviously it can be monitored.
[0015]
As described above, according to the first embodiment of the present invention, it was shown that the residual magnetization of the permanent magnet can be grasped at the wafer stage by measuring the longitudinal bias magnetic field.
[0016]
(Embodiment 2) FIG. 6 is a BH curve of a dummy substrate for monitoring the characteristics of a permanent magnet. The coercive force is 1.5 kOe, and the coercive force squareness ratio SR * is 0.91. Thus, sufficient characteristics are obtained. Since the longitudinal bias magnetic field is considered to be proportional to the residual magnetization of the permanent magnet, the longitudinal direction magnetic field (hereinafter referred to as a magnetizing magnetic field) is applied to the permanent magnet from the outside to change the magnetization state, and then the MR head. The longitudinal bias magnetic field of was measured. At this time, it is considered that the coercive force and the coercive force squareness ratio of the permanent magnet can be measured by measuring the dependence of the longitudinal bias magnetic field on the magnetization field. 7 (a) is a magnetizing field dependence of the measurement result of the longitudinal bias field. The measurement procedure is shown below. First, after applying a magnetic field of +2.5 kOe in the longitudinal direction as an initial state, the longitudinal bias magnetic field is measured, and then the magnetizing magnetic field is gradually reduced by 0.1 kOe step between -0.1 and -2.5 kOe. The longitudinal bias magnetic field is measured at each step. Subsequently, the magnetization field is gradually increased between +0.1 and +2.5 kOe in 0.1 kOe steps, and the longitudinal bias magnetic field is measured in the same manner. Thus measured results is FIG. 7 (a), the magnetizing magnetic field of magnitude when the longitudinal bias field is zero coercivity Hc, the coercivity squareness ratio SR * as shown in the figure, the coercive SR * = A / Hc, where A is the distance between the tangent at the magnetic force Hc and the point of intersection with the longitudinal bias magnetic field in the initial state and the initial state. As a result, the coercive force was calculated to be 1.5 kOe, and the coercive force squareness ratio was calculated to be 0.87, and almost the same result as that of the dummy substrate for characteristic monitoring shown in FIG. 6 was obtained.
[0017]
Next, a case where the correspondence between the characteristics of the permanent magnet film on the dummy substrate for characteristic monitoring and the characteristics of the permanent magnet film of the actual MR head cannot be obtained will be described. In the step of forming the taper portion shown in FIG. 7 (b) 11 at the time Abatteto Bu bonding (c), the wafer SAL3 was deposited a permanent magnet in a state that is not completely removed by ion milling is insufficient It is a measurement result. The characteristics of the dummy for monitoring the characteristics at this time are almost the same as those in FIG. Figure 7 than coercivity (b) has decreased to 1.0KOe, changes in the vicinity coercivity is in two stages. This is considered to be caused by the exchange coupling between the SAL 3 and the permanent magnet layer 7.
[0018]
In this way, according to the second embodiment of the present invention, after applying the magnetizing magnetic field to the MR head, the longitudinal bias magnetic field of the MR head is measured, and the dependence of the longitudinal bias magnetic field on the magnetizing magnetic field is measured. By doing so, it was shown that the coercive force, coercive force squareness ratio, etc. of the permanent magnet of the actual element shape can be measured. Further, this measurement method can be applied to the test element on the MR head wafer, and is an evaluation method capable of measuring the characteristics of the permanent magnet film more accurately than the BH measurement of the permanent magnet film on the dummy substrate. Became clear.
[0019]
(Embodiment 3) As shown in FIG. 10 , the leakage magnetic field from the recording bit on the recording medium is applied in the lateral direction with respect to the MR head. There is. For this reason, the coercive force of the permanent magnet with respect to a lateral magnetic field (hereinafter referred to as a demagnetizing magnetic field) is also important. FIG. 8 shows measurement results of the demagnetizing field dependence of the longitudinal bias magnetic field for the two MR heads measured in Example 2. The measurement procedure is as follows. In the initial state, a magnetizing magnetic field of +2.5 kOe is applied in the vertical direction, magnetized in the normal direction, the longitudinal bias magnetic field is measured, and then the demagnetizing magnetic field in the horizontal direction is set to 0.1 to 2.. The longitudinal bias magnetic field was measured at each step with a gradual increase in 0.1 kOe steps between 5 kOe. After that, after applying a magnetizing magnetic field of +2.5 kOe again and magnetizing the permanent magnet in the normal direction, this time, the demagnetizing magnetic field in the lateral direction is set between -0.1 and -2.5 kOe by 0.1 kOe step. The same measurement as in Example 2 was performed. When the demagnetizing field when the longitudinal bias magnetic field with respect to the longitudinal bias field in the initial state is demagnetized to 90% and the coercive force in this case, the head characteristics of the permanent magnets is good in FIG. 8 (a) 1.0kOe FIG. 8B shows a coercive force of 0.6 kOe in a head having poor permanent magnet characteristics. The difference in these results is due to the same reason as in Example 2. Compared with the measurement of Example 2, this measurement method is considered to evaluate the stability of the permanent magnet with respect to the external magnetic field in a more realistic manner. Note that the longitudinal bias magnetic field in FIG. 8 is normalized by the value of the longitudinal bias magnetic field in the initial state.
[0020]
As described above, according to the third embodiment of the present invention, after applying a demagnetizing magnetic field to the MR head, the longitudinal bias magnetic field of the MR head is measured, and the dependence of the longitudinal bias magnetic field on the demagnetizing magnetic field is measured. By doing so, it was shown that the stability of an actual element-shaped permanent magnet against an external magnetic field can be evaluated in a manner close to the actual operating conditions of an MR head.
[0021]
