JP3876751B2 - Combustion device - Google Patents

Combustion device Download PDF

Info

Publication number
JP3876751B2
JP3876751B2 JP2002111680A JP2002111680A JP3876751B2 JP 3876751 B2 JP3876751 B2 JP 3876751B2 JP 2002111680 A JP2002111680 A JP 2002111680A JP 2002111680 A JP2002111680 A JP 2002111680A JP 3876751 B2 JP3876751 B2 JP 3876751B2
Authority
JP
Japan
Prior art keywords
latent heat
combustion
temperature
heat recovery
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002111680A
Other languages
Japanese (ja)
Other versions
JP2003307344A (en
Inventor
立群 毛
文孝 菊谷
正満 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002111680A priority Critical patent/JP3876751B2/en
Publication of JP2003307344A publication Critical patent/JP2003307344A/en
Application granted granted Critical
Publication of JP3876751B2 publication Critical patent/JP3876751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、家庭用又は業務用の燃焼装置に関し,更に詳しくは給湯または暖房などの燃焼ガス中の水蒸気潜熱を回収する燃焼装置に関するものである。
【0002】
【従来の技術】
従来、この種の燃焼装置として、図9に示す特開2001−4214公報に記載されるようなものがあった。図9において、1はバーナと熱交換器を有する燃焼器具、2は燃焼器具1が有する電源端子、3は燃焼器具1の湯温などを遠隔制御操作する台所リモコン、4は台所リモコン3に設けられ電源の入切を行う運転スイッチ、5は給湯操作の状況、設定などを表示するタッチパネル式表示部、6は燃焼器具1とリモコン3を接続電源配線コードである。燃焼器具1からリモコン3に電源が供給される。
【0003】
このように、電源端子2をコンセント(図示せず)に差込、運転スイッチ4を押して、表示部5に表示画面が出てくる。このタッチパネル式表示部5にある初期設定スイッチ(図示せず)を押して、希望温度、湯量、時刻などを設定した後、自動スイッチ(図示せず)を押せば、図示しない電磁弁が開いて水が流れ、燃焼器具1が作動してバーナが着火し、適温の湯が供給される。燃焼器具1が運転している時、表示部5に燃焼中を示す例えば炎状のランプ、湯温、時刻など情報が表示されている。逆に、燃焼器具1に不具合が生じた時、この表示部5からエラー情報表示が出るようにしている。
【0004】
燃焼器具1として、燃料を燃やして燃焼ガスを形成するバーナと、燃焼ガスと熱交換し被加熱流体例えば水を加熱する熱交換器とを備えるものが用いられていた。これはよく知られているため、ここでの図示は省略するが、熱交換器は主に燃焼ガスの顕熱を吸収し、被加熱流体を所定の湯温まで加熱し供給するという動作になっている。熱交換が終わった燃焼ガスは低温となって(例えば200℃〜300℃)燃焼器具1の外に排出される。ここで、燃焼ガスの顕熱のみを回収しているので、燃焼器具1の熱効率は約80%となっている。
【0005】
また、近年、燃焼器具1として、燃焼排気ガス(以下排ガスと呼ぶ)の水蒸気凝縮潜熱を回収し燃焼器具の高熱効率化を図り、図10に示す特開昭56−168055号公報に記載されているようなものも用いられていた。図10において、7は都市ガスやLPガス等のガスや、灯油等の石油を燃料とするバーナ、8はバーナ7の燃焼によって発生する燃焼ガスと熱交換する主熱交換器、9は主熱交換器8の下流の排ガスと熱交換する補助熱交換器である。
【0006】
10は補助熱交換器9内の伝熱管11と連通する給水管、ここで、主熱交換器8を経た排ガスにより伝熱管11内の水は常温よりもやや高い温度まで加熱される。この補助熱交換器9では、主に排ガス中の水蒸気の凝縮潜熱を回収することになる。伝熱管11表面で凝縮した水蒸気は、結露水として滴下し、その下部に設けた結露水回収部12に集められ、結露水排出管13を通じて、燃焼装置の外部に排出される。
【0007】
補助熱交換器9で予熱された水は、予温水管14を通じて主熱交換器8の伝熱管15内に流入する。ここで、バーナ7からの燃焼ガスにより加熱されその内部を流れる水はさらに設定された温度まで加熱され、給湯管16より外部に流出する。
【0008】
このように、リモコン3によって、燃焼器具1の操作性、利便性の向上が図れるとともに、表示部5の情報表示によって、適切な情報をユーザーへ提供できるため、ユーザーは運転中の燃焼器具1の状況、設定など情報を把握でき、安心して使用することが可能となった。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の燃焼装置の構成では、凝縮潜熱を回収する場合、補助熱交換器9で凝縮潜熱を放出して凝縮した排ガス中の水蒸気結露水となり、この結露水は炭酸や硝酸イオンを含み強酸性(約pH3前後)を示しているため、通常の顕熱のみを回収する燃焼装置と違って、補助熱交換器9は過酷な酸性環境に曝され、通常の顕熱のみを回収する熱交換器と比べ耐久性などは重要な安全管理ポイントとなる。そこで、耐食対策の取った補助熱交換器を用いても時間経過による寿命管理、稼働状況の常時監視などは非常に重要であるため、潜熱回収稼働情報をユーザーに、特に凝縮潜熱を回収しない燃焼装置の使用に慣れていたユーザーに開示することも非常に大事なことである。
【0010】
また、凝縮潜熱を回収する潜熱回収型燃焼装置の重要部品である補助熱交換器の稼働状況、出力などの情報もメンテ者にとって、故障箇所特定、補助熱交換器の経年劣化管理などに大事な情報である。しかし、上記従来の燃焼装置では、リモコンの表示部から燃焼中、湯温、時刻など情報を把握できていたが、凝縮潜熱回収の稼働状況は把握できていないという課題があった。
【0011】
また、省エネ・地球環境保護意識が高揚している中、凝縮潜熱を回収しない燃焼装置と比べ、高効率の燃焼装置でありながらその省エネ性、CO2削減効果など地球環境への貢献度は使っているユーザーにさえアピールできていないという課題もあった。
【0012】
本発明は、前記従来の課題を解決するもので、正確に潜熱回収型燃焼装置の潜熱回収稼働状況を検知・報知し、燃焼装置の安全管理が図れるとともに、高効率、省エネ性などをアピールできる燃焼装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は上記課題を解決するため、燃焼装置が燃焼ガスの顕熱と水蒸気潜熱を回収し、被加熱流体を加熱する燃焼器具と、この燃焼器具を遠隔制御するリモコンと、燃焼器具に潜熱回収稼働状況を検知する潜熱検知手段と、リモコンに潜熱回収稼働状況を報知する潜熱報知手段とを備えている。
【0014】
上記発明によれば、潜熱検知手段を用いて燃焼器具の潜熱回収稼働状況を検知し、その情報をリモコンに設けられている潜熱報知手段によってユーザーまたはメンテ者に報知することができるため、高効率で省エネであることをアピールし、ユーザーは燃焼器具の潜熱回収部の稼働状況をリアルに確認でき、安心して使用できる。また、メンテの時も、潜熱検知手段によって得た潜熱回収稼働情報はメンテ者が把握できるため、故障箇所の特定時間短縮化が図れるとともに、潜熱回収部の時間経過による劣化状況などを把握でき、故障の予測または事前安全施策が可能となることによって、燃焼装置の安全管理が図れる。
【0015】
【発明の実施の形態】
本発明の燃焼装置は燃焼ガスの顕熱と水蒸気潜熱を回収し、被加熱流体を加熱する燃焼器具と、この燃焼器具を遠隔制御するリモコンと、燃焼器具に潜熱回収稼働状況を検知する潜熱検知手段と、リモコンに潜熱回収稼働状況を報知する潜熱報知手段とを備え、被加熱流体による吸熱量と燃焼器具へ供給する燃料ガスの発熱量とを計算し、熱効率を演算する熱効率演算手段と、所定の潜熱回収熱効率と比較する熱効率比較手段とを備えている。
【0016】
そして、潜熱検知手段を用いて燃焼器具の潜熱回収稼働状況を検知し、その情報をリモコンに設けられている潜熱報知手段によってユーザーまたはメンテ者に報知することができるため、高効率であることをアピールし、ユーザーは燃焼器具の潜熱回収部の稼働状況をリアルに確認でき、安心して使用できる。また、メンテの時も、潜熱検知手段によって得た潜熱回収稼働情報はメンテ者が把握できるため、故障箇所の特定時間短縮化が図れるとともに、潜熱回収部の時間経過による劣化状況などを把握でき、故障の予測または事前安全施策が可能となることによって、燃焼装置の安全管理が図れ、熱効率演算手段を設けることによって、潜熱回収型燃焼装置の重要出力指標である熱効率を表示させアピールすることができる。さらに運転時の熱効率と所定の潜熱回収熱効率とを熱効率比較手段を用いて比較することで、燃焼装置の現在の潜熱回収稼働状況を数値的に把握することができ、時間経過などによる熱効率の変動などから潜熱回収稼働状況の経過詳細情報も得られる。
【0017】
また、熱交換された後燃焼器具外に排出される排気ガス温度を検知する排気ガス温度センサーと、燃焼器具の燃焼ガス水蒸気露点温度を計算し、排気ガス温度と比較する排気温度比較手段とを備えている。
【0018】
そして、上記の燃焼装置において、燃料と空気の供給量などから燃焼ガス水蒸気の露点温度を計算し、排気ガス温度センサーによって検知した排気ガス温度と比較して、排気ガス温度が露点温度と同等もしくわ露点温度より下回っていれば、潜熱回収部が稼働していると判定できるため、簡単な手法で潜確実に熱回収部の稼働状況を検知できる。
【0019】
また、燃焼ガスの水蒸気によって形成される結露水の発生を検知する結露水検知手段を備えている。
【0020】
そして、上記の燃焼装置において、潜熱回収時に生じた結露水の発生を検知するため、より正確に潜熱回収稼働状況を検知、把握できる。
【0021】
また、潜熱回収稼働時間を積算する積算手段と、積算された潜熱回収稼働時間を予め入力された寿命時間と比較する寿命演算手段と、寿命報知手段とを備えている。
【0022】
そして、上記の燃焼装置において、積算手段によって、潜熱回収稼働時間が積算され、この積算された稼働時間を寿命時間と比較することで、潜熱回収部の寿命を判定し、報知することができるため、燃焼装置の様々の使用パターンに応じて、正確に潜熱回収部の使用状況、劣化進行、寿命などを把握し管理することができる。
【0023】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0024】
(実施例1)
図1は本発明の実施例1の燃焼装置の構成図である。図1において、20は石油またはガスを燃料とするバーナ、バーナ20の燃焼によって形成する燃焼ガスAはバーナ20の下流側に設けられる熱交換器21へ案内され、この熱交換器21は多数の伝熱管22によって構成され燃焼ガスAの顕熱と潜熱を吸収する。このように、バーナ20と熱交換器21によって、燃焼ガスの顕熱と水蒸気潜熱を回収し被加熱流体を加熱する燃焼器具23を構成する。24は燃焼器具23の被加熱流体の入水口、25は燃焼器具23の被加熱流体の出水口である。
【0025】
Bは熱交換器21で熱交換された後低温となった排気ガス、この排気ガスBは排気口26から燃焼器具23から排出される。また、27は熱交換器21で形成された結露水を捕集し中和する中和装置。28はリモコンケーブル29によって燃焼器具23の制御部30と接続され、燃焼器具23を遠隔制御するリモコン、31は制御部30に設けられる演算装置、32は中和装置27に設けた潜熱検知手段である中和水温度センサー、この潜熱検知手段32は演算装置31と接続している。また、リモコン28には、運転スイッチ33と、燃焼器具の設定情報、時刻、湯温などを表示する表示部34、潜熱回収稼働状況を報知する潜熱報知手段である潜熱ランプ35が設けられている。
【0026】
次に動作、作用について説明すると、リモコン28を用い、出湯温度などを設定し、運転スイッチ33を押せば、バーナ20は点火装置(図示せず)によって点火され、バーナ20の燃焼によって形成される高温燃焼ガスAは熱交換器21で伝熱管22内を流れる被加熱流体である水を加熱し燃焼器具23が作動する。伝熱管22内を流れる水は入水口24から供給され、伝熱管22内で燃焼ガスの熱を吸収し設定の湯温となり出水口25からユーザーへ供給される。
【0027】
この時、熱交換器21内において、燃焼ガスの温度低下につれ、燃焼排気ガス中の水蒸気は凝縮潜熱を奪われて一部の伝熱管22の表面で結露水となる。発生した凝縮水は更に低温となった燃焼ガスとともに下向きに流れ、中和装置27内に捕集される。この中和装置27内で酸性の結露水は中和され中和水となり排出される。一方低温となった排気ガスBは排気口26へ導かれ燃焼器具23外へ排出される。この結露水はやや排気ガス温度と同等温度となっているため、放熱要素などを考慮しても、中和水となった時の温度は大気温度もしくわ給水温度より高くなっている。そして、潜熱検知手段である中和水温度センサー32はこの中和水温度を検知し、この検知値を用いて演算装置31で例えば大気温度もしくわ給水温度と比較処理して、中和水温度が大気温度もしくわ給水温度より高い場合、潜熱回収は稼働中であると判断できる。そして、この判断結果はリモコンケーブル29を通して、潜熱報知手段である潜熱ランプ35を点燈させ、ユーザーに報知するようになる。
【0028】
このように、中和水温度センサー32を用いて燃焼器具23の潜熱回収稼働状況を検知し、その情報をリモコン28に設けられている潜熱ランプ35によってユーザーまたはメンテ者に報知することができるため、高効率で省エネであることをアピールし、ユーザーは燃焼器具23の潜熱回収部の稼働状況をリアルに確認でき、安心して使用できる。また、メンテの時も、潜熱検知手段である中和水温度センサー32によって得た潜熱回収稼働情報はメンテ者が把握できるため、故障箇所の特定時間短縮化が図れるとともに、潜熱回収部の時間経過による劣化状況などを把握でき、故障の予測または事前安全施策が可能となることによって、燃焼装置の安全管理が図れる。
【0029】
(実施例2)
図2本発明の実施例2の燃焼装置構成図を示す。本実施例2において、実施例1と異なる点は、燃焼器具23には燃焼ガスAの下流側に設けられ主に燃焼ガスの顕熱を吸収する主熱交換器36と、主熱交換器36の下流側に設けられ主に燃焼ガスの水蒸気潜熱を吸収する副熱交換器37とを設けたことである。また、連通管38によって、主熱交換器36を構成する主伝熱管36aと副熱交換器37を構成する副伝熱管37aは連通されている。なお、実施例1で用いた熱交換器21及びそれを構成する伝熱管22は本実施例で廃止する。さらになお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0030】
次に動作、作用を説明すると、リモコン28を用い、出湯温度などを設定し、運転スイッチ33を押せば、バーナ20は点火装置(図示せず)によって点火される。バーナ20の燃焼によって形成される高温燃焼ガスAは主熱交換器36で主伝熱管36a内を流れる予熱水を加熱した後、低温燃焼ガスとなって、さらに主熱交換器36の下流側において、この低温の排気ガスが副熱交換器37を通過する。
【0031】
この時、副熱交換器37内において、副伝熱管37a内を流れる水を予熱することによって排気ガスはさらに低温の排気ガスBとなり、燃焼排気ガス中の水蒸気は凝縮潜熱を奪われて副伝熱管37aの表面で凝縮水となる。この凝縮水にはCO2やNOxなどのガスが溶解しているため、酸性(pH=2〜4)を示す。発生した凝縮水は更に低温となった燃焼ガスとともに下向きに流れ、中和装置27へ排出される。
【0032】
一方更に低温となった排気ガスBは排気口26から大気に排出される。被加熱流体である水は給水口24から副熱交換器37の副伝熱管37a内へ導入され、主熱交換器36を通過した後の排気ガスから水蒸気潜熱を奪い給水時よりやや温度が高い予熱水となって、副熱交換器37から導出される。そして、この予熱水は連通管38を通じて、主熱交換器36で所定の温度まで加熱された後出湯される。そして、この判断結果はリモコンケーブル29を通して、潜熱報知手段である潜熱ランプ35を点燈させ、ユーザーに報知するようになる。
【0033】
このように、燃焼器具23には、主に燃焼ガスの顕熱を吸収する主熱交換器36と、主に燃焼ガスの水蒸気潜熱を吸収する副熱交換器37とに分けることによって、凝縮過程を副熱交換器37に集中させることができるため、副熱交換器37の稼働状況を検知することで、より正確に燃焼装置の潜熱回収稼働状況を検知できる。
【0034】
(実施例3)
図3は本発明の実施例3の燃焼装置構成図を示す。本実施例3において、実施例1と異なる点は、燃焼器具23の入水口24には被加熱流体の入水温度を計測する入水サーミスタ39と、入水流量を計測する水量センサー40と、燃焼器具23の出水口25には被加熱流体の出水温度を計測する出水サーミスタ41と、入水サーミスタ39と水量センサー40と出水サーミスタ41から得た情報を元にして吸熱量を演算する吸熱量演算装置42と、燃焼器具23へ導入される燃焼ガスの発熱量を演算する発熱量演算装置43と、吸熱量演算装置42と発熱量演算装置43から得た発熱量と吸熱量を元にして熱効率を計算する熱効率演算手段44と、熱効率演算手段44から得た熱効率を予め入力した所定の熱効率と比較する熱効率比較手段45とを設けたことである。なお、実施例1で用いた演算装置31と、中和水温度センサー32は本実施例で廃止する。さらになお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0035】
次に動作、作用を説明すると、リモコン28を用い、出湯温度などを設定し、運転スイッチ33を押せば、バーナ20に燃料ガスが供給され、点火装置(図示せず)によって点火される。
【0036】
バーナ20の燃焼によって形成される高温燃焼ガスは熱交換器21で伝熱管22内を流れる被加熱流体である水を加熱し燃焼器具23が作動する。伝熱管22内を流れる水は入水口24から供給され、伝熱管22内で燃焼ガスの熱を吸収し設定の湯温となり出水口25からユーザーへ供給される。
【0037】
そして、吸熱量演算装置42は入水サーミスタ39と水量センサー40と出水サーミスタ41から得た入水温、水量、出水温などの情報を元にして吸熱量を演算して、発熱量演算装置43は燃焼器具23へ導入される燃焼ガスの発熱量を演算して、この吸熱量と発熱量を元にして熱効率演算手段44を用いて熱効率を計算することができる。そして、熱効率比較手段45を用いて、この熱効率を予め入力した所定の熱効率と比較することができる。
【0038】
このように、熱効率演算手段44を設けることによって、潜熱回収型燃焼装置の重要出力指標である熱効率を表示させアピールすることができる。さらに運転時の熱効率と所定の潜熱回収熱効率とを熱効率比較手段45を用いて比較することで、燃焼装置の現在の潜熱回収稼働状況を数値的に把握することができ、時間経過などによる熱効率の変動などから潜熱回収稼働状況の経過詳細情報も得られる。
【0039】
(実施例4)
図4は本発明の実施例4の燃焼装置構成図である。本実施例4において、実施例1と異なる点は、排気口26近傍に排気ガス温度を計測する排気ガス温度センサー46と、制御部30に燃焼器具23の燃焼ガス水蒸気露点温度を計算し排気ガス温度センサー46によって得た排気ガス温度をこの露点温度と比較する排気温度比較手段47を設けたことである。なお、実施例1で用いた演算装置31と、中和水温度センサー32は本実施例で廃止する。さらになお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0040】
次に動作、作用を説明すると、リモコン28を用い、出湯温度などを設定し、運転スイッチ33を押せば、バーナ20に燃料ガスが供給され、点火装置(図示せず)によって点火される。
【0041】
バーナ20の燃焼によって形成される高温燃焼ガスは熱交換器21で伝熱管22内を流れる被加熱流体である水を加熱し燃焼器具23が作動する。伝熱管22内を流れる水は入水口24から供給され、伝熱管22内で燃焼ガスの熱を吸収し設定の湯温となり出水口25からユーザーへ供給される。
【0042】
そして、排気温度比較手段47を用いて、バーナ20へ供給される燃料ガスと空気の供給量、燃焼ガス中の水蒸気の量、分圧などを計測計算し水蒸気の露点温度を計算して、この露点温度を排気ガス温度センサー46によって計測した排気ガス温度と比較して、排気ガス温度が露点温度と同等もしくわ露点温度より下回れば水蒸気凝縮が生じていると判断できる。
【0043】
このように、燃料と空気の供給量などから燃焼ガス水蒸気の露点温度を計算し、排気ガス温度センサー46によって検知した排気ガス温度と比較して、排気ガス温度が露点温度と同等もしくわ露点温度より下回っていれば、潜熱回収部が稼働していると判定できるため、簡単な手法で確実に潜熱回収部の稼働状況を検知できる。
