JP3877237B2 - Impact resistant electronic delay electric detonator - Google Patents

Impact resistant electronic delay electric detonator Download PDF

Info

Publication number
JP3877237B2
JP3877237B2 JP15709496A JP15709496A JP3877237B2 JP 3877237 B2 JP3877237 B2 JP 3877237B2 JP 15709496 A JP15709496 A JP 15709496A JP 15709496 A JP15709496 A JP 15709496A JP 3877237 B2 JP3877237 B2 JP 3877237B2
Authority
JP
Japan
Prior art keywords
electronic
detonator
cylinder
impact
electronic timer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15709496A
Other languages
Japanese (ja)
Other versions
JPH109799A (en
Inventor
緑 坂元
政明 西
剛 村下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP15709496A priority Critical patent/JP3877237B2/en
Publication of JPH109799A publication Critical patent/JPH109799A/en
Application granted granted Critical
Publication of JP3877237B2 publication Critical patent/JP3877237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electric Clocks (AREA)

Description

【0001】
【発明の属する技術分野】
破壊対象に複数の爆薬体を装薬し、これらを順次起爆する発破作業において用いられ、起爆遅延時間を高精度に制御するための電子式遅延電気雷管に関する。
【0002】
【従来の技術】
従来、発破器から供給された電気信号を受け、電気エネルギーをエネルギー蓄積手段に蓄積し、該蓄積エネルギーにより動作し、所望の遅延時間の後にスイッチングを行う電子式遅延電気雷管が知られている。これらの技術が開示されている公報として、例えば、USP4445435、DE3942842、特開平5ー79797号公報等がある。これらの公報には、水晶振動子を用いた極めて起爆時間精度の高いものが提案されている。また、起爆時間精度は落ちるが、特開昭58ー83200、特開昭62ー91799号等のように、CR回路、CR発振回路を用いた電子タイマー部を有した電子式遅延電気雷管も提案されている。
【0003】
一方、これらの電子式遅延電気雷管は、耐衝撃性が重要な要素となる。なぜなら、衝撃により、電子タイマー部が破損すると、不発が発生するためである。
このため、電子タイマー部を衝撃から保護する構造が重要となるが、従来、これらに関する技術として、例えば、特開昭57ー35298、特開昭63ー290398、実開昭64ー31398、特開62ー153699号等が知られている。これらの公報では、電子タイマー部を雷管管体に挿入し、エポキシやエポキシとエラストマーの配合品で封止する構造やポリスチレン、ポリエチレン等の熱可塑性樹脂で注型密封する構造、又はOーリングで基板をケースに固定する構造、更には電子タイマー部を直接、プラスチックケースに挿入し、ケースと電子タイマー部の間に空隙部を有する構造等が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、前述の技術では、孔間が接近するような発破パターンでは、電子タイマー部が破損するため雷管部に起爆エネルギーが送られず、結果として雷管部が不発で残る可能性が依然としてあった。
特に、トンネル掘削のため発破作業を行う場合において、心抜き部分のVカットと呼ばれる破砕工法においては、破砕効果を上げるために隣接孔の孔底は近接するように穿孔され、孔底間が20cm以下になることも少なくない。さらに言えば、削孔精度のばらつきによりVカット以外の孔でも孔尻が近接する可能性は大きい。このような場合等においては、電子式遅延電気雷管が極めて大きな爆発衝撃を受けるため、前述の技術では、電子タイマー部の破損又は異常は免れず、結果として雷管部が不発として残る可能性が大きい。
【0005】
従って、電子タイマー部の耐衝撃性をさらに上げることは、電子式遅延電気雷管の重要課題であった。
本発明は、かかる問題に対して、より耐衝撃性の高い安全な電子式遅延電気雷管を提供するものである。
【0006】
【課題を解決するための手段】
本発明者等は、かかる問題に対して鋭意検討した結果、衝撃に対して耐力のある筒内に収容し、且つ電子タイマー部と筒壁との間隙に粘弾性物質を充填することにより、電子タイマー部の耐衝撃性が大きく向上することを見いだし、本発明を完成させるに至った。
【0007】
即ち、本発明の一つは、エネルギー蓄積手段を有する電子タイマー部と雷管部からなる電子式遅延電気雷管であって、該電子タイマー部が耐衝撃を有する筒内に収容され、該筒内の空隙部分が、粘弾性物質で満たされていることを特徴とする耐衝撃性電子式遅延電気雷管である。また、第二の態様は、エネルギー蓄積手段を有する電子タイマー部と雷管部からなる電子式遅延電気雷管であって、該電子タイマー部が耐衝撃を有する筒内に収容され、該エネルギー蓄積手段の周囲のみが、針入度10〜100のゲル状物質、又は発泡性樹脂の保護剤で覆われており、且つ該電子タイマー部と該筒内の空隙部分が粘弾性物質で満たされていることを特徴とする耐衝撃性電子式遅延電気雷管である。
【0008】
本発明によれば、電子タイマー部の耐衝撃性が向上するため、より孔間が近い状況下でも使用できる。
一般に、電子式遅延電気雷管が岩盤中で受ける衝撃は、水孔のように周囲から均質に衝撃圧を受ける場合と一方向から受ける場合が考えられる。
岩盤中では、電子式遅延電気雷管及び爆薬の周囲が常に均質な媒体で覆われていることは少ないので、多くの場合、爆源方向からの一方向衝撃を受ける。その衝撃は、爆源の薬量と岩盤の状況によってもことなるが、20cmの距離で、圧力にして30MPa〜70MPa、数万〜数十万Gの加速度に達する。
【0009】
こうした激烈な一方向衝撃下で電子タイマー部を保護するためには、少なくとも次の4つの条件が必要である。
まず第一に、電子部品および基板を保護する筒には、圧壊に対して変形しない構造が必要である。用いる材料の弾性率は少なくとも1000kg/mm2 以上であることが好ましく、例えば、鉄、銅、真鍮等の金属、FRP等が上げられるが、加工性、及び材質の均質性の面から円筒状の金属がよい。また、筒の厚みは、筒の材料又は形状によってもことなるが、雷管が殉爆する領域までもたせる必要があることから、静水圧で30MPa以上の圧力に耐え得るように設計する事が肝要である。筒の外径は10〜30mmが適当であり、筒の厚みは、0.5〜2mmは必要である。また、筒の円周方向又は長手方向にリブを設けると耐性が向上するので更に良い。
【0010】
第二は、電子タイマー部を構成する電子部品を基板に固定することである。前述の如く近接孔では、数万〜数10万Gの加速度が発生することから、電子部品をハンダで固定しただけでは、脱落してしまう。従って、基板と電子部品は、樹脂等の固定剤で一体化する事が必要である。かかる衝撃下で電子部品を固定するには、JIS−AショアーA硬度で10以上の硬度が必要である。硬度10未満、すなわち針入度で硬度を評価するゲル領域に入ると、基板と素子の一体化効果が弱くなり、素子が基板より脱落してしまうからである。
【0011】
第三は、電子タイマー部とケースとの衝突を防ぐ事である。従来技術に示すようなプラスチックケース内に電子タイマーをフリーに配置させる構造では、第一のケースの圧壊による原因と第三のケースとの衝突による衝撃によって、電子タイマー部は破損に至る。特に一方向から衝撃を受けた場合、電子タイマー部の自由度が高いと、電子タイマーがケースに衝突し電子タイマー部は2倍近くの衝撃を受ける事になる。従って、本発明では電子タイマー部が筒体に衝突しないように、介在物すなわち充填物を設けることが肝要である。
【0012】
第四は、充填物の選定である。第二、第三の理由により、筒と電子タイマー部の間隙には充填物を配置する必要があるが、充填物は、粘弾性のあることが重要である。従って、弾性率の低い柔らかい材質がよい。弾性率が大きい(100kg/mm2 以上)場合には、筒に加わった衝撃が、そのまま電子部品に伝わり、素子が破損することがあり好ましくない。硬度としては、JISーショアーA硬度で90以下が好ましい。しかし、硬度が低すぎると、第二、第三の理由により問題が生じるので、最適な硬度は、ショアーA硬度で10〜90の領域である。好ましい材質としては、例えば、シリコンゴム、ウレタンゴム、シリコンゲル、ウレタンゲル等が挙げられる。
【0013】
更に、水孔のように、電子遅延式電気雷管が水という非圧縮性の均質な媒体で覆われている状態では、全周から水中衝撃波を受ける。特に切り立った水中衝撃波は、筒、充填物を透過して電子部品に到達するため、衝撃感度の弱い電子部品は影響を受ける。本発明の電子タイマー部の場合、その影響を最も受けやすい電子部品は、エネルギー蓄積手段を構成する発火用コンデンサ及び水晶振動子である。
【0014】
コンデンサの中でもアルミ電解コンデンサが特に弱い。電解コンデンサには、高い衝撃が加わると、貯まっている電荷を自己放電する現象が見られる。発火用コンデンサには、雷管部を発火するのに必要なエネルギーが保持されていることより、自己放電により電荷が失われると不発が発生することになる。
また、水晶振動子は、その振動モードにより、衝撃破壊レベルはことなるが、構造的に他の電子素子に比べて、耐衝撃性は低い。4MHzのAT振動子で破壊レベルで7000〜10000Gである。しかし、水晶振動子の場合は、CR回路との併用により、精度は落ちるが、水晶破損後、CR回路に切り替える回路が考案されており(WO95/04253号)、発振手段の耐衝撃性を上げることは可能である。従って、コンデンサの耐衝撃性を上げることが重要である。
【0015】
そのためには、コンデンサに到達する衝撃波を抑える必要があり、その手段として、部品の周囲に保護材を配置する。この保護材によってコンデンサの周囲に低密度の領域を作る。具体的には、コンデンサの周囲に、発泡性の樹脂を配置する。発泡性樹脂としては、ポリエチレンフォーム、ウレタンフォーム、PVCフォーム、ポリエチレンフォーム等が挙げられ、その発泡倍率は数倍から数十倍が適当である。これらの発泡性樹脂によれば、少なくとも0.01g/cm3 〜0.20g/cm3 程度の低密度層を構成することができる。
【0016】
別法として、コンデンサの周囲に、ゲル等の粘性の高い物質層を設け、前記の電子タイマー部とケースの衝突を防ぐための粘弾性充填層とを合わせて2層構造にする。2層構造の構成は、前記のゲル状物質層の全周囲を前記の充填材を覆ってもよく、コンデンサのリード線を除く本体が、他の部品と離れて配置される場合には、他の部品のみ前記充填剤で充填し、コンデンサ本体の周囲を前記ゲル状物質で充填する構成でもよい。ゲルとしては、前述のシリコンゲル、ウレタンゲル等が適当であり、針入度で10〜100が適当である。針入度は、JISK−2220に調度試験法として規定されており、総重量9.38g、1/4コーンの針を使用している。
【0017】
さらに、粘弾性物質に気泡を添加した物質を前記の保護材としてもよい。また、この気泡材配合粘弾性物質によれば、電子タイマー部と容器の空隙を埋める充填剤としても効果があり、前記の保護材と充填剤の2層構造を構成しなくてもよい。粘弾性物質に気泡材を添加した例としては、JISショアーA硬度10〜90のシリコンゴム、ウレタンゴム等の粘弾性物質に粒径10〜150ミクロン程度のシラスマイクロバルーン(SMB)やガラスマイクロバルーン(GMB)等を添加したものが良い。添加量は、体積比で10〜50%が適当である。添加量10%未満では、衝撃波緩衝力が小さく、50%より大きくなると、粘弾性への影響が大きくなり、また、製造時も流動性が悪くなるので好ましくない。
【0018】
前記の構造においては、例えば、外径10φ16mmLのコンデンサの場合、保護材の厚みは0.5〜5mm、好ましくは2〜4mmであり、長さは10〜15mm程度で、コンデンサの外筒のみを覆うのが良い。
また、コンデンサは、筒に対して並行に設置するのが好ましい。
更に、水中でスラリー爆薬を親ダイとして使う場合、衝撃を受けた時、爆薬中に存在する雷管には、周囲の水中衝撃波の数倍の圧力を受ける。従って、電子タイマー部は、爆薬内に入れないようにすることが好ましい。
【0019】
【発明の実施の形態】
以下、図面を参照して、本発明の実施例について説明する。
図1に本発明の耐衝撃電子式遅延電気雷管の一実施例を示す。電子タイマー部1は、金属製の円筒管6を含んだケース2に収納されており、雷管部3を有したキャップ4と嵌合部15で結合されている。電子タイマー部1と金属製円筒管6との間隙には、粘弾性物質5が充填されている。
【0020】
詳述すると、電子タイマー部1は、発火用コンデンサ9と水晶振動子8とICを含む電子素子から構成され、これらの電子部品は、全て基板7に表面実装される。コンデンサ9の側面の周囲には、コンデンサ周囲保護材10を配置した。保護材10は、密度0.068g/cm3 (JISK6767)、発泡倍率15倍のポリエチレンフォームで構成した。
【0021】
基板7はガラスエポキシ製で、その入力側には発破器(図示せず)に接続された脚線11が、キャップ4を通して接続され、その出力側は、雷管ストッパー13を通して雷管部3の脚線12が接続されている。脚線11、12及び発火用コンデンサ9、水晶振動子8等のディスクリート部品は、基板7を貫通して半田付けされる。更に、金属製円筒管の両端部には、ケースとキャップの一部が中ブタ部16、17を構成しており、金属製円筒管6が、爆発衝撃により圧壊するのを防止している。中ブタ部と円筒管6との嵌合長は最低3mm必要である。また、ケースには突起部15が設けられており、電子タイマー部1を正常に保持し周囲に十分に粘弾性物質5が回るようになっている。基板7は、金属製円筒管6に対して垂直に配置され、衝撃により円筒管6が変形するのを補強している。
【0022】
また、円筒管6の径を細くした場合には、基板7を細長くして、円筒に平行に配置することもできる。
更に、ケース2、キャップ4及び雷管ストッパーの材質は、プラスチックでよいが、弾性率100kg/mm2 以上の物がよい。たとえばポリエチレン、ポリエステル、ポリプロピレン、ABS等があり、より好ましくは、ナイロン66、ポリアセタール等の弾性率200kg/mm2 以上のものである。また、金属製円筒管を外部に露出すると、運搬時、雷管部との衝突による暴発等が考えられるので、取扱い上、実施例で示す様に金属製円筒管の周囲をプラスチック等で覆うことが好ましい。キャップ4には、雷管部との嵌合部分に、抜け防止かかり18を設けると良い。抜け防止かかり18により、電子式遅延電気雷管が親ダイから抜けにくくなり、装填時の作業性が向上する。
【0023】
また、電子式遅延電気雷管の製造上、電子タイマー部に至る入力脚線11と出力脚線12は、金属製円筒6に対して同方向から取り出されることが好ましい。なぜなら、そうすることによって、適当量の充填材を注入したケースに、電子タイマー部を取り付けたキャップ4を押し込む事により、嵌合部14でワンタッチで装着が可能となるからである。嵌合後に、樹脂を注入すると、注入口を設ける必要があり、また、エアーを巻き込みやすく好ましくない。
【0024】
【実施例1】
上記の仕様に基づき、充填材を種々替えたときの水中、砂中衝撃試験結果を表1に示す。トナー爆薬は、スラリー爆薬100g使用し、衝撃印可後サンプルを回収し破損の有無を調べた。筒材としては、外径27φ、厚さ1.7mmのSTKM鋼を使用した。
【0025】
表中の数字は、衝撃印可時のコンデンサの降下電圧を示している。衝撃印可前の充電電圧は13Vであり、降下電圧が少ない程良い。
【0026】
【表1】

Figure 0003877237
【0027】
【発明の効果】
本発明によれば、外部からの衝撃に対し、電子タイマー部の耐衝撃性が向上し、ユーザーにとって安全且つ精度の高い制御発破が可能となる。
【図面の簡単な説明】
【図1】本発明の耐衝撃性電子式遅延雷管の一例を示す断面図である。
【符号の説明】
1.電子タイマー部
2.ケース
3.雷管部
4.キャップ
5.粘弾性物質
6.円筒管
7.基板
8.水晶振動子
9.発火用コンデンサ
10.保護材
11.12.脚線
13.雷管ストッパー
14.嵌合部
15.嵌合部
16、17.中ブタ部
18.抜け防止かかり[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic delay electric detonator that is used in a blasting operation in which a plurality of explosive bodies are charged to a destruction target, and these are sequentially detonated to control the detonation delay time with high accuracy.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an electronic delay electric detonator is known that receives an electric signal supplied from a blasting device, stores electric energy in an energy storage means, operates by the stored energy, and performs switching after a desired delay time. As publications in which these techniques are disclosed, there are, for example, USP 4445435, DE 3942842, and JP-A-5-79797. In these publications, those with extremely high initiation time accuracy using a crystal resonator are proposed. Also, although the detonation time accuracy is reduced, an electronic delay electric detonator having an electronic timer unit using a CR circuit and a CR oscillation circuit as proposed in Japanese Patent Laid-Open Nos. 58-83200 and 62-91799 is also proposed. Has been.
[0003]
On the other hand, in these electronic delay electric detonators, impact resistance is an important factor. This is because if the electronic timer unit is damaged due to an impact, misfire occurs.
For this reason, a structure for protecting the electronic timer unit from impacts is important. Conventionally, for example, JP-A-57-35298, JP-A-63-290398, JP-A-64-31398, 62-153699 etc. are known. In these publications, an electronic timer unit is inserted into a detonator tube and sealed with epoxy, an epoxy-elastomer blend, or cast and sealed with a thermoplastic resin such as polystyrene or polyethylene, or an O-ring substrate. And a structure in which an electronic timer part is directly inserted into a plastic case and a gap is provided between the case and the electronic timer part.
[0004]
[Problems to be solved by the invention]
However, in the above-described technique, in the blasting pattern in which the holes are close to each other, the electronic timer portion is damaged, and therefore the detonation energy is not sent to the detonator portion, and as a result, the detonator portion may remain unexploded.
In particular, when performing blasting work for tunnel excavation, in the crushing method called V-cutting of the centering portion, the bottoms of adjacent holes are drilled close together to increase the crushing effect, and the distance between the bottoms is 20 cm. It is often the following. Furthermore, there is a high possibility that the bottom of the hole is close even in a hole other than the V-cut due to variations in the drilling accuracy. In such a case, the electronic delay electric detonator is subjected to a very large explosion impact, so in the above-described technology, the electronic timer unit is not damaged or abnormal, and as a result, the detonator unit is likely to remain unexploited. .
[0005]
Therefore, further increasing the impact resistance of the electronic timer unit has been an important issue for the electronic delay electric detonator.
The present invention provides a safe electronic delay electric detonator having higher impact resistance against such a problem.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on such problems, the present inventors have accommodated them in a cylinder that is resistant to impacts, and filled a viscoelastic substance in the gap between the electronic timer unit and the cylinder wall. It has been found that the impact resistance of the timer portion is greatly improved, and the present invention has been completed.
[0007]
That is, one of the present invention is an electronic delay electric detonator composed of an electronic timer unit having an energy storage means and a detonator unit, and the electronic timer unit is housed in a cylinder having impact resistance, and the cylinder It is an impact-resistant electronic delay electric detonator characterized in that the void portion inside is filled with a viscoelastic substance. The second aspect is the electronic delay electric detonator comprising the electronic timer unit and the detonator unit with an energy storage means, electronic timer unit is housed in a cylinder having impact resistance, the energy storage Only the periphery of the means is covered with a gel-like substance having a penetration of 10 to 100, or a foaming resin protective agent, and the gap between the electronic timer part and the cylinder is filled with a viscoelastic substance. It is an impact-resistant electronic delay electric detonator characterized by
[0008]
According to the present invention, since the impact resistance of the electronic timer unit is improved, the electronic timer unit can be used even in a situation where the holes are closer.
Generally, the impact received by the electronic delay electric detonator in the rock is considered to be received uniformly from the surroundings, such as a water hole, or from one direction.
In rocks, electronic delay electrical detonators and explosives are rarely always covered with a homogeneous medium, so in many cases, they receive a unidirectional impact from the direction of the explosion source. The impact varies depending on the dose of the explosion source and the condition of the bedrock, but reaches an acceleration of 30 MPa to 70 MPa and tens of thousands to hundreds of thousands of G at a distance of 20 cm.
[0009]
In order to protect the electronic timer unit under such a severe one-way impact, at least the following four conditions are necessary.
First of all, the cylinder that protects the electronic components and the substrate must have a structure that does not deform against crushing. The elastic modulus of the material to be used is preferably at least 1000 kg / mm 2 or more. For example, metal such as iron, copper, and brass, FRP, etc. can be raised, but in terms of workability and material homogeneity, it is cylindrical. Metal is good. In addition, the thickness of the cylinder varies depending on the material or shape of the cylinder, but it is important to design the cylinder so that it can withstand a pressure of 30 MPa or more under hydrostatic pressure because it needs to reach the area where the detonator explodes. is there. The outer diameter of the cylinder is suitably 10 to 30 mm, and the thickness of the cylinder is required to be 0.5 to 2 mm. In addition, it is better to provide ribs in the circumferential direction or the longitudinal direction of the cylinder because the resistance is improved.
[0010]
The second is to fix electronic components constituting the electronic timer unit to the substrate. As described above, in the proximity hole, acceleration of several tens of thousands to several hundred thousand G is generated, so that the electronic part is dropped only by being fixed with solder. Therefore, it is necessary to integrate the substrate and the electronic component with a fixing agent such as a resin. In order to fix an electronic component under such an impact, a JIS-A Shore A hardness of 10 or more is required. This is because if the hardness is less than 10, that is, the gel region where the hardness is evaluated by the penetration is entered, the effect of integrating the substrate and the element is weakened, and the element falls off the substrate.
[0011]
The third is to prevent a collision between the electronic timer unit and the case. In the structure in which the electronic timer is freely arranged in the plastic case as shown in the prior art, the electronic timer portion is damaged by the cause of the collapse of the first case and the impact by the collision with the third case. In particular, when an impact is applied from one direction, if the degree of freedom of the electronic timer unit is high, the electronic timer collides with the case, and the electronic timer unit receives an impact that is nearly double. Therefore, in the present invention, it is important to provide inclusions, that is, fillers so that the electronic timer unit does not collide with the cylinder.
[0012]
The fourth is selection of the packing material. For the second and third reasons, it is necessary to place a filler in the gap between the cylinder and the electronic timer unit, but it is important that the filler is viscoelastic. Therefore, a soft material with a low elastic modulus is preferable. When the elastic modulus is large (100 kg / mm 2 or more), the impact applied to the cylinder is transmitted to the electronic component as it is, and the element may be damaged, which is not preferable. The hardness is preferably 90 or less in terms of JIS-Shore A hardness. However, if the hardness is too low, problems arise for the second and third reasons, and the optimum hardness is in the range of 10 to 90 in Shore A hardness. Examples of preferable materials include silicon rubber, urethane rubber, silicon gel, and urethane gel.
[0013]
Further, in a state where the electronic delay electric detonator is covered with an incompressible homogeneous medium called water, like a water hole, it receives underwater shock waves from the entire circumference. In particular, the steep underwater shock wave passes through the cylinder and the filler and reaches the electronic component, so that the electronic component with low impact sensitivity is affected. In the case of the electronic timer unit of the present invention, the electronic components that are most susceptible to the influence are the firing capacitor and the crystal resonator that constitute the energy storage means.
[0014]
Among the capacitors, aluminum electrolytic capacitors are particularly weak. Electrolytic capacitors exhibit a phenomenon of self-discharge of stored charges when a high impact is applied. Since the ignition capacitor holds the energy necessary for igniting the detonator portion, non-firing occurs when charge is lost by self-discharge.
In addition, although the quartz crystal resonator has a different impact breakdown level depending on the vibration mode, it is structurally less impact resistant than other electronic elements. The breakdown level is 7000 to 10000 G with a 4 MHz AT vibrator. However, in the case of a crystal resonator, the accuracy is lowered by the combined use with the CR circuit, but a circuit for switching to the CR circuit after the crystal breakage has been devised (WO95 / 04253), and the shock resistance of the oscillation means is increased. It is possible. Therefore, it is important to increase the shock resistance of the capacitor.
[0015]
For this purpose, it is necessary to suppress the shock wave reaching the capacitor, and as a means for this, a protective material is disposed around the component. This protective material creates a low density area around the capacitor. Specifically, a foamable resin is disposed around the capacitor. Examples of the foamable resin include polyethylene foam, urethane foam, PVC foam, polyethylene foam, and the like. According to these expandable resin, it can constitute at least 0.01g / cm 3 ~0.20g / cm 3 as low-density layer.
[0016]
Alternatively, a highly viscous material layer such as a gel is provided around the capacitor, and the electronic timer portion and the viscoelastic filling layer for preventing the case from colliding with each other are combined to form a two-layer structure. The structure of the two-layer structure may cover the entire periphery of the gel-like substance layer with the filler, and if the main body excluding the capacitor lead wire is arranged away from other parts, Only the above components may be filled with the filler, and the periphery of the capacitor body may be filled with the gel substance. As the gel, the above-described silicon gel, urethane gel, and the like are appropriate, and a penetration of 10 to 100 is appropriate. The penetration is defined in JISK-2220 as a furnishing test method, and a needle having a total weight of 9.38 g and a 1/4 cone is used.
[0017]
Further, a substance obtained by adding a foam material to a viscoelastic substance may be used as the protective material. Moreover, according to this bubble material mixing | blending viscoelastic substance, it is effective also as a filler which fills the space | gap of an electronic timer part and a container, and does not need to comprise the two-layer structure of the said protective material and filler. As an example of adding a foam material to a viscoelastic substance, a shirasu microballoon (SMB) having a particle size of about 10 to 150 microns or a glass microballoon is applied to a viscoelastic substance such as silicon rubber or urethane rubber having a JIS Shore A hardness of 10 to 90. What added (GMB) etc. is good. The addition amount is suitably 10 to 50% by volume ratio. If the addition amount is less than 10%, the shock wave buffering force is small, and if it exceeds 50%, the influence on viscoelasticity becomes large, and the fluidity also deteriorates during production, which is not preferable.
[0018]
In the above structure, for example, in the case of a capacitor having an outer diameter of 10φ16 mmL, the thickness of the protective material is 0.5 to 5 mm, preferably 2 to 4 mm, and the length is about 10 to 15 mm. It is good to cover.
The capacitor is preferably installed in parallel with the cylinder.
Further, when a slurry explosive is used as a parent die in water, the detonator present in the explosive is subjected to several times the pressure of the surrounding underwater shock wave when impacted. Therefore, it is preferable not to put the electronic timer part in the explosive.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of an impact-resistant electronic delay electric detonator according to the present invention. The electronic timer unit 1 is housed in a case 2 including a metal cylindrical tube 6, and is coupled to a cap 4 having a detonator unit 3 by a fitting unit 15. A gap between the electronic timer unit 1 and the metal cylindrical tube 6 is filled with a viscoelastic substance 5.
[0020]
More specifically, the electronic timer unit 1 is composed of electronic elements including a firing capacitor 9, a crystal resonator 8, and an IC, and these electronic components are all surface-mounted on the substrate 7. A capacitor surrounding protective material 10 is disposed around the side surface of the capacitor 9. The protective material 10 was made of polyethylene foam having a density of 0.068 g / cm 3 (JISK6767) and a foaming ratio of 15 times.
[0021]
The substrate 7 is made of glass epoxy, and a leg wire 11 connected to a blasting device (not shown) is connected to the input side thereof through the cap 4, and the output side thereof is connected to the leg wire of the detonator section 3 through the detonator stopper 13. 12 is connected. Discrete components such as the leg wires 11 and 12, the firing capacitor 9, and the crystal resonator 8 are soldered through the substrate 7. Further, at both ends of the metal cylindrical tube, a part of the case and the cap constitute middle pigs 16 and 17 to prevent the metal cylindrical tube 6 from being crushed by an explosion impact. The fitting length between the middle pig and the cylindrical tube 6 is required to be at least 3 mm. Further, the case is provided with a protrusion 15 so that the electronic timer unit 1 can be normally held and the viscoelastic material 5 can sufficiently rotate around. The substrate 7 is disposed perpendicular to the metal cylindrical tube 6 and reinforces the deformation of the cylindrical tube 6 due to an impact.
[0022]
Further, when the diameter of the cylindrical tube 6 is reduced, the substrate 7 can be elongated and disposed parallel to the cylinder.
Further, the material of the case 2, the cap 4 and the detonator stopper may be plastic, but is preferably an elastic modulus of 100 kg / mm 2 or more. For example, there are polyethylene, polyester, polypropylene, ABS and the like, more preferably nylon 66, polyacetal and the like having an elastic modulus of 200 kg / mm 2 or more. In addition, if the metal cylindrical tube is exposed to the outside, it may be caused by a collision with the detonator during transportation, so the metal cylindrical tube may be covered with plastic or the like for handling as shown in the examples. preferable. The cap 4 may be provided with a hook 18 for preventing the cap 4 from being fitted to the detonator portion. Due to the prevention 18, the electronic delay electric detonator is difficult to be removed from the parent die, and the workability during loading is improved.
[0023]
Further, in manufacturing the electronic delay electric detonator, it is preferable that the input leg 11 and the output leg 12 leading to the electronic timer unit are taken out from the same direction with respect to the metal cylinder 6. This is because, by doing so, the fitting portion 14 can be attached with one touch by pushing the cap 4 with the electronic timer portion into the case 2 into which an appropriate amount of filler has been injected. When the resin is injected after the fitting, it is necessary to provide an injection port, and it is not preferable because air is easily involved.
[0024]
[Example 1]
Based on the above specifications, Table 1 shows the impact test results in water and sand when the fillers are variously changed. As the toner explosive, 100 g of slurry explosive was used, and the sample was collected after impact application and examined for damage. As the tubular material, STKM steel having an outer diameter of 27φ and a thickness of 1.7 mm was used.
[0025]
The numbers in the table indicate the voltage drop across the capacitor when an impact is applied. The charging voltage before the impact is applied is 13 V, and the lower the drop voltage, the better.
[0026]
[Table 1]
Figure 0003877237
[0027]
【The invention's effect】
According to the present invention, the impact resistance of the electronic timer unit is improved against external impact, and control blasting that is safe and accurate for the user is possible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an impact-resistant electronic delay detonator according to the present invention.
[Explanation of symbols]
1. Electronic timer unit 2. Case 3. Detonator section 4. Cap 5. 5. Viscoelastic material Cylindrical tube 7. Substrate 8. Crystal resonator 9. 9. Capacitor for ignition Protective material 11.12. Leg wire 13. Detonator stopper 14. Fitting part 15. Fitting part 16,17. Middle pig part 18. Take off prevention

Claims (4)

ケース内に収容された、発火用コンデンサからなるエネルギー蓄積手段を有する電子タイマー部と雷管部とからなる電子式遅延電気雷管であって、該電子タイマー部は該ケース内において耐衝撃性を有する弾性率1,000kg/mm以上である円筒管の筒内に収容されており、該筒内の空隙部分が10〜50vol%の気泡材を含むJISショアーA硬度10〜90である粘弾性物質で満たされていることを特徴とする耐衝撃性電子式遅延電気雷管。An electronic delay electric detonator composed of an electronic timer unit and a detonator unit, which is housed in a case and has an energy storage means comprising an ignition capacitor, and the electronic timer unit is an elastic material having impact resistance in the case A viscoelastic material having a JIS Shore A hardness of 10 to 90, which is contained in a cylinder of a cylindrical tube having a rate of 1,000 kg / mm 2 or more, and in which a void portion in the cylinder includes 10 to 50 vol% of a cellular material. Shock resistant electronic delay electric detonator characterized by being satisfied. ケース内に収容された、発火用コンデンサからなるエネルギー蓄積手段を有する電子タイマー部と雷管部とからなる電子式遅延電気雷管であって、該電子タイマー部は該ケース内において耐衝撃性を有する弾性率1,000kg/mm 以上である円筒管の筒内に収容され、該エネルギー蓄積手段の周囲のみが、針入度10〜100のゲル状物質、又は発泡性樹脂の0.01g/cm 〜0.20g / cm の低密度層からなる保護で覆われており、且つ電子タイマー部と該筒内の空隙部分が10〜50vol%の気泡材を含むJISショアーA硬度10〜90である粘弾性物質で満たされていることを特徴とする耐衝撃性電子式遅延電気雷管。 Housed in the case, an electronic delay electric detonator comprising the electronic timer unit and the detonator unit with an energy storage means comprising a firing capacitor, the electronic timer unit elasticity of impact resistance within the casing It is accommodated in a cylindrical tube having a rate of 1,000 kg / mm 2 or more , and only the periphery of the energy storage means is a gel-like substance having a penetration of 10 to 100, or 0.01 g / cm 3 of foamable resin. A JIS Shore A hardness of 10 to 90, which is covered with a protective material composed of a low density layer of ˜0.20 g / cm 3 , and the air gap portion in the cylinder includes 10 to 50 vol% of the bubble material. An impact-resistant electronic delay electrical detonator characterized by being filled with a certain viscoelastic material. 前記筒が金属の筒であって、その周囲がプラスチックで覆われていることを特徴とする請求項1または2記載の耐衝撃性電子式遅延電気雷管。 And wherein the cylinder is a cylinder of metal, impact resistance electronic delay electric detonator as claimed in claim 1 or 2 wherein the periphery of that is equal to or covered with plastic. 前記雷管部が、前記電子タイマー部を収容する筒と軸を共有にし、該筒部から突出する形状を有することを特徴とする請求項1〜3のいずれかに記載の耐衝撃性電子式遅延電気雷管。The impact-resistant electronic delay according to any one of claims 1 to 3, wherein the detonator section has a shape that shares a shaft with a cylinder that houses the electronic timer section and protrudes from the cylinder section. Electric detonator.
JP15709496A 1996-06-18 1996-06-18 Impact resistant electronic delay electric detonator Expired - Lifetime JP3877237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15709496A JP3877237B2 (en) 1996-06-18 1996-06-18 Impact resistant electronic delay electric detonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15709496A JP3877237B2 (en) 1996-06-18 1996-06-18 Impact resistant electronic delay electric detonator

Publications (2)

Publication Number Publication Date
JPH109799A JPH109799A (en) 1998-01-16
JP3877237B2 true JP3877237B2 (en) 2007-02-07

Family

ID=15642124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15709496A Expired - Lifetime JP3877237B2 (en) 1996-06-18 1996-06-18 Impact resistant electronic delay electric detonator

Country Status (1)

Country Link
JP (1) JP3877237B2 (en)

Also Published As

Publication number Publication date
JPH109799A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
EP0843807B1 (en) Electronic delay detonator
JP3237761B2 (en) Shock resistant electronic circuit assembly
ES2252835T3 (en) DETONATOR WITH LOAD OF IGNITION FULLY COMPACTED.
MXPA02000667A (en) Components and methods for use with explosives.
RU2002104575A (en) Component and method intended for use with explosives
JP3451299B2 (en) Rock blasting method using airbag buried inside the charge layer
JP3877237B2 (en) Impact resistant electronic delay electric detonator
KR101855098B1 (en) Detonator protector preventing misfire by explosive dynamic shockwave
CA2690037C (en) A device, charging unit and method of filling a borehole with an explosive material
KR20010069741A (en) explosive container & method for loading explosive with precision & loading apparatus of explosive
KR20120033849A (en) Charging unit for blasting and blasting method using the same
US11473882B2 (en) Canister assembly with protected cap well and booster explosive comprising the same
KR100317825B1 (en) Method for Crushing a Rock Resulting in a Slight Shock
RU93965U1 (en) EXPLOSION CHARGE
US5303653A (en) High explosive disseminator for a high explosive air bomb
JPH0224000Y2 (en)
JP3998366B2 (en) Seismic source equipment for geological exploration
CN217654385U (en) Device for preventing digital detonator from generating blind blasting due to blasting vibration by small-diameter charging
Baluch et al. An Experimental and Numerical Study on the Stemming Effect of a Polymer Gel in Explosive Blasting
Kurth et al. Assessment of explosives in squibs
Agasty Application of underwater tests to determine he-equivalents of pyrotechnic substances
RU2129252C1 (en) Device for pipping-up of soil above mine
OA20960A (en) Canister assembly with protected cap well and booster explosive comprising the same.
JPH0820198B2 (en) Electrical delay detonator
JPH03221800A (en) Determination of safety most loading dosage in hole drilling blasting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

EXPY Cancellation because of completion of term