(Embodiment 4) FIG. 1 is a block diagram schematically showing an evaluation apparatus of the present invention. In FIG. 1, reference numerals 13 and 14 denote Helmholtz coils for applying an external magnetic field to the MR head in the vertical direction and the horizontal direction, respectively. In this embodiment, the vertical direction is the horizontal direction and the horizontal direction is the vertical direction. Is set. The external magnetic fields in the vertical and horizontal directions are driven by Helmholtz coil power supplies 19 and 20 and can be set from the control computer 27. An XYZ-θ stage 17 is provided in the Helmholtz coil, and the MR head wafer 11 can be fixed thereon. The probe 12 is provided at the central portion of the Helmholtz coil, and can be brought into electrical contact with each electrode terminal of the MR head on the wafer. The probe 12 and each electrode terminal are aligned by an XYZ-θ stage 17 and an XYZ-θ controller 23 that controls the XYZ-θ stage 17. If this part is imaged by the CCD camera 24 via the optical system 18 and the position of the obtained information can be recognized using image processing or the like, the positioning can be automated.
[0022]
After aligning the probe 12, a bias current is applied from the constant current source 25 to the current terminal of the MR head. Subsequently, the Helmholtz coils 13 and 14 change the longitudinal or transverse magnetic field in the MR head, and the output voltage at that time is read by the voltmeter 26 via the probe 12 to measure the dependence of the resistance on the external magnetic field. . The measured data is taken into the control computer 27 and values such as longitudinal bias magnetic field, reproduction output, and symmetry of the reproduction waveform are calculated and displayed on the result display unit 28.
[0023]
The magnetizing magnetic field coil 15 and the demagnetizing magnetic field coil 16 are installed at locations away from the center of the Helmholtz coil so as not to disturb the magnetic field distribution at the center of the Helmholtz coil. It is driven by the magnetic field coil power supply 21. In addition, the coil gap tip is placed slightly higher than the tip of the probe 12 so that the tip of the coil gap does not physically contact the MR head on the wafer. Information about the distances in the X and Y directions from the probe position to the magnetizing magnetic field coil 15 and the demagnetizing magnetic field coil 16 is stored in the memory of the control computer 27 in advance. When a magnetizing magnetic field and a demagnetizing magnetic field are actually applied to the MR head on the wafer, the target MR head is first aligned with the probe 12, and then based on information stored in the memory of the control computer. By instructing the XYZ-θ controller 23 to move by the distance in the X direction and the Y direction, the magnetizing coil power supply 22 and the demagnetizing coil power supply 21 generate a magnetic field of arbitrary strength. realizable. The magnetizing magnetic field and the demagnetizing magnetic field at the head position on the wafer are calibrated in advance.
[0024]
The MR head evaluation apparatus in this embodiment is intended to measure the dependence of the longitudinal bias magnetic field of the MR head on the magnetization field and the demagnetization field. Therefore, while changing the magnetized state of the permanent magnet of the head magnetizing coil and demagnetization coils as described above, by measuring the resistance change with respect to the longitudinal direction of the external magnetic field, 10, 11 The dependence of the longitudinal bias magnetic field on the magnetizing field and the demagnetizing field can be measured, and characteristics such as the coercive force and coercive force squareness ratio of the permanent magnet can be measured in the actual element shape.
[0025]
As described above, according to the fourth embodiment of the present invention, the resistance change with respect to the external magnetic field is measured while changing the magnetization state of the permanent magnet of the MR head, and the longitudinal bias magnetic field obtained from this resistance change depends on the magnetization field. It was shown that an MR head wafer evaluation apparatus capable of measuring characteristics such as coercive force and coercive force squareness ratio of a permanent magnet in an actual element shape can be provided.
[0026]
【The invention's effect】
According to the evaluation method and the evaluation apparatus of the present invention, by measuring the longitudinal bias magnetic field while changing the magnetization state of the permanent magnet for the MR head using the permanent magnet as means for applying the longitudinal bias, the permanent magnet Characteristics such as coercive force and squareness can be measured with the actual element shape. In addition, by measuring a test element having the same shape as that after MR height processing arranged on the MR head wafer with this evaluation method and evaluation apparatus, the characteristics of the permanent magnet can be measured at the wafer stage. Therefore, the instability of the MR head due to the permanent magnet characteristic failure can be grasped at an early stage of the MR head wafer manufacturing process, and wafers with poor characteristics can be selected before the MR head is completed as a single unit. The manufacturing cost of the post process associated with the non-defective product can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a configuration of an MR head evaluation apparatus according to the present invention. FIG. 2 is a schematic diagram of a reproducing portion of a permanent magnet bias MR head. FIG. 3 is a relation between magnetization direction of MR layer and element resistance. [Fig. 4 ] Change in element resistance against external magnetic field in the vertical direction [Fig. 5 ] Relationship between the remanent magnetization film thickness product of the permanent magnet and the longitudinal bias magnetic field [Fig. 6 ] BH curve of the dummy substrate for monitoring the characteristics of the permanent magnet [ 7] the present invention demagnetizing field dependence of the permanent magnets in the actual element shape by magnetizing field dependence [8] the present invention of the permanent magnets in the actual element shape according to FIG. 9 MR head reproducing portion of the recording medium Enlarged view seen from the opposite surface [Fig. 10 ] Schematic diagram of MR head during playback operation [Fig. 11 ] Abutted junction formation process [Explanation of symbols]
1 MR layer, 2 spacer layer, 3 SAL, 4 upper insulating layer, 5 lower insulating layer, 6 underlayer, 7 permanent magnet layer, 8 electrode layer, 9 resist layer, 10 SiO 2 layer, 11 MR head wafer, 12 Probe, 13 Helmholtz coil for longitudinal magnetic field, 14 Helmholtz coil for transverse magnetic field, 15 Coil for magnetic field, 16 Coil for demagnetizing magnetic field, 17 XYZ-θ stage, 18 Optical system, 19 Longitudinal magnetic field Helmholtz coil power supply, 20 transverse magnetic field Helmholtz coil power supply, 21 magnetizing magnetic field coil power supply, 22 demagnetizing magnetic field coil power supply, 23X-Y-Z-θ controller, 24 CCD camera, 25 constant current source, 26 voltage 27, computer for control, 28 result display section, 29 recording medium, 30 recording bits, 31 leakage magnetic field

Claims (4)

永久磁石を用いて磁気抵抗効果素子に縦バイアスを印加する手段を有する磁気抵抗効果型ヘッドの評価装置であって、
前記縦バイアスに同方向で前記永久磁石の磁化状態を変化させるための着磁磁界発生用コイルと、交番磁界を縦バイアス方向に印加する手段と、この交番磁界の変化に対する前記磁気抵抗効果型ヘッドの磁気抵抗効果素子の抵抗変化を計測する測定手段と、を備えたことを特徴とする磁気抵抗効果型ヘッドの評価装置。
A magnetoresistive head evaluation apparatus having means for applying a longitudinal bias to a magnetoresistive element using a permanent magnet,
Magnetizing magnetic field generating coil for changing the magnetization state of the permanent magnet in the same direction as the longitudinal bias, means for applying an alternating magnetic field in the longitudinal bias direction, and the magnetoresistive head for changes in the alternating magnetic field A magnetoresistive head evaluation apparatus comprising: a measuring unit that measures a resistance change of the magnetoresistive element.
前記縦バイアスにほぼ垂直方向に磁界を印加することによって前記永久磁石を減磁させる減磁磁界発生用コイルを備えたことを特徴とする請求項1に記載の磁気抵抗効果型ヘッドの評価装置。  2. The magnetoresistive head evaluation apparatus according to claim 1, further comprising a demagnetizing field generating coil that demagnetizes the permanent magnet by applying a magnetic field substantially perpendicularly to the longitudinal bias. 縦バイアスを印加する手段として永久磁石を用いた磁気抵抗効果型ヘッドの評価方法であって、前記永久磁石に対し外部から着磁磁界を前記縦バイアス方向に印加して前記永久磁石の磁化状態を変化させた後に、前記縦バイアス方向に交番磁界を印加しながらその変化に対する磁気抵抗効果素子の抵抗変化を計測し、その抵抗変化値から算出される縦バイアスに対する前記着磁磁界依存性を算定することを特徴とする磁気抵抗効果型ヘッドの評価方法。  A method for evaluating a magnetoresistive head using a permanent magnet as means for applying a longitudinal bias, wherein a magnetizing magnetic field is applied to the permanent magnet from the outside in the longitudinal bias direction to change the magnetization state of the permanent magnet. After the change, while applying an alternating magnetic field in the longitudinal bias direction, the resistance change of the magnetoresistive effect element with respect to the change is measured, and the dependence of the magnetization field on the longitudinal bias calculated from the resistance change value is calculated. A method for evaluating a magnetoresistive head. 縦バイアスを印加する手段として永久磁石を用いた磁気抵抗効果型ヘッドの評価方法であって、前記永久磁石に対し外部から前記縦バイアスにほぼ垂直方向の減磁磁界を印加して前記永久磁石の磁化状態を変化させた後に、前記縦バイアス方向に交番磁界を印加しながらその変化に対する磁気抵抗効果素子の抵抗変化を計測し、その抵抗変化値から算出される縦バイアスに対する前記減磁磁界依存性を算定することを特徴とする磁気抵抗効果型ヘッドの評価方法。A method for evaluating a magnetoresistive head using a permanent magnet as means for applying a longitudinal bias, wherein a demagnetizing magnetic field in a direction substantially perpendicular to the longitudinal bias is applied to the permanent magnet from outside. after changing the magnetized state, the longitudinal bias direction while applying an alternating magnetic field by measuring the resistance change of the magnetoresistive element for the change, before Symbol demagnetization against the vertical bias calculated from the resistance change value A method for evaluating a magnetoresistive head characterized by calculating a magnetic field dependency.
JP23153397A 1997-08-27 1997-08-27 Method and apparatus for evaluating magnetoresistive head Expired - Fee Related JP3877386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23153397A JP3877386B2 (en) 1997-08-27 1997-08-27 Method and apparatus for evaluating magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23153397A JP3877386B2 (en) 1997-08-27 1997-08-27 Method and apparatus for evaluating magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH1173612A JPH1173612A (en) 1999-03-16
JP3877386B2 true JP3877386B2 (en) 2007-02-07

Family

ID=16924990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23153397A Expired - Fee Related JP3877386B2 (en) 1997-08-27 1997-08-27 Method and apparatus for evaluating magnetoresistive head

Country Status (1)

Country Link
JP (1) JP3877386B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515475B2 (en) 2001-02-16 2003-02-04 International Business Machines Corporation Determination of track width of magnetoresistive sensors during magnetic head fabrication using magnetic fields
US8066897B2 (en) 2007-12-28 2011-11-29 Hitachi Global Storage Technologies Netherlands B.V. Dynamic hard magnet thickness adjustment for reduced variation in free layer stabilization field in a magnetoresistive sensor

Also Published As

Publication number Publication date
JPH1173612A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
US7209328B2 (en) Magnetic read head and hard disk drive
JP3462832B2 (en) Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same
JP3760095B2 (en) Two-element reproducing sensor, thin film magnetic head for perpendicular magnetic recording / reproducing, and perpendicular magnetic recording / reproducing apparatus
JP2005203063A (en) Magnetic head and magnetic recording/reproducing device
JP3680655B2 (en) Magnetoresistive element and manufacturing method thereof
JP3075253B2 (en) Spin valve type magnetic sensing element, magnetic head using the same, and magnetic disk drive
JP2003296907A (en) Magnetic disk unit using magnetic head having magneto- resistive effect film
US7805828B2 (en) Method of manufacturing thin-film magnetic head
US6487042B2 (en) Thin-film magnetic head and magnetic storage apparatus using the same
JPH0991629A (en) Thin film magnetic head
JP3877386B2 (en) Method and apparatus for evaluating magnetoresistive head
JP3190193B2 (en) How to use thin film magnetic head
JPH1125425A (en) Magnetic head
JP2002074623A (en) Horizontal yoke magnetic head, magnetic recording device and magnetic reproducing device
JPH10302203A (en) Vertical magnetic recorder
JP3120012B2 (en) Magnetic sensor, magnetic recording / reproducing head and magnetic recording / reproducing apparatus using the same
JPH0442417A (en) Magneto-resistance effect element and magnetic head and magnetic recording and reproducing device using the same
JPH0922509A (en) Magneto-resistance effect type head and magnetic recording and reproducing device
JP3764361B2 (en) Method for manufacturing magnetoresistive element
JPH0640368B2 (en) Magnetic head element, driving method thereof, and manufacturing method thereof
JPH10334422A (en) Magnetic recorder
JP2001338410A (en) Magnetic disk device
JPH10275310A (en) Thin film magnetic head and its production
JPH11273030A (en) Magneto-resistance effect type magnetic head
JP2001338409A (en) Magnetic head

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees