JP3877300B2 - Medium temperature soldering composition and soldering method - Google Patents

Medium temperature soldering composition and soldering method Download PDF

Info

Publication number
JP3877300B2
JP3877300B2 JP2002166874A JP2002166874A JP3877300B2 JP 3877300 B2 JP3877300 B2 JP 3877300B2 JP 2002166874 A JP2002166874 A JP 2002166874A JP 2002166874 A JP2002166874 A JP 2002166874A JP 3877300 B2 JP3877300 B2 JP 3877300B2
Authority
JP
Japan
Prior art keywords
metal component
soldering
component powder
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002166874A
Other languages
Japanese (ja)
Other versions
JP2004009106A (en
Inventor
克彦 五十嵐
透 外海
隆二 二宮
純一 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
TDK Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, TDK Corp filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002166874A priority Critical patent/JP3877300B2/en
Publication of JP2004009106A publication Critical patent/JP2004009106A/en
Application granted granted Critical
Publication of JP3877300B2 publication Critical patent/JP3877300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は中温はんだ付け用組成物及びはんだ付け方法に関し、より詳しくは、鉛を含有せず、はんだ付け時、例えばリフローソルダリング時に合金化してはんだ付け時の温度よりも高い溶融温度を持つ合金を形成し得る中温はんだ付け用組成物及びはんだ付け方法に関する。
【0002】
【従来の技術】
従来の中温用はんだ合金は鉛を含有しており、はんだ付けの際にはんだの溶融により有毒ガスが発生するので、作業者に与える影響が懸念されていた。更に、近年、マイクロエレクトロニクス部品のはんだ付けが増加しており、それに伴って、廃棄されたICチップやプリント配線基板等からの鉛の溶出量が多くなり、地下水の汚染、鉛中毒等の環境問題が生じてきた。この為、無鉛はんだの要望が高まっている。
現在種々の無鉛はんだが開発され、提案されているが、はんだ付け可能温度が錫−鉛合金はんだのはんだ付け温度よりも高い等の欠点がある。
【0003】
【発明が解決しようとする課題】
本発明は、錫−鉛合金はんだのはんだ付け温度と同程度の温度で、具体的には150〜230℃の温度ではんだ付けが可能であり、濡れ性が良く、はんだ付け後の接合部特性も良好であり、鉛を含有しない中温はんだ付け組成物を提供することを目的としている。
また、本発明は、上記のような中温はんだ付け組成物を用いるはんだ付け方法を提供することを目的としている。
【0004】
【課題を解決するための手段】
本発明者等は上記の目的を達成するために鋭意検討した結果、中温はんだ付け用組成物として、溶融温度が低い特定合金組成の第一金属成分粉末と溶融温度が中程度の特定合金組成の第二金属成分粉末とを特定の相対量で含有し、第一金属成分粉末の平均粒径と第二金属成分粉末の平均粒径との粒径比が特定の範囲内にあることにより、はんだ付け時、例えばリフローソルダリング時に合金化する金属粉末組成物を用いることにより上記の目的が達成されることを見いだし、本発明を完成した。
【0005】
即ち、本発明の中温はんだ付け用組成物は、Sn−Bi合金又はSn−In合金からなり、溶融温度が120℃以上183℃未満である第一金属成分粉末と、Sn−Sb合金又はSn−Cuからなり、溶融温度が183〜260℃である第二金属成分粉末とからなり、第一金属成分粉末と第二金属成分粉末との合計量を基準にして第一金属成分粉末の含有量が25〜57質量%であり、第二金属成分粉末の含有量が43〜75質量%であり、第一金属成分粉末の平均粒径をu1 、第二金属成分粉末の平均粒径をu2 とした時の粒径比u2 /u1 が0.4〜0.9の範囲内にあることを特徴とする。
【0006】
また、本発明のはんだ付け方法は、上記の本発明の中温はんだ付け用組成物を用いてはんだ付けする方法であって、第二金属成分粉末が溶融しない温度で第一金属成分粉末を溶融させ、その第一金属成分溶融物中に第二金属成分粉末を拡散させ、合金化させてはんだ付けすることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明においては、第一金属成分粉末として、Sn−Bi合金又はSn−In合金からなり、溶融温度が120℃以上183℃未満の範囲内の金属成分粉末を用いる。