【0044】
(実施例5)
図5は本発明の実施例5の燃焼装置構成図である。本実施例5において、実施例1と異なる点は、燃焼ガスの水蒸気の凝縮によって形成される結露水の発生を検知する結露水検知手段48と、結露水検知手段48によって得た信号を処理する判断装置49を設けたことである。なお、実施例1で用いた演算装置31と、中和水温度センサー32は本実施例で廃止する。なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0045】
次に動作、作用を説明すると、リモコン28を用い、出湯温度などを設定し、運転スイッチ33を押せば、バーナ20に燃料ガスが供給され、点火装置(図示せず)によって点火される。
【0046】
バーナ20の燃焼によって形成される高温燃焼ガスは熱交換器21で伝熱管22内を流れる被加熱流体である水を加熱し燃焼器具23が作動する。伝熱管22内を流れる水は入水口24から供給され、伝熱管22内で燃焼ガスの熱を吸収し設定の湯温となり出水口25からユーザーへ供給される。そして、結露水の発生を検知する結露水検知手段48によって、結露水の発生を検知しその検知信号を判断装置49へ送ることができるため、潜熱回収稼働しているかどうかを判断できる。このように、潜熱検知手段は潜熱回収時に必ず生じる結露水の発生を検知するため、より正確に潜熱回収稼働状況を検知、把握できる。
【0047】
(実施例6)
図6は本発明の実施例6の燃焼装置構成図である。本実施例6において、実施例1と異なる点は、潜熱回収稼働時間を積算する積算手段50と、この積算手段50によって得られた潜熱回収稼働積算時間を予め入力された寿命時間と比較する寿命演算装置51と、この寿命演算装置51によって得られた情報を元にして潜熱回収稼働部の寿命到来を予知または報知する寿命報知手段52とを設けたことである。なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0048】
次に動作、作用を説明すると、リモコン28を用い、出湯温度などを設定し、運転スイッチ33を押せば、バーナ20に燃料ガスが供給され、点火装置(図示せず)によって点火される。
【0049】
バーナ20の燃焼によって形成される高温燃焼ガスは熱交換器21で伝熱管22内を流れる被加熱流体である水を加熱し燃焼器具23が作動する。伝熱管22内を流れる水は入水口24から供給され、伝熱管22内で燃焼ガスの熱を吸収し設定の湯温となり出水口25からユーザーへ供給される。
【0050】
また潜熱検知手段である中和水温度センサー32は中和水温度を検知し、この検知値を用いて演算装置31で例えば大気温度もしくわ給水温度と比較処理して、中和水温度が大気温度もしくわ給水温度より高い場合、潜熱回収部は稼働中であると判断できる。そして、積算手段50を用いて、中和水センサー32によって検知された潜熱回収部の稼働時間を積算して、さらに、寿命演算装置51を用いて、この積算された潜熱回収部の稼働時間を予め入力された寿命時間と比較することによって、潜熱回収部の寿命管理を数値的に把握できる。さらに、寿命演算装置51の比較結果信号を寿命報知手段52に送ることによって、潜熱回収部の寿命到来を予知または報知することができる。
【0051】
このように、積算手段50によって、潜熱回収稼働時間を積算して、この積算された稼働時間を寿命時間と比較することで、潜熱回収部の寿命を判定し、予知または報知することができるため、燃焼装置の様々の使用パターンに応じて、正確に潜熱回収部の使用状況、劣化進行、寿命などを把握し管理することができる。
【0052】
(実施例7)
図7は本発明の実施例7の燃焼装置構成図である。本実施例7において、実施例1と異なる点は、中和水温度センサー32と演算装置31によって得た情報を処理する情報処理装置53と、燃焼器具23の外部に設けられる記録分析表示装置54と、情報処理装置53と記録分析表示装置54を連結する接続手段である通信ケーブル55を設けたことである。なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0053】
次に動作、作用を説明すると、リモコン28を用い、出湯温度などを設定し、運転スイッチ33を押せば、バーナ20に燃料ガスが供給され、点火装置(図示せず)によって点火される。
【0054】
バーナ20の燃焼によって形成される高温燃焼ガスは熱交換器21で伝熱管22内を流れる被加熱流体である水を加熱し燃焼器具23が作動する。伝熱管22内を流れる水は入水口24から供給され、伝熱管22内で燃焼ガスの熱を吸収し設定の湯温となり出水口25からユーザーへ供給される。
【0055】
潜熱検知手段である中和水温度センサー32は中和水温度を検知し、この検知値を用いて演算装置31で例えば大気温度もしくわ給水温度と比較処理して、中和水温度が大気温度もしくわ給水温度より高い場合、潜熱回収部は稼働中であると判断できる。
【0056】
演算装置31で得た潜熱回収稼働状況の判断結果などの情報は情報処理装置53へ送られ、運転設定値、運転時刻、結露水発生量、燃焼量などの情報とともに情報処理装置で再度計算処理される。そして、これらの必要の情報は通信ケーブル55を通じて、記録分析表示装置54(例えばパーソナルコンピューター)へ転送することができる。
【0057】
このように、記録分析表示装置54(例えばパーソナルコンピューター)にて潜熱回収の稼働状況を含め燃焼器具23の運転情報を記録、再度分析、表示などは可能となるため、リモコン28または燃焼器具23と遠隔地に配置されるこの記録分析表示装置54を用いて、潜熱回収稼働状況などの運転情報を記録、分析、蓄積、表示することが可能となる。
【0058】
なお、本実施例で接続手段は通信ケーブルとしているが、無線通信手段を用いても同様な効果が得られる。
【0059】
(実施例8)
図8は本発明の実施例8の燃焼装置システム構成図である。本実施例8において、実施例7と異なる点は、情報処理装置53は記録分析表示装置54を介して外部ネットワーク56と接続していることである。なお、実施例1と同一符号のものは同一構造を有し、説明は省略する。
【0060】
次に動作、作用を説明すると、燃焼器具23の作動は実施例7と同様のため、ここでの説明は省略する。情報処理装置53は外部ネットワーク56と接続することによって、潜熱回収稼働状況などの情報は外部ネットワーク56へ転送できるため、ガス会社またはセキュリテイー業者またはメンテ保守業者は外部ネットワーク56を通じて、燃焼器具23の潜熱回収稼働状況などの情報を入手、管理することができる。よって、ユーザーは安全管理の面において、より安心して使用できるようになる。
【0061】
なお、前記各実施例において潜熱報知手段は潜熱ランプとしたが、文字もしくわ絵の表示、音声報知などを用いても同様な効果が得られる。
【0062】
【発明の効果】
以上説明したように、本発明によれば、正確に潜熱回収型燃焼装置の潜熱回収稼働状況を検知・報知し、燃焼装置の安全管理が図れるとともに、高効率、省エネ性などをアピールできる燃焼装置を提供することが可能となる。
【図面の簡単な説明】
【図1】 本発明の実施例1における燃焼装置のシステム構成図
【図2】 本発明の実施例2における燃焼装置のシステム構成図
【図3】 本発明の実施例3における燃焼装置のシステム構成図
【図4】 本発明の実施例4における燃焼装置のシステム構成図
【図5】 本発明の実施例5における燃焼装置のシステム構成図
【図6】 本発明の実施例6における燃焼装置のシステム構成図
【図7】 本発明の実施例7における燃焼装置のシステム構成図
【図8】 本発明の実施例8における燃焼装置のシステム構成図
【図9】 従来の燃焼器具とリモコンによって構成される燃焼装置のシステム構成図
【図10】 従来の燃焼器具の断面図
【符号の説明】
23 燃焼器具
28 リモコン
32 中和水温度センサー(潜熱検知手段)
35 潜熱ランプ(潜熱報知手段)
36 主熱交換器
37 副熱交換器
42 熱効率演算手段
43 熱効率比較手段
46 排気ガス温度センサー(潜熱検知手段)
47 排気温度比較手段
48 結露水検知手段(潜熱検知手段)
50 積算手段
51 寿命演算手段
52 寿命報知手段
53 情報処理装置
54 記録分析表示装置
55 通信ケーブル(接続手段)
56 外部ネットワーク
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a combustion apparatus for home use or business use, and more particularly to a combustion apparatus that recovers steam latent heat in combustion gas such as hot water supply or heating.
[0002]
[Prior art]
  Conventionally, there has been a combustion apparatus of this type as described in Japanese Patent Application Laid-Open No. 2001-4214 shown in FIG. In FIG. 9, 1 is a combustion appliance having a burner and a heat exchanger, 2 is a power supply terminal of the combustion appliance 1, 3 is a kitchen remote control for remotely controlling the hot water temperature of the combustion appliance 1, and 4 is provided in the kitchen remote control 3. An operation switch for turning on and off the power supply, 5 is a touch panel type display unit for displaying the status and setting of hot water supply operation, and 6 is a power supply wiring cord for connecting the combustion appliance 1 and the remote controller 3. Power is supplied from the combustion appliance 1 to the remote controller 3.
[0003]
  In this way, the power supply terminal 2 is inserted into an outlet (not shown) and the operation switch 4 is pressed, so that a display screen appears on the display unit 5. When an initial setting switch (not shown) in the touch panel type display unit 5 is pressed to set a desired temperature, amount of hot water, time, etc., and an automatic switch (not shown) is pressed, a solenoid valve (not shown) opens and water is displayed. Flows, the burner 1 is activated, the burner is ignited, and hot water of an appropriate temperature is supplied. When the combustion appliance 1 is in operation, information such as a flame lamp, hot water temperature, and time indicating that combustion is in progress is displayed on the display unit 5. On the contrary, when a malfunction occurs in the combustion appliance 1, an error information display is displayed from the display unit 5.
[0004]
  The combustion instrument 1 includes a burner that burns fuel to form combustion gas, and a heat exchanger that exchanges heat with the combustion gas and heats a fluid to be heated such as water. Since this is well known, illustration is omitted here, but the heat exchanger mainly absorbs the sensible heat of the combustion gas and heats and supplies the heated fluid to a predetermined hot water temperature. ing. The combustion gas after the heat exchange is cooled to a low temperature (for example, 200 ° C. to 300 ° C.) and is discharged out of the combustion appliance 1. Here, since only the sensible heat of the combustion gas is recovered, the thermal efficiency of the combustion appliance 1 is about 80%.
[0005]
  In recent years, as the combustion appliance 1, steam condensing latent heat of combustion exhaust gas (hereinafter referred to as exhaust gas) is recovered to improve the thermal efficiency of the combustion appliance, which is described in Japanese Patent Laid-Open No. 56-168055 shown in FIG. Something like that was also used. In FIG. 10, 7 is a burner using fuel such as city gas or LP gas or petroleum such as kerosene, 8 is a main heat exchanger for exchanging heat with combustion gas generated by combustion of the burner 7, and 9 is main heat. It is an auxiliary heat exchanger that exchanges heat with the exhaust gas downstream of the exchanger 8.
[0006]
  A water supply pipe 10 communicates with the heat transfer pipe 11 in the auxiliary heat exchanger 9. Here, the water in the heat transfer pipe 11 is heated to a temperature slightly higher than normal temperature by the exhaust gas that has passed through the main heat exchanger 8. The auxiliary heat exchanger 9 mainly recovers the latent heat of condensation of water vapor in the exhaust gas. The water vapor condensed on the surface of the heat transfer tube 11 is dropped as condensed water, collected in the condensed water recovery unit 12 provided below the condensed water, and discharged to the outside of the combustion device through the condensed water discharge tube 13.
[0007]
  The water preheated by the auxiliary heat exchanger 9 flows into the heat transfer pipe 15 of the main heat exchanger 8 through the preheated water pipe 14. Here, the water heated by the combustion gas from the burner 7 and flowing through the inside is further heated to a set temperature and flows out from the hot water supply pipe 16 to the outside.
[0008]
  As described above, the operability and convenience of the combustion appliance 1 can be improved by the remote controller 3 and appropriate information can be provided to the user by the information display on the display unit 5. The situation, settings, and other information can be ascertained and used with confidence.
[0009]
[Problems to be solved by the invention]
  However, in the configuration of the conventional combustion apparatus, when recovering the latent heat of condensation, the condensed heat is discharged by the auxiliary heat exchanger 9 to become water vapor condensed water in the exhaust gas, and this condensed water contains carbonate and nitrate ions. Because it shows strong acidity (about pH 3), unlike the combustion device that recovers only normal sensible heat, the auxiliary heat exchanger 9 is exposed to a harsh acidic environment and heat that recovers only normal sensible heat. Durability is an important safety management point compared to the exchanger. Therefore, even if an auxiliary heat exchanger with anti-corrosion measures is used, life management over time and constant monitoring of operation status are very important, so the latent heat recovery operation information is used for the user, especially the combustion that does not recover condensed latent heat It is also very important to disclose to users who are used to using the device.
[0010]
  In addition, information such as the operating status and output of the auxiliary heat exchanger, which is an important part of the latent heat recovery type combustion device that recovers the latent heat of condensation, is also important for maintainers in identifying the failure location and managing the deterioration of the auxiliary heat exchanger over time. Information. However, in the conventional combustion apparatus, information such as hot water temperature and time during combustion can be grasped from the display unit of the remote controller, but there is a problem that the operation status of the condensed latent heat recovery cannot be grasped.
[0011]
  In addition, while the awareness of energy conservation and global environment protection has been raised, the contribution to the global environment, such as energy efficiency and CO2 reduction effect, while using a highly efficient combustion device compared to a combustion device that does not collect condensed latent heat, is used. There was also a problem that even some users could not appeal.
[0012]
  The present invention solves the above-described conventional problems, and can accurately detect and notify the latent heat recovery operation status of the latent heat recovery type combustion device, and can manage the safety of the combustion device, and can appeal high efficiency and energy saving. An object is to provide a combustion apparatus.
[0013]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a combustion device in which a combustion device recovers sensible heat of steam and latent heat of steam and heats the fluid to be heated, a remote controller for remotely controlling the combustion device, and latent heat recovery in the combustion device. Latent heat detection means for detecting the operation status and latent heat notification means for notifying the remote controller of the latent heat recovery operation status are provided.
[0014]
  According to the above invention, the latent heat detection operation state of the combustion appliance can be detected using the latent heat detection means, and the information can be notified to the user or the maintainer by the latent heat notification means provided in the remote control. By appealing that it is energy saving, the user can check the operating status of the latent heat recovery part of the combustion appliance in real time and use it with peace of mind. Also during maintenance, the latent heat recovery operation information obtained by the latent heat detection means can be grasped by the maintainer, so that it is possible to shorten the specific time of the failure location and to understand the deterioration status of the latent heat recovery part over time, etc. By enabling failure prediction or prior safety measures, safety management of the combustion apparatus can be achieved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
  The present inventionBurningThe firing device collects sensible heat of steam and the latent heat of water vapor, heats the fluid to be heated, a remote control for remotely controlling the combustion tool, and latent heat detection means for detecting the operation status of the latent heat recovery in the combustion tool, With latent heat notification means for notifying the remote controller of the operation status of latent heat recoveryA heat efficiency calculating means for calculating a heat absorption amount by the fluid to be heated and a calorific value of the fuel gas supplied to the combustion appliance, and calculating a heat efficiency, and a heat efficiency comparing means for comparing with a predetermined latent heat recovery heat efficiency.ing.
[0016]
  Since the latent heat recovery operation status of the combustion appliance is detected using the latent heat detection means, and the information can be notified to the user or the maintainer by the latent heat notification means provided on the remote control, it is highly efficient. Appealing, the user can check the operating status of the latent heat recovery unit of the combustion equipment realistically, and can be used with confidence. Also during maintenance, the latent heat recovery operation information obtained by the latent heat detection means can be grasped by the maintainer, so that it is possible to shorten the specific time of the failure location and to understand the deterioration status of the latent heat recovery part over time, etc. Safety control of combustion equipment can be achieved by enabling failure prediction or advance safety measures.By providing the thermal efficiency calculating means, it is possible to display and appeal the thermal efficiency which is an important output index of the latent heat recovery type combustion apparatus. Furthermore, by comparing the thermal efficiency during operation and the specified latent heat recovery thermal efficiency using thermal efficiency comparison means, it is possible to grasp the current latent heat recovery operation status of the combustion device numerically, and fluctuations in thermal efficiency over time From the above, detailed information on the progress of the latent heat recovery operation can be obtained.
[0017]
  Also,An exhaust gas temperature sensor for detecting the temperature of exhaust gas discharged outside the combustion appliance after heat exchange, and an exhaust temperature comparison means for calculating the combustion gas water vapor dew point temperature of the combustion appliance and comparing it with the exhaust gas temperature are provided. Yes.
[0018]
  In the above combustion apparatus, the dew point temperature of the combustion gas water vapor is calculated from the supply amount of fuel and air, etc., and compared with the exhaust gas temperature detected by the exhaust gas temperature sensor, the exhaust gas temperature is equivalent to the dew point temperature. If the temperature is lower than the dew point temperature, it can be determined that the latent heat recovery unit is in operation, and therefore, the operating status of the heat recovery unit can be detected with a simple method.
[0019]
  Also,Condensed water detection means for detecting the generation of condensed water formed by water vapor of the combustion gas is provided.
[0020]
  And in said combustion apparatus, since generation | occurrence | production of the dew condensation water produced at the time of latent heat collection | recovery is detected, a latent heat collection | recovery operation condition can be detected and grasped | ascertained more correctly.
[0021]
  Also,An integration unit that integrates the latent heat recovery operation time, a life calculation unit that compares the integrated latent heat recovery operation time with a life time input in advance, and a life notification unit are provided.
[0022]
  In the above combustion apparatus, since the latent heat recovery operation time is integrated by the integration means, and the lifetime of the latent heat recovery unit can be determined and notified by comparing the integrated operation time with the lifetime. According to various usage patterns of the combustion apparatus, it is possible to accurately grasp and manage the usage status, deterioration progress, life, etc. of the latent heat recovery unit.
[0023]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0024]
  Example 1
  1 is a configuration diagram of a combustion apparatus according to a first embodiment of the present invention. In FIG. 1, reference numeral 20 denotes a burner using oil or gas as fuel, and combustion gas A formed by combustion of the burner 20 is guided to a heat exchanger 21 provided on the downstream side of the burner 20, and the heat exchanger 21 includes a number of The heat transfer tube 22 is configured to absorb the sensible heat and latent heat of the combustion gas A. In this way, the burner 20 and the heat exchanger 21 constitute a combustion instrument 23 that recovers the sensible heat and latent heat of steam of the combustion gas and heats the fluid to be heated. Reference numeral 24 denotes a water inlet for the heated fluid of the combustion appliance 23, and 25 denotes a water outlet for the heated fluid of the combustion appliance 23.
[0025]
  B is an exhaust gas which has become a low temperature after heat exchange in the heat exchanger 21, and this exhaust gas B is exhausted from the combustion appliance 23 through the exhaust port 26. Reference numeral 27 denotes a neutralizer that collects and neutralizes the condensed water formed by the heat exchanger 21. 28 is connected to the control unit 30 of the combustion appliance 23 by a remote control cable 29 and remotely controls the combustion appliance 23, 31 is an arithmetic unit provided in the control unit 30, and 32 is a latent heat detection means provided in the neutralization device 27. A neutral water temperature sensor, the latent heat detection means 32 is connected to the arithmetic unit 31. Further, the remote control 28 is provided with an operation switch 33, a display unit 34 for displaying setting information of the combustion appliance, time, hot water temperature and the like, and a latent heat lamp 35 which is a latent heat notification means for notifying the operation status of the latent heat recovery. .
[0026]
  Next, the operation and action will be described. When the remote control 28 is used to set the temperature of the hot water and the operation switch 33 is pressed, the burner 20 is ignited by an ignition device (not shown) and formed by combustion of the burner 20. The high-temperature combustion gas A heats water, which is a fluid to be heated, flowing in the heat transfer tube 22 by the heat exchanger 21, and the combustion appliance 23 is activated. The water flowing in the heat transfer pipe 22 is supplied from the water inlet 24, absorbs the heat of the combustion gas in the heat transfer pipe 22, becomes a set hot water temperature, and is supplied to the user from the water outlet 25.
[0027]
  At this time, as the temperature of the combustion gas decreases in the heat exchanger 21, the water vapor in the combustion exhaust gas is deprived of condensation latent heat and becomes condensed water on the surface of some of the heat transfer tubes 22. The generated condensed water flows downward together with the combustion gas that has become lower in temperature, and is collected in the neutralization device 27. In this neutralization device 27, the acidic dew condensation water is neutralized and discharged as neutralized water. On the other hand, the exhaust gas B having a low temperature is guided to the exhaust port 26 and discharged out of the combustion appliance 23. Since this condensed water has a temperature slightly equal to the exhaust gas temperature, the temperature when it becomes neutralized water is higher than the atmospheric temperature or the water supply temperature even if heat dissipation factors are taken into consideration. And the neutralization water temperature sensor 32 which is a latent heat detection means detects this neutralization water temperature, and it compares with the atmospheric temperature or water supply temperature, for example with the arithmetic unit 31 using this detection value, and neutralization water temperature Is higher than the atmospheric temperature or the water supply temperature, it can be determined that the latent heat recovery is in operation. Then, the determination result is notified to the user by turning on the latent heat lamp 35 as a latent heat notification means through the remote control cable 29.
[0028]
  Thus, the latent heat recovery operation status of the combustion appliance 23 can be detected using the neutralized water temperature sensor 32, and the information can be notified to the user or maintainer by the latent heat lamp 35 provided on the remote controller 28. Appealing that it is highly efficient and energy-saving, the user can check the operation status of the latent heat recovery part of the combustion appliance 23 in real, and can use it with peace of mind. Further, during maintenance, since the maintainer can grasp the latent heat recovery operation information obtained by the neutralized water temperature sensor 32 which is a latent heat detection means, it is possible to shorten the time required for failure and reduce the time of the latent heat recovery unit. It is possible to grasp the deterioration state due to the failure, and to predict the failure or to make a safety measure in advance, so that the safety management of the combustion apparatus can be achieved.
[0029]
  (Example 2)
  2 is a block diagram of a combustion apparatus according to a second embodiment of the present invention. The second embodiment is different from the first embodiment in that the combustion appliance 23 is provided on the downstream side of the combustion gas A and mainly absorbs the sensible heat of the combustion gas, and the main heat exchanger 36. And a sub-heat exchanger 37 that mainly absorbs the latent heat of steam of the combustion gas. Further, the main heat transfer pipe 36 a constituting the main heat exchanger 36 and the sub heat transfer pipe 37 a constituting the sub heat exchanger 37 are communicated with each other by the communication pipe 38. In addition, the heat exchanger 21 used in Example 1 and the heat exchanger tube 22 which comprises it are abolished in a present Example. Furthermore, the same reference numerals as those in the first embodiment have the same structure and the description thereof is omitted.
[0030]
  Next, the operation and action will be described. When the remote control 28 is used to set the temperature of the hot water and the operation switch 33 is pressed, the burner 20 is ignited by an ignition device (not shown). The high-temperature combustion gas A formed by the combustion of the burner 20 heats the preheated water flowing in the main heat transfer pipe 36 a by the main heat exchanger 36, then becomes a low-temperature combustion gas, and further on the downstream side of the main heat exchanger 36. This low-temperature exhaust gas passes through the auxiliary heat exchanger 37.
[0031]
  At this time, in the auxiliary heat exchanger 37, by preheating the water flowing in the auxiliary heat transfer pipe 37a, the exhaust gas becomes the lower temperature exhaust gas B, and the water vapor in the combustion exhaust gas is deprived of the latent heat of condensation and is transferred to the auxiliary heat transfer. It becomes condensed water on the surface of the heat pipe 37a. Since gas such as CO2 and NOx is dissolved in this condensed water, it shows acidity (pH = 2 to 4). The generated condensed water flows downward together with the combustion gas that has become lower in temperature, and is discharged to the neutralization device 27.
[0032]
  On the other hand, the exhaust gas B that has become cooler is discharged from the exhaust port 26 to the atmosphere. Water, which is a fluid to be heated, is introduced into the auxiliary heat transfer pipe 37a of the auxiliary heat exchanger 37 from the water supply port 24, takes steam latent heat from the exhaust gas after passing through the main heat exchanger 36, and has a slightly higher temperature than when supplying water. It becomes preheated water and is led out from the auxiliary heat exchanger 37. The preheated water is heated to a predetermined temperature in the main heat exchanger 36 through the communication pipe 38 and then discharged. Then, the determination result is notified to the user by turning on the latent heat lamp 35 as a latent heat notification means through the remote control cable 29.
[0033]
  As described above, the combustion appliance 23 is divided into the main heat exchanger 36 that mainly absorbs sensible heat of the combustion gas and the auxiliary heat exchanger 37 that mainly absorbs the steam latent heat of the combustion gas, thereby condensing processes. Can be concentrated on the auxiliary heat exchanger 37, and by detecting the operating status of the auxiliary heat exchanger 37, the operating status of the latent heat recovery of the combustion apparatus can be detected more accurately.
[0034]
  (Example 3)
  FIG. 3 shows a configuration diagram of a combustion apparatus according to a third embodiment of the present invention. The third embodiment is different from the first embodiment in that a water inlet thermistor 39 for measuring a water inlet temperature of a fluid to be heated, a water amount sensor 40 for measuring a water inlet flow rate, and the combustion appliance 23 The water outlet 25 has a water discharge thermistor 41 for measuring the water discharge temperature of the fluid to be heated, a water absorption thermistor 39, a water amount sensor 40, and a heat absorption amount calculation device 42 for calculating the heat absorption amount based on the information obtained from the water discharge thermistor 41. The calorific value calculation device 43 that calculates the calorific value of the combustion gas introduced into the combustion appliance 23, and the heat efficiency is calculated based on the calorific value and the heat absorption amount obtained from the heat absorption amount calculation device 42 and the heat generation amount calculation device 43. The thermal efficiency calculating means 44 and the thermal efficiency comparing means 45 for comparing the thermal efficiency obtained from the thermal efficiency calculating means 44 with a predetermined thermal efficiency inputted in advance are provided. Note that the arithmetic unit 31 and the neutralized water temperature sensor 32 used in the first embodiment are eliminated in this embodiment. Furthermore, the same reference numerals as those in the first embodiment have the same structure and the description thereof is omitted.
[0035]
  Next, the operation and action will be described. When the remote control 28 is used to set the temperature of the hot water and the operation switch 33 is pressed, fuel gas is supplied to the burner 20 and ignited by an ignition device (not shown).
[0036]
  The high-temperature combustion gas formed by the combustion of the burner 20 heats water, which is a fluid to be heated, flowing in the heat transfer tube 22 by the heat exchanger 21, and the combustion appliance 23 operates. The water flowing in the heat transfer pipe 22 is supplied from the water inlet 24, absorbs the heat of the combustion gas in the heat transfer pipe 22, becomes a set hot water temperature, and is supplied to the user from the water outlet 25.
[0037]
  The endothermic amount calculation device 42 calculates the endothermic amount based on information such as the incoming water temperature, the water amount, and the outgoing water temperature obtained from the incoming water thermistor 39, the water amount sensor 40, and the outgoing water thermistor 41, and the calorific value arithmetic device 43 burns. The calorific value of the combustion gas introduced into the appliance 23 can be calculated, and the thermal efficiency can be calculated using the thermal efficiency calculating means 44 based on the endothermic amount and the calorific value. Then, the thermal efficiency comparison means 45 can be used to compare this thermal efficiency with a predetermined thermal efficiency inputted in advance.
[0038]
  Thus, by providing the thermal efficiency calculating means 44, it is possible to display and appeal the thermal efficiency that is an important output index of the latent heat recovery type combustion apparatus. Furthermore, by comparing the thermal efficiency during operation with the predetermined latent heat recovery thermal efficiency using the thermal efficiency comparison means 45, the current latent heat recovery operation status of the combustion device can be grasped numerically, and the thermal efficiency due to the passage of time etc. Detailed progress information on the operating status of latent heat recovery can be obtained from fluctuations.
[0039]
  (Example 4)
  4 is a configuration diagram of a combustion apparatus according to a fourth embodiment of the present invention. The fourth embodiment differs from the first embodiment in that the exhaust gas temperature sensor 46 that measures the exhaust gas temperature in the vicinity of the exhaust port 26 and the control unit 30 calculate the combustion gas water vapor dew point temperature of the combustion appliance 23 and exhaust gas. Exhaust gas temperature comparison means 47 for comparing the exhaust gas temperature obtained by the temperature sensor 46 with this dew point temperature is provided. Note that the arithmetic unit 31 and the neutralized water temperature sensor 32 used in the first embodiment are eliminated in this embodiment. Furthermore, the same reference numerals as those in the first embodiment have the same structure and the description thereof is omitted.
[0040]
  Next, the operation and action will be described. When the remote control 28 is used to set the temperature of the hot water and the operation switch 33 is pressed, fuel gas is supplied to the burner 20 and ignited by an ignition device (not shown).
[0041]
  The high-temperature combustion gas formed by the combustion of the burner 20 heats water, which is a fluid to be heated, flowing in the heat transfer tube 22 by the heat exchanger 21, and the combustion appliance 23 operates. The water flowing in the heat transfer pipe 22 is supplied from the water inlet 24, absorbs the heat of the combustion gas in the heat transfer pipe 22, becomes a set hot water temperature, and is supplied to the user from the water outlet 25.
[0042]
  Then, the exhaust gas temperature comparison means 47 is used to measure and calculate the supply amount of fuel gas and air supplied to the burner 20, the amount of water vapor in the combustion gas, the partial pressure, etc., and calculate the dew point temperature of water vapor. Comparing the dew point temperature with the exhaust gas temperature measured by the exhaust gas temperature sensor 46, it can be determined that water vapor condensation has occurred if the exhaust gas temperature is equal to or lower than the dew point temperature.
[0043]
  In this way, the dew point temperature of the combustion gas water vapor is calculated from the supply amounts of fuel and air, and compared with the exhaust gas temperature detected by the exhaust gas temperature sensor 46, the exhaust gas temperature is equal to the dew point temperature or the dew point temperature. If it is lower than that, it can be determined that the latent heat recovery unit is operating, and therefore the operation status of the latent heat recovery unit can be reliably detected by a simple method.
[0044]
  (Example 5)
  FIG. 5 is a configuration diagram of a combustion apparatus according to a fifth embodiment of the present invention. The fifth embodiment is different from the first embodiment in that condensed water detection means 48 that detects the generation of condensed water formed by condensation of water vapor of the combustion gas and a signal obtained by the condensed water detection means 48 are processed. The determination device 49 is provided. Note that the arithmetic unit 31 and the neutralized water temperature sensor 32 used in the first embodiment are eliminated in this embodiment. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0045]
  Next, the operation and action will be described. When the remote control 28 is used to set the temperature of the hot water and the operation switch 33 is pressed, fuel gas is supplied to the burner 20 and ignited by an ignition device (not shown).
[0046]
  The high-temperature combustion gas formed by the combustion of the burner 20 heats water, which is a fluid to be heated, flowing in the heat transfer tube 22 by the heat exchanger 21, and the combustion appliance 23 operates. The water flowing in the heat transfer pipe 22 is supplied from the water inlet 24, absorbs the heat of the combustion gas in the heat transfer pipe 22, becomes a set hot water temperature, and is supplied to the user from the water outlet 25. Then, the condensed water detection means 48 that detects the generation of condensed water can detect the generation of condensed water and send the detection signal to the determination device 49, so that it can be determined whether or not the latent heat recovery operation is in progress. Thus, since the latent heat detection means detects the occurrence of condensed water that always occurs during the recovery of latent heat, the latent heat recovery operation status can be detected and grasped more accurately.
[0047]
  (Example 6)
  FIG. 6 is a configuration diagram of a combustion apparatus according to a sixth embodiment of the present invention. The sixth embodiment is different from the first embodiment in that the integration means 50 for integrating the latent heat recovery operation time and the lifetime for comparing the latent heat recovery operation integration time obtained by the integration means 50 with the lifetime input in advance. The calculation device 51 and the life notification means 52 for predicting or notifying the arrival of the life of the latent heat recovery operation unit based on the information obtained by the life calculation device 51 are provided. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0048]
  Next, the operation and action will be described. When the remote control 28 is used to set the temperature of the hot water and the operation switch 33 is pressed, fuel gas is supplied to the burner 20 and ignited by an ignition device (not shown).
[0049]
  The high-temperature combustion gas formed by the combustion of the burner 20 heats water, which is a fluid to be heated, flowing in the heat transfer tube 22 by the heat exchanger 21, and the combustion appliance 23 operates. The water flowing in the heat transfer pipe 22 is supplied from the water inlet 24, absorbs the heat of the combustion gas in the heat transfer pipe 22, becomes a set hot water temperature, and is supplied to the user from the water outlet 25.
[0050]
  The neutralization water temperature sensor 32, which is a latent heat detection means, detects the neutralization water temperature, and uses the detected value to perform a comparison process with, for example, the atmospheric temperature or the water supply temperature. If the temperature is higher than the water supply temperature, it can be determined that the latent heat recovery unit is in operation. Then, the operating time of the latent heat recovery unit detected by the neutralizing water sensor 32 is integrated using the integrating means 50, and further, the operating time of this latent heat recovery unit is calculated using the life calculator 51. By comparing with the life time input in advance, the life management of the latent heat recovery unit can be grasped numerically. Furthermore, by sending the comparison result signal of the lifetime calculation device 51 to the lifetime notification means 52, it is possible to predict or notify the arrival of the lifetime of the latent heat recovery unit.
[0051]
  In this way, by integrating the latent heat recovery operation time by the integration means 50 and comparing the integrated operation time with the lifetime, the lifetime of the latent heat recovery unit can be determined and predicted or notified. According to various usage patterns of the combustion apparatus, it is possible to accurately grasp and manage the usage status, deterioration progress, life, etc. of the latent heat recovery unit.
[0052]
  (Example 7)
  FIG. 7 is a configuration diagram of a combustion apparatus according to a seventh embodiment of the present invention. The seventh embodiment is different from the first embodiment in that an information processing device 53 that processes information obtained by the neutralized water temperature sensor 32 and the calculation device 31 and a record analysis display device 54 provided outside the combustion appliance 23. And a communication cable 55 which is a connecting means for connecting the information processing device 53 and the record analysis display device 54 is provided. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0053]
  Next, the operation and action will be described. When the remote control 28 is used to set the temperature of the hot water and the operation switch 33 is pressed, fuel gas is supplied to the burner 20 and ignited by an ignition device (not shown).
[0054]
  The high-temperature combustion gas formed by the combustion of the burner 20 heats water, which is a fluid to be heated, flowing in the heat transfer tube 22 by the heat exchanger 21, and the combustion appliance 23 is activated. The water flowing in the heat transfer pipe 22 is supplied from the water inlet 24, absorbs the heat of the combustion gas in the heat transfer pipe 22, becomes a set hot water temperature, and is supplied to the user from the water outlet 25.
[0055]
  The neutralization water temperature sensor 32, which is a latent heat detection means, detects the neutralization water temperature, and uses this detection value to perform a comparison process with, for example, the atmospheric temperature or the water supply temperature. If the temperature is higher than the hoist water supply temperature, it can be determined that the latent heat recovery unit is in operation.
[0056]
  Information such as the determination result of the operation status of the latent heat recovery obtained by the arithmetic device 31 is sent to the information processing device 53, and calculation processing is performed again by the information processing device together with information such as operation set value, operation time, amount of condensed water generation, and combustion amount. Is done. These necessary information can be transferred to the record analysis display device 54 (for example, a personal computer) through the communication cable 55.
[0057]
  As described above, since the operation information of the combustion appliance 23 including the operation status of the latent heat recovery can be recorded, analyzed and displayed again by the record analysis display device 54 (for example, a personal computer), the remote controller 28 or the combustion appliance 23 can be used. It is possible to record, analyze, store, and display operation information such as a latent heat recovery operation state by using the record analysis display device 54 disposed at a remote place.
[0058]
  In this embodiment, the connection means is a communication cable, but the same effect can be obtained by using wireless communication means.
[0059]
  (Example 8)
  FIG. 8 is a configuration diagram of a combustion apparatus system according to an eighth embodiment of the present invention. The eighth embodiment is different from the seventh embodiment in that the information processing apparatus 53 is connected to the external network 56 via the record analysis display apparatus 54. In addition, the thing of the same code | symbol as Example 1 has the same structure, and abbreviate | omits description.
[0060]
  Next, the operation and action will be described. Since the operation of the combustion appliance 23 is the same as that of the seventh embodiment, description thereof is omitted here. By connecting the information processing device 53 to the external network 56, information such as the latent heat recovery operation status can be transferred to the external network 56. Therefore, the gas company, the security contractor, or the maintenance maintenance contractor can transmit the latent heat of the combustion appliance 23 through the external network 56. Information such as the recovery operation status can be obtained and managed. Therefore, the user can use it more safely in terms of safety management.
[0061]
  In each of the above embodiments, the latent heat notification means is a latent heat lamp, but the same effect can be obtained by using text or a picture display, voice notification, or the like.
[0062]
【The invention's effect】
  As explained above,BookAccording to the invention, it is possible to provide a combustion apparatus that can accurately detect and notify the latent heat recovery operation status of the latent heat recovery type combustion apparatus, and can manage the safety of the combustion apparatus, and can appeal high efficiency, energy saving, and the like. Become.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a combustion apparatus according to a first embodiment of the present invention.
FIG. 2 is a system configuration diagram of a combustion apparatus in Embodiment 2 of the present invention.
FIG. 3 is a system configuration diagram of a combustion apparatus in Embodiment 3 of the present invention.
FIG. 4 is a system configuration diagram of a combustion apparatus in Embodiment 4 of the present invention.
FIG. 5 is a system configuration diagram of a combustion apparatus according to a fifth embodiment of the present invention.
FIG. 6 is a system configuration diagram of a combustion apparatus in Embodiment 6 of the present invention.
FIG. 7 is a system configuration diagram of a combustion apparatus in Embodiment 7 of the present invention.
FIG. 8 is a system configuration diagram of a combustion apparatus according to an eighth embodiment of the present invention.
FIG. 9 is a system configuration diagram of a combustion apparatus including a conventional combustion instrument and a remote controller.
FIG. 10 is a sectional view of a conventional combustion appliance
[Explanation of symbols]
  23 Combustion equipment
  28 Remote control
  32 Neutralizing water temperature sensor (latent heat detection means)
  35 Latent heat lamp (latent heat notification means)
  36 Main heat exchanger
  37 Sub heat exchanger
  42 Thermal efficiency calculation means
  43 Thermal efficiency comparison means
  46 Exhaust gas temperature sensor (latent heat detection means)
  47 Exhaust temperature comparison means
  48 Condensation water detection means (latent heat detection means)
  50 Accumulation means
  51 Life calculation means
  52 Life notification means
  53 Information processing equipment
  54 Record analysis display device
  55 Communication cable (connection means)
  56 External network

Claims (4)

燃焼ガスの顕熱と水蒸気潜熱を回収し、被加熱流体を加熱する燃焼器具と、前記燃焼器具を遠隔制御するリモコンと、前記燃焼器具の潜熱回収稼働状況を検知する潜熱検知手段と、前記リモコンに潜熱回収稼働状況を報知する潜熱報知手段とを備え、前記潜熱検知手段は、前記被加熱流体による吸熱量と前記燃焼器具へ供給する前記燃料ガスの発熱量を計算し、熱効率を演算する熱効率演算手段と、所定の潜熱回収熱効率と比較する熱効率比較手段とを備えてなる燃焼装置。A combustion instrument that recovers sensible heat and steam latent heat of combustion gas and heats the fluid to be heated, a remote controller that remotely controls the combustion instrument, a latent heat detection means that detects a latent heat recovery operation status of the combustion instrument, and the remote controller A latent heat notification means for notifying a latent heat recovery operation status , wherein the latent heat detection means calculates a heat absorption amount by the fluid to be heated and a heat generation amount of the fuel gas supplied to the combustion appliance, and calculates a thermal efficiency. A combustion apparatus comprising a calculation means and a thermal efficiency comparison means for comparing with a predetermined latent heat recovery thermal efficiency . 燃焼ガスの顕熱と水蒸気潜熱を回収し、被加熱流体を加熱する燃焼器具と、前記燃焼器具を遠隔制御するリモコンと、前記燃焼器具の潜熱回収稼働状況を検知する潜熱検知手段と、前記リモコンに潜熱回収稼働状況を報知する潜熱報知手段とを備え、前記潜熱検知手段は、熱交換された後に前記燃焼器具外に排出される排気ガス温度を検知する排気ガス温度センサーと、前記燃焼器具の燃焼ガス水蒸気露点温度を計算し、前記排気ガス温度と比較する排気温度比較手段とを備えた燃焼装置。 A combustion instrument that recovers sensible heat and steam latent heat of combustion gas and heats the fluid to be heated, a remote controller that remotely controls the combustion instrument, a latent heat detection means that detects a latent heat recovery operation status of the combustion instrument, and the remote controller Latent heat notification means for notifying the operation status of the latent heat recovery, the latent heat detection means, an exhaust gas temperature sensor for detecting the temperature of the exhaust gas discharged outside the combustion appliance after heat exchange, and the combustion appliance A combustion apparatus comprising exhaust gas temperature comparison means for calculating a combustion gas water vapor dew point temperature and comparing it with the exhaust gas temperature . 燃焼ガスの顕熱と水蒸気潜熱を回収し、被加熱流体を加熱する燃焼器具と、前記燃焼器具を遠隔制御するリモコンと、前記燃焼器具の潜熱回収稼働状況を検知する潜熱検知手段と、前記リモコンに潜熱回収稼働状況を報知する潜熱報知手段とを備え、前記潜熱検知手段は、前記燃焼ガスの水蒸気によって形成される結露水の発生を検知する結露水検知手段を備えた燃焼装置。 A combustion instrument that recovers sensible heat and steam latent heat of combustion gas and heats the fluid to be heated, a remote controller that remotely controls the combustion instrument, a latent heat detection means that detects a latent heat recovery operation status of the combustion instrument, and the remote controller And a latent heat informing means for informing a latent heat recovery operation state, wherein the latent heat detecting means has a condensed water detecting means for detecting the generation of condensed water formed by water vapor of the combustion gas . 燃焼ガスの顕熱と水蒸気潜熱を回収し、被加熱流体を加熱する燃焼器具と、前記燃焼器具を遠隔制御するリモコンと、前記燃焼器具の潜熱回収稼働状況を検知する潜熱検知手段と、前記リモコンに潜熱回収稼働状況を報知する潜熱報知手段とを備え、潜熱回収稼働時間を積算する積算手段と、予め入力された寿命時間と前記積算された潜熱回収稼働時間とを比較する寿命演算手段と、寿命報知手段とを備えた燃焼装置。 A combustion instrument that recovers sensible heat and steam latent heat of combustion gas and heats the fluid to be heated, a remote controller that remotely controls the combustion instrument, a latent heat detection means that detects a latent heat recovery operation status of the combustion instrument, and the remote controller A latent heat informing means for informing the latent heat recovery operation status, an integration means for integrating the latent heat recovery operation time, a life calculation means for comparing the lifetime input in advance with the accumulated latent heat recovery operation time, A combustion apparatus comprising life notification means .
JP2002111680A 2002-04-15 2002-04-15 Combustion device Expired - Lifetime JP3876751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111680A JP3876751B2 (en) 2002-04-15 2002-04-15 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111680A JP3876751B2 (en) 2002-04-15 2002-04-15 Combustion device

Publications (2)

Publication Number Publication Date
JP2003307344A JP2003307344A (en) 2003-10-31
JP3876751B2 true JP3876751B2 (en) 2007-02-07

Family

ID=29394410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111680A Expired - Lifetime JP3876751B2 (en) 2002-04-15 2002-04-15 Combustion device

Country Status (1)

Country Link
JP (1) JP3876751B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768394B2 (en) * 2005-10-24 2011-09-07 東京瓦斯株式会社 Water heater
JP5210234B2 (en) * 2009-04-17 2013-06-12 株式会社コロナ Latent heat recovery type water heater

Also Published As

Publication number Publication date
JP2003307344A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
CN103542533B (en) Boiler combustion and waste heat recovery comprehensive monitoring intelligence control system
CN203215651U (en) Remote on-line monitoring system for industrial boiler
JP2014047980A (en) Latent heat recovery type hot water supply device
CN109612104A (en) A kind of warm bath dual-purpose stove of novel low nitrogen condensed type combustion gas
CN102734783A (en) Method for calibrating monitoring data parameters of heat-absorbing surfaces at each level of supercritical boiler of power station
JP3876751B2 (en) Combustion device
CN106052971A (en) Gas leakage monitoring method and system based on gas metering
JP6598003B2 (en) Water heater
CN106197049A (en) A kind of waste heat recovery system of pipe heater and method
US11821627B2 (en) Method and heating unit for flame monitoring during gas combustion
JP2008267673A (en) Hot-water supply apparatus
JP2015129601A (en) heat source machine
CN213542626U (en) Wall-mounted furnace capable of monitoring water circulation of heating system
CN210119009U (en) Condensation waste heat pressure-bearing hot water boiler
JP2006053073A (en) Gas flow state recognizer
CN209341609U (en) A kind of warm bath dual-purpose stove of novel low nitrogen condensed type combustion gas
WO2021100760A1 (en) Information processing device
CN211782813U (en) Energy-saving device of low-calorific-value fuel gas heating furnace
WO2016135494A1 (en) A method of monitoring the usage of a boiler, a boiler and a boiler usage sensor
CN110873461B (en) Fault detection method for three-way valve in dual-purpose furnace
JP4161275B2 (en) Heat source equipment
Makaire et al. Thermal performance of condensing boilers
CN212512523U (en) Waste heat recovery system and heating furnace system
CN215113286U (en) Silicon-cast-aluminum full-premixing low-nitrogen condensation variable frequency boiler
JP7391749B2 (en) Fuel cell system, control device, and control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350