【0008】
本発明においては、第二金属成分粉末として、Sn−Sb合金又はSn−Cuからなり、溶融温度が183〜260℃の範囲内の金属成分粉末を用いる。
【0009】
本発明の中温はんだ付け用組成物は、錫−鉛合金はんだのはんだ付け温度と同程度の温度で、具体的には150〜230℃の温度ではんだ付けできることを目的としており、それで、第一金属成分粉末及び第二金属成分粉末を含む本発明の中温はんだ付け用組成物のはんだ付け可能温度が、第一金属成分と第二金属成分とからなる合金の溶融温度よりも低いことが好ましい。そのためには第一金属成分粉末の種類と第二金属成分粉末の種類との組合せ及び第一金属成分粉末と第二金属成分粉末との相対量は溶融状態の第一金属成分中に第二金属成分粉末が拡散して合金を形成し得る種類の組合せ及び相対量であり、具体的には第一金属成分粉末と第二金属成分粉末との合計量を基準にして第一金属成分粉末の含有量が25〜57質量%、好ましくは30〜55質量%であり、第二金属成分粉末の含有量が43〜75質量%、好ましくは45〜70質量%であることが必要である。このような第一金属成分粉末と第二金属成分粉末との種類の組合せ及び第一金属成分粉末と第二金属成分粉末との相対量については、既に知られている合金状態図を参照して適切に選定することができる。なお、本発明において、「溶融状態」とは完全に液相となっている状態だけでなく、一部分固相が残っている状態をも包含する。
【0010】
本発明の中温はんだ付け用組成物においては、上記したように、はんだ付け可能温度が第一金属成分と第二金属成分とからなる合金の溶融温度よりも低いことが好ましいのであり、そのためには、第一金属成分粉末の平均粒径をu1 、第二金属成分粉末の平均粒径をu2 とした時の粒径比u2 /u1 が0.4〜0.9の範囲内、好ましくは0.45〜0.8の範囲内にあることが必須であることが多数の実験により実証されている。粒径比u2 /u1 が0.4未満である場合や、0.9を超える場合には、はんだ付け可能温度が、第一金属成分と第二金属成分とからなる合金の溶融温度より低くならない場合が多いことが多数の実験により実証されている。
【0011】
本発明においては、製造、分級の容易性、コスト、はんだ付け組成物の性能等の点で、並びに粒径比u2 /u1 が0.4〜0.9の範囲内であることを考慮すると、第一金属成分粉末の平均粒径が20〜60μmであることが好ましく、第二金属成分粉末の平均粒径が8〜54μmであることが好ましい。
【0012】
また、本発明の中温はんだ付け用組成物は、その使用態様に応じて粉末状態のものであっても、圧縮成形した固形物であっても、フラックスを含有するペースト状態のものであってもよい。
更に、本発明の中温はんだ付け用組成物は、微量の第三金属成分粉末を含有することができる。第三金属成分粉末としてP、Si、Ge及びGaを挙げることができ、それらの群より選ばれる少なくとも1種を用いることができる。
【0013】
本発明のはんだ付け方法においては、上記した本発明の中温はんだ付け用組成物を用い、リフローソルダリング等により第二金属成分粉末が溶融しない温度で第一金属成分粉末を溶融させる。この溶融状態の第一金属成分中に第二金属成分が拡散する。即ち、第二金属成分粉末ははんだ付け温度では溶融しないが、溶融した第一金属成分の溶融物がこの第二金属成分粉末の周囲を覆うので、その溶融物中に第二金属成分が拡散して合金化が進み、均一な組成、ほぼ均一な組成或いは第二金属成分粉末の一部が拡散しないで島状に残った組成の合金となる。本発明において、「溶融させる」とは完全に液相となっている状態にする場合だけでなく、一部分固相が残っている状態にする場合も包含する。
【0014】
本発明の好ましい態様のはんだ付け方法においては、150℃以上の温度であるが、第一金属成分と第二金属成分とからなる合金の溶融温度以下又は230℃以下の温度でリフローソルダリングを実施する。
【0022】
【実施例】
以下に、実施例及び比較例に基づいて本発明を具体的に説明する。
実施例及び比較例
第一金属成分粉末として、アトマイジング及び分級によって、Sn−58Bi(溶融温度139℃)からなる平均粒径がそれぞれ35μm及び45μmの微粉末を用意し、第二金属成分粉末として、アトマイジング及び分級によって、Sn−5Sb(溶融温度245℃)からなる平均粒径がそれぞれ20μm及び63μmの微粉末を用意した。
【0023】
第一金属成分粉末及び第二金属成分粉末を第表に示す割合(含有量)、第表に示す粒径比となる組み合わせで機械的に混合した。次いで、この混合物80質量部と、ロジン50質量%、カルビトール35質量%、ハロゲン化水素酸アミン塩5質量%及びワックス10質量%からなるフラックス20質量部とを混合してはんだ付け用組成物(ペースト)を調製した。
【0024】
得られた各々のはんだ付け用組成物の組成は第表に示す通りであり、そのような組成物の合金化で生成する合金の溶融温度は第表に示す通りである。
各々のはんだ付け用組成物をセラミック板上に載せ、徐々に加熱して、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度まで加熱した。各々のはんだ付け用組成物の溶融状態を肉眼で観察し、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度で全体が溶融した場合(即ち、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能な場合)を○、その他の場合を×として第表に示す。
【0025】
【表

Figure 0003877300
【0026】
表のデータから明らかなように、第一金属成分粉末及び第二金属成分粉末の組成範囲が本発明の範囲内にあり、且つ粒径比u2 /u1 が本発明の範囲内にある場合には、はんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能である。しかしながら、第一金属成分粉末及び第二金属成分粉末の組成範囲が本発明の範囲外にあるか、又は粒径比u2 /u1 が本発明の範囲外にある場合には、はんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度でははんだ付けはできない。
【0027】
実施例及び比較例
第一金属成分粉末として、アトマイジング及び分級によって、Sn−30In(溶融温度125℃)からなる平均粒径がそれぞれ35μm及び45μmの微粉末を用意し、第二金属成分粉末として、アトマイジング及び分級によって、Sn−0.7Cu(溶融温度227℃)からなる平均粒径がそれぞれ20μm及び63μmの微粉末を用意した。
【0028】
第一金属成分粉末及び第二金属成分粉末を第表に示す割合(含有量)、第表に示す粒径比となる組み合わせで機械的に混合した。次いで、この混合物80質量部と、ロジン50質量%、カルビトール35質量%、ハロゲン化水素酸アミン塩5質量%及びワックス10質量%からなるフラックス20質量部とを混合してはんだ付け用組成物(ペースト)を調製した。
【0029】
得られた各々のはんだ付け用組成物の組成は第表に示す通りであり、そのような組成物の合金化で生成する合金の溶融温度は第表に示す通りである。
各々のはんだ付け用組成物をセラミック板上に載せ、徐々に加熱して、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度まで加熱した。各々のはんだ付け用組成物の溶融状態を肉眼で観察し、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度で全体が溶融した場合(即ち、各々のはんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能な場合)を○、その他の場合を×として第表に示す。
【0030】
【表

Figure 0003877300
【0031】
表のデータから明らかなように、第一金属成分粉末及び第二金属成分粉末の組成範囲が本発明の範囲内にあり、且つ粒径比u2 /u1 が本発明の範囲内にある場合には、はんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度ではんだ付けが可能である。しかしながら、第一金属成分粉末及び第二金属成分粉末の組成範囲が本発明の範囲外にあるか、又は粒径比u2 /u1 が本発明の範囲外にある場合には、はんだ付け用組成物の合金化で生成する合金の溶融温度よりも低い温度でははんだ付けはできない。
【0036】
【発明の効果】
本発明の中温はんだ付け用組成物は鉛を含有しない中温はんだ付け用組成物であり、本発明のはんだ付け方法を用いることにより、リフローソルダリング時に合金化してはんだ付け時の温度よりも高い溶融温度を持つ合金を形成する。従って、比較的低い温度ではんだ付け作業を行なうことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medium temperature soldering composition and a soldering method, and more particularly, an alloy which does not contain lead and has a melting temperature higher than that at the time of soldering by alloying during soldering, for example, reflow soldering. The present invention relates to a composition for intermediate temperature soldering and a soldering method.
[0002]
[Prior art]
Conventional solder alloys for medium temperature contain lead, and toxic gas is generated due to melting of solder during soldering, so there is a concern about the influence on workers. Furthermore, in recent years, soldering of microelectronic components has increased, and along with this, the amount of lead elution from discarded IC chips and printed wiring boards has increased, leading to environmental problems such as groundwater contamination and lead poisoning. Has arisen. For this reason, the demand for lead-free solder is increasing.
Various lead-free solders have been developed and proposed at present, but have disadvantages such as a solderable temperature higher than that of tin-lead alloy solder.
[0003]
[Problems to be solved by the invention]
The present invention can be soldered at a temperature similar to the soldering temperature of tin-lead alloy solder, specifically at a temperature of 150 to 230 ° C., has good wettability, and has characteristics of joints after soldering. It is also an object of the present invention to provide a medium-temperature soldering composition that does not contain lead.
Another object of the present invention is to provide a soldering method using the above-described medium temperature soldering composition.
[0004]
[Means for Solving the Problems]
As a result of diligent investigations to achieve the above object, the present inventors have determined that the intermediate metal soldering composition has a first metal component powder having a specific alloy composition having a low melting temperature and a specific alloy composition having a medium melting temperature . The second metal component powder is contained in a specific relative amount, and the ratio of the average particle size of the first metal component powder and the average particle size of the second metal component powder is within a specific range, It has been found that the above object can be achieved by using a metal powder composition which is alloyed during reflow soldering, for example, and the present invention has been completed.
[0005]
That is, the intermediate temperature soldering composition of the present invention comprises a Sn—Bi alloy or a Sn—In alloy, a first metal component powder having a melting temperature of 120 ° C. or more and less than 183 ° C., and a Sn—Sb alloy or Sn— The second metal component powder is made of Cu and has a melting temperature of 183 to 260 ° C., and the content of the first metal component powder is based on the total amount of the first metal component powder and the second metal component powder. a 25 to 57 wt%, the content of the second metal component powder is 43-75 wt%, an average particle diameter of the first metal component powder u 1, the average particle diameter of the second metal component powder u 2 The particle size ratio u 2 / u 1 is in the range of 0.4 to 0.9.
[0006]
The soldering method of the present invention is a method of soldering using the above-described composition for intermediate temperature soldering of the present invention, wherein the first metal component powder is melted at a temperature at which the second metal component powder does not melt. The second metal component powder is diffused in the first metal component melt, alloyed, and soldered.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, as a first metal component powder consists Sn-Bi alloy or Sn-In alloy, the melting temperature is used fine metal component powder in a range of less than 120 ° C. or higher 183 ° C..
[0008]
In the present invention, as a second metal component powder consists Sn-Sb alloy or Sn-Cu, the melting temperature is used fine metal component powder in a range of one hundred eighty-three to two hundred sixty ° C..
[0009]
The intermediate temperature soldering composition of the present invention is intended to be solderable at a temperature similar to the soldering temperature of tin-lead alloy solder, specifically at a temperature of 150 to 230 ° C. The solderable temperature of the intermediate temperature soldering composition of the present invention including the metal component powder and the second metal component powder is preferably lower than the melting temperature of the alloy composed of the first metal component and the second metal component. For that purpose, the combination of the type of the first metal component powder and the type of the second metal component powder, and the relative amount of the first metal component powder and the second metal component powder are determined by the second metal in the molten first metal component. Combinations and relative amounts of the types in which the component powder can diffuse to form an alloy. Specifically, the content of the first metal component powder is based on the total amount of the first metal component powder and the second metal component powder. It is necessary that the amount is 25 to 57 mass%, preferably 30 to 55 mass%, and the content of the second metal component powder is 43 to 75 mass%, preferably 45 to 70 mass%. For the combination of the types of the first metal component powder and the second metal component powder and the relative amounts of the first metal component powder and the second metal component powder, refer to the already known alloy phase diagram. Can be selected appropriately. In the present invention, the “molten state” includes not only a completely liquid phase but also a state in which a solid phase remains partially.
[0010]
In the intermediate temperature soldering composition of the present invention, as described above, the solderable temperature is preferably lower than the melting temperature of the alloy composed of the first metal component and the second metal component. The average particle size of the first metal component powder is u 1 , and the average particle size of the second metal component powder is u 2 , the particle size ratio u 2 / u 1 is in the range of 0.4 to 0.9, Numerous experiments have demonstrated that it is essential that it is preferably in the range of 0.45 to 0.8. When the particle size ratio u 2 / u 1 is less than 0.4 or exceeds 0.9, the solderable temperature is higher than the melting temperature of the alloy composed of the first metal component and the second metal component. Numerous experiments have demonstrated that it is often not lowered.
[0011]
In the present invention, it is considered in terms of production, ease of classification, cost, performance of soldering composition, and the like that the particle size ratio u 2 / u 1 is in the range of 0.4 to 0.9. Then, it is preferable that the average particle diameter of 1st metal component powder is 20-60 micrometers, and it is preferable that the average particle diameter of 2nd metal component powder is 8-54 micrometers.
[0012]
In addition, the intermediate temperature soldering composition of the present invention may be in a powder state, a compression-molded solid, or a paste containing a flux depending on the use mode. Good.
Furthermore, the intermediate temperature soldering composition of the present invention can contain a trace amount of the third metal component powder. Examples of the third metal component powder include P, Si, Ge, and Ga. At least one selected from these groups can be used.
[0013]
In the soldering method of the present invention, the above-described intermediate temperature soldering composition of the present invention is used, and the first metal component powder is melted at a temperature at which the second metal component powder does not melt by reflow soldering or the like. The second metal component diffuses into the molten first metal component. That is, the second metal component powder does not melt at the soldering temperature, but the melted first metal component covers the periphery of the second metal component powder, so that the second metal component diffuses into the melt. As a result, alloying progresses to an alloy having a uniform composition, a substantially uniform composition, or a composition in which a part of the second metal component powder remains in an island shape without being diffused. In the present invention, “melting” includes not only the state of being completely in a liquid phase but also the case of partially leaving a solid phase.
[0014]
In the soldering method according to a preferred embodiment of the present invention, the reflow soldering is performed at a temperature of 150 ° C. or higher but not higher than the melting temperature of the alloy composed of the first metal component and the second metal component or 230 ° C. or lower. To do.
[0022]
【Example】
Hereinafter, the present invention will be described in detail based on examples and comparative examples.
Example 1 and Comparative Example 1
As the first metal component powder, fine powders having an average particle diameter of 35 μm and 45 μm, respectively, made of Sn-58Bi (melting temperature 139 ° C.) are prepared by atomizing and classification, and as the second metal component powder, atomizing and classification are prepared. Prepared fine powders having an average particle diameter of 20 μm and 63 μm made of Sn-5Sb (melting temperature 245 ° C.), respectively.
[0023]
Percentage of a first metal component powder and a second metal component powder in Table 1 (content) were mechanically mixed in a combination of the particle diameter ratio indicated in Table 1. Next, 80 parts by mass of this mixture is mixed with 20 parts by mass of a flux composed of 50% by mass of rosin, 35% by mass of carbitol, 5% by mass of an amine hydrohalide salt and 10% by mass of wax, and then a soldering composition. (Paste) was prepared.
[0024]
The composition of each obtained soldering composition is as shown in Table 1 , and the melting temperature of the alloy produced by alloying such a composition is as shown in Table 1 .
Each soldering composition was placed on a ceramic plate and gradually heated to the melting temperature of the alloy formed by alloying each soldering composition. When the melting state of each soldering composition is observed with the naked eye and the whole is melted at a temperature lower than the melting temperature of the alloy formed by alloying each soldering composition (that is, each soldering composition) Table 1 shows (when soldering is possible at a temperature lower than the melting temperature of the alloy formed by alloying the composition for use) as ◯ and other cases as x.
[0025]
[Table 1 ]
Table 1
Figure 0003877300
[0026]
As is apparent from the data in Table 1 , the composition range of the first metal component powder and the second metal component powder is within the scope of the present invention, and the particle size ratio u 2 / u 1 is within the scope of the present invention. In some cases, soldering is possible at a temperature lower than the melting temperature of the alloy produced by alloying the soldering composition. However, if the composition range of the first metal component powder and the second metal component powder is out of the scope of the present invention, or the particle size ratio u 2 / u 1 is out of the scope of the present invention, Soldering is not possible at a temperature lower than the melting temperature of the alloy formed by alloying the composition.
[0027]
Example 2 and Comparative Example 2
As the first metal component powder, a fine powder having an average particle size of 35 μm and 45 μm made of Sn-30In (melting temperature 125 ° C.) is prepared by atomizing and classification, and as the second metal component powder, atomizing and classification are prepared. Prepared fine powders having an average particle diameter of 20 μm and 63 μm made of Sn-0.7Cu (melting temperature 227 ° C.), respectively.
[0028]
Percentage of a first metal component powder and a second metal component powder in Table 2 (content) were mechanically mixed in a combination of the particle diameter ratio indicated in Table 2. Next, 80 parts by mass of this mixture is mixed with 20 parts by mass of a flux composed of 50% by mass of rosin, 35% by mass of carbitol, 5% by mass of an amine hydrohalide salt and 10% by mass of wax, and then a soldering composition. (Paste) was prepared.
[0029]
The composition of each obtained soldering composition is as shown in Table 2 , and the melting temperature of the alloy formed by alloying such a composition is as shown in Table 2 .
Each soldering composition was placed on a ceramic plate and gradually heated to the melting temperature of the alloy formed by alloying each soldering composition. When the melting state of each soldering composition is observed with the naked eye and the whole is melted at a temperature lower than the melting temperature of the alloy formed by alloying each soldering composition (that is, each soldering composition) Table 2 shows ◯ when soldering is possible at a temperature lower than the melting temperature of the alloy produced by alloying the composition for use, and x in other cases.
[0030]
[Table 2 ]
Table 2
Figure 0003877300
[0031]
As is apparent from the data in Table 2 , the composition range of the first metal component powder and the second metal component powder is within the scope of the present invention, and the particle size ratio u 2 / u 1 is within the scope of the present invention. In some cases, soldering is possible at a temperature lower than the melting temperature of the alloy produced by alloying the soldering composition. However, if the composition range of the first metal component powder and the second metal component powder is out of the scope of the present invention, or the particle size ratio u 2 / u 1 is out of the scope of the present invention, Soldering is not possible at a temperature lower than the melting temperature of the alloy formed by alloying the composition.
[0036]
【The invention's effect】
The intermediate temperature soldering composition of the present invention is a medium temperature soldering composition that does not contain lead. By using the soldering method of the present invention, it is alloyed during reflow soldering and melted at a temperature higher than the soldering temperature. Form an alloy with temperature. Therefore, the soldering operation can be performed at a relatively low temperature.

Claims (8)

Sn−Bi合金又はSn−In合金からなり、溶融温度が120℃以上183℃未満である第一金属成分粉末と、Sn−Sb合金又はSn−Cuからなり、溶融温度が183〜260℃である第二金属成分粉末とからなり、第一金属成分粉末と第二金属成分粉末との合計量を基準にして第一金属成分粉末の含有量が25〜57質量%であり、第二金属成分粉末の含有量が43〜75質量%であり、第一金属成分粉末の平均粒径をu1 、第二金属成分粉末の平均粒径をu2 とした時の粒径比u2 /u1 が0.4〜0.9の範囲内にあることを特徴とする中温はんだ付け用組成物。 It consists of a Sn-Bi alloy or a Sn-In alloy, and consists of a first metal component powder having a melting temperature of 120 ° C. or higher and lower than 183 ° C., and a Sn—Sb alloy or Sn—Cu, and a melting temperature of 183 to 260 ° C. The second metal component powder, the content of the first metal component powder is 25 to 57% by mass based on the total amount of the first metal component powder and the second metal component powder, and the second metal component powder The particle size ratio u 2 / u 1 is 43 to 75% by mass, the average particle size of the first metal component powder is u 1 , and the average particle size of the second metal component powder is u 2. A composition for intermediate temperature soldering, wherein the composition is in the range of 0.4 to 0.9. 第一金属成分粉末の含有量が30〜55質量%であり、第二金属成分粉末の含有量が45〜70質量%であり、粒径比u2 /u1 が0.45〜0.8の範囲内にある請求項1記載の中温はんだ付け用組成物。The content of the first metal component powder is 30 to 55% by mass, the content of the second metal component powder is 45 to 70% by mass, and the particle size ratio u 2 / u 1 is 0.45 to 0.8. The composition for intermediate temperature soldering of Claim 1 which exists in the range of this. 第一金属成分粉末の平均粒径が20〜60μmであり、第二金属成分粉末の平均粒径が8〜54μmである請求項1〜2の何れかに記載の中温はんだ付け用組成物。  The composition for intermediate temperature soldering according to any one of claims 1 to 2, wherein the average particle size of the first metal component powder is 20 to 60 µm, and the average particle size of the second metal component powder is 8 to 54 µm. 中温はんだ付け用組成物が粉末状態である請求項1〜3の何れかに記載の中温はんだ付け用組成物。  The intermediate temperature soldering composition according to any one of claims 1 to 3, wherein the intermediate temperature soldering composition is in a powder state. 請求項1〜3の何れかに記載のはんだ付け用組成物に更にフラックスを含有したペースト状態である中温はんだ付け用組成物。 Soldering composition further temperature soldering composition in Ru pasty der containing the flux according to any one of claims 1 to 3. 請求項1〜の何れかに記載の中温はんだ付け用組成物を用いてはんだ付けする方法であって、第二金属成分粉末が溶融しない温度で第一金属成分粉末を溶融させ、その第一金属成分溶融物中に第二金属成分を拡散させ、合金化させてはんだ付けすることを特徴とするはんだ付け方法。A method of soldering using the intermediate temperature soldering composition according to any one of claims 1 to 5 , wherein the first metal component powder is melted at a temperature at which the second metal component powder is not melted. A soldering method comprising: diffusing a second metal component in a metal component melt, alloying the solder, and soldering. 150℃以上の温度であるが、第一金属成分と第二金属成分とからなる合金の溶融温度以下の温度でリフローソルダリングを実施する請求項記載のはんだ付け方法。The soldering method according to claim 6 , wherein the reflow soldering is performed at a temperature of 150 ° C. or higher but not higher than a melting temperature of an alloy composed of the first metal component and the second metal component. 150〜230℃の温度でリフローソルダリングを実施する請求項記載のはんだ付け方法。The soldering method according to claim 7 , wherein the reflow soldering is performed at a temperature of 150 to 230 ° C.
JP2002166874A 2002-06-07 2002-06-07 Medium temperature soldering composition and soldering method Expired - Fee Related JP3877300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166874A JP3877300B2 (en) 2002-06-07 2002-06-07 Medium temperature soldering composition and soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166874A JP3877300B2 (en) 2002-06-07 2002-06-07 Medium temperature soldering composition and soldering method

Publications (2)

Publication Number Publication Date
JP2004009106A JP2004009106A (en) 2004-01-15
JP3877300B2 true JP3877300B2 (en) 2007-02-07

Family

ID=30434291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166874A Expired - Fee Related JP3877300B2 (en) 2002-06-07 2002-06-07 Medium temperature soldering composition and soldering method

Country Status (1)

Country Link
JP (1) JP3877300B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017795B2 (en) * 2003-11-03 2006-03-28 Indium Corporation Of America Solder pastes for providing high elasticity, low rigidity solder joints
JP2005254254A (en) * 2004-03-09 2005-09-22 Toshiba Corp Lead-free solder, its manufacturing method and electronic component
JP4662483B2 (en) * 2006-07-18 2011-03-30 旭化成イーマテリアルズ株式会社 Conductive filler and medium temperature solder material
JP2010029868A (en) * 2006-11-06 2010-02-12 Victor Co Of Japan Ltd Lead-free solder paste, electronic circuit board using the same, and method for manufacturing the same
JP5733610B2 (en) * 2010-01-25 2015-06-10 三菱マテリアル株式会社 Au-Sn alloy solder paste and Au-Sn alloy solder formed thereby
CN103273218A (en) * 2013-06-17 2013-09-04 东莞市宝拓来金属有限公司 Soldering tin material used for automotive glass hot-coating belts and application of soldering tin material

Also Published As

Publication number Publication date
JP2004009106A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US9162324B2 (en) Solder paste and solder joint
CN101208173B (en) Lead-free solder paste and its manufacture method
JP5533876B2 (en) Solder paste, bonding method using the same, and bonding structure
JP3753168B2 (en) Solder paste for joining microchip components
US6896172B2 (en) Lead-free solder paste for reflow soldering
KR101059710B1 (en) Solder paste and printed circuit board
DK2147740T3 (en) Lead-free solder paste
EP2647467A2 (en) Solder cream and method of soldering electronic parts
WO2013038817A1 (en) Electroconductive material, and connection method and connection structure using same
WO2013038816A1 (en) Electroconductive material, and connection method and connection structure using same
JP2002113590A (en) Solder paste
EP1724050B1 (en) Solder paste
TWI695893B (en) Solder paste
JP2003311469A (en) Solder paste, electronic parts and step soldering method
JP2002001573A (en) Leadless cream solder and bonding method using the same
JP3877300B2 (en) Medium temperature soldering composition and soldering method
JP3782743B2 (en) Solder composition, soldering method and electronic component
JPH09277082A (en) Soldering paste
JP3654161B2 (en) Solder paste and soldering method
JP2001105180A (en) Soldering flux
EP1180411A1 (en) Lead-free paste for reflow soldering
JPH11138292A (en) Nonleaded solder paste
KR20110026666A (en) Solder paste, soldered joint formed using the same, and printed circuit board having the soldered joint
JP2000158179A (en) Solder paste
JP2005167257A (en) Soldering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees