JP3876103B2 - Method and tool for operating NMR sample tube - Google Patents

Method and tool for operating NMR sample tube Download PDF

Info

Publication number
JP3876103B2
JP3876103B2 JP2000044002A JP2000044002A JP3876103B2 JP 3876103 B2 JP3876103 B2 JP 3876103B2 JP 2000044002 A JP2000044002 A JP 2000044002A JP 2000044002 A JP2000044002 A JP 2000044002A JP 3876103 B2 JP3876103 B2 JP 3876103B2
Authority
JP
Japan
Prior art keywords
sample tube
nmr
nmr sample
operating
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000044002A
Other languages
Japanese (ja)
Other versions
JP2001235526A (en
Inventor
木田惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2000044002A priority Critical patent/JP3876103B2/en
Publication of JP2001235526A publication Critical patent/JP2001235526A/en
Application granted granted Critical
Publication of JP3876103B2 publication Critical patent/JP3876103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Centrifugal Separators (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、NMR装置において、NMR試料管をNMR検出器に導入したり、NMR検出器から取り出したりするときに用いられるNMR試料管の操作方法に関し、特に、NMR試料管が破損するリスクを大幅に低減することのできるNMR試料管の操作方法に関する。
【0002】
【従来の技術】
図1は、従来のNMR装置の主要部分の構造を示したものである。強い静磁界を発生させる超電導磁石1の縦穴部には、NMR検出器2がセットされている。また、NMR検出器2内には、液体試料の入ったNMR試料管3がセットされている。更に、NMR試料管3には、NMR信号の線形を先鋭化させる目的で、NMR測定時にNMR試料管3を回転させるために用いられるスピンナーローター4が装着されている。
【0003】
図1から明らかなように、NMR検出器2は、超電導磁石1の縦穴の奥深くに挿入されており、NMR試料管3は、そのNMR検出器2の頭部に挿入されるので、通常、外部から手で出し入れすることはできない。このため、NMR試料管3の出し入れの通路として、超電導磁石1の縦穴に沿ってハウジング5が設けられており、NMR検出器2の頭部へと接続されている。
【0004】
NMR試料管3をNMR検出器2に導入するときには、予めハウジング5の内部に下方の給気口6から図示しないコンプレッサーで空気を送り込み、その空気圧でNMR試料管3をハウジング5の上端の開口部付近に浮上させておき、その後、空気圧を低下させることによってNMR試料管3をNMR検出器2の位置までハウジング5に沿って降下させる。また、NMR試料管3をNMR検出器2から取り出すときには、NMR検出器2の下方の給気口6から図示しないコンプレッサーで空気を送り込み、その空気圧によりNMR試料管3をハウジング5に沿って浮上させ、ハウジング5の上端の開口部まで移動させる。
【0005】
これらの動作のとき、空気圧による浮力は、主にNMR試料管3に装着されたスピンナーローター4の部分で受け止められているため、良好な降下・浮上動作を得るためには、ハウジング5の内周部とスピンナーローター4の外周部との間のすきまが適切に設けられていることが重要である。
【0006】
しかしながら、このすきまの存在が、逆に、降下・浮上動作のときにNMR試料管3の軸ぶれを引き起こすこともある。そして、軸のふれにより、しばしばNMR試料管3の底部がNMR検出器2の入口に接触し、ときにNMR試料管3を破損するに至る場合がある。これは、空気圧による試料導入機構を用いている限り、避けがたい難点であり、多くの場合、NMR試料管3の降下・浮上動作を緩慢なものにすることにより、この破損の確率を下げるようにしている。
【0007】
【発明が解決しようとする課題】
このような構成において、通常のNMR測定では、上記のようなNMR試料管3の破損の確率は、十分小さくなるように作られている。しかしながら、近年、以下のような新しい状況が生じてきている。
【0008】
(1)収量の低い微量な貴重試料を測定する際に、検出感度を確保するため、極めて細いNMR試料管とその試料管の外径にマッチした細いNMR検出器を使用する場合がある。
【0009】
(2)微弱なNMR信号を観測する際に、検出感度を向上させるため、極めて肉薄のNMR試料管を使用する場合がある。
【0010】
(3)放射性物質のような環境に飛散させることが許されない試料を測定対象とする場合がある。
【0011】
このうち、(1)と(2)の場合には、NMR試料管の破損の確率は大幅に悪化してしまう。また、(1)と(3)の場合には、たとえ小さな確率であっても、NMR試料管の破損の確率を無視して考えることはできない。
【0012】
本発明の目的は、上述した点に鑑み、NMR試料管をNMR検出器に導入したりNMR検出器から取り出したりする際に、NMR試料管が破損するリスクを大幅に低減することのできるNMR試料管の設定方法を提供することにある。
【0013】
【課題を解決するための手段】
この目的を達成するため、本発明にかかるNMR試料管の操作方法は、スピンナーローターが装着されたNMR試料管を、超電導磁石の内部に設置されたNMR検出器と超電導磁石の外部との間で出し入れするためのNMR試料管の操作方法であって、
前記スピンナーローターのNMR試料管と接する部分の上部に上方に開口した孔部を設け、該孔部のスピンナーローター側内周に被嵌合部を設け、該被嵌合部に操作棒を嵌合させて前記NMR試料管の出し入れを行なうようにしたことを特徴としている。
【0014】
また、スピンナーローターが装着されたNMR試料管を、超電導磁石の内部に設置されたNMR検出器と超電導磁石の外部との間で出し入れするための操作棒を用いたNMR試料管の操作方法であって、
前記操作棒は、内筒と外筒から成る二重筒構造を持ち、内筒に設けられた突起部を外筒に設けられた窓部から突出させて、スピンナーローターに設けられた溝部に嵌合させるようにしたことを特徴としている。
【0015】
また、スピンナーローターが装着されたNMR試料管を、超電導磁石の内部に設置されたNMR検出器と超電導磁石の外部との間で出し入れするためのNMR試料管の操作用具であって、
前記スピンナーローター側に設けられた被嵌合部と嵌合可能な嵌合部を備えた操作棒であり、該操作棒は、内筒と、外筒と、内筒に設けられた折り畳み可能な突起部と、該突起部を突出させるために外筒に設けられた窓部とを備えて成ることを特徴としている。
【0016】
また、前記操作棒は、磁力によって吸引されない非磁性な材料で作られていることを特徴としている。
【0019】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。図2は、本発明に用いられるNMR試料管の操作棒の一実施例を示したものである。図中(a)は、本発明に用いられる操作棒の断面図、(b)は本発明に用いられる操作棒を構成する部品の外観図、(c)は本発明に用いられるスピンナーローターの断面図である。
【0020】
本実施例では、図2(a)および(b)に示すように、内筒7と、内筒7の外径よりもやや大きな内径を持つ外筒8から成る二重管構造の操作棒を用いる。内筒7の先端部には数個の突起(凸部)9が筒の外周に沿って等間隔に設けられている。また、外筒8の先端部には、内筒7の先端部に設けられた突起9の位置に対応する位置に、突起9の数と同じ数だけの窓10が設けられていて、内筒7の突起9がこの窓10を貫通して外筒8の外側に向けて突出するように作られている。これらは、強力な磁場の中で使用するため、磁力によって吸引されない非磁性な材料で作られている。
【0021】
外筒8の窓10から外側に向けて突出している内筒7の突起9は、外筒8の中で内筒7を周方向に回転させると、内筒7の内側に折り畳まれて、外筒8の窓10から内側に向けて引っ込むように構成されている。また、内筒7を更に回転させて、一旦引っ込んだ突起9の位置を外筒8の窓10の位置に合わせると、突起9は再び外筒8の窓10から外側に向けて突出するように構成されている。
【0022】
また、図2(c)は、NMR試料管3に装着された状態のスピンナーローター4を示している。本実施例で使用されるスピンナーローター4は、図2(c)に示すように、前記操作棒の先端部を差し込める程度の孔部11と、該孔部11の内壁に彫られた溝部(凹部)12とを有している。この溝部12は、前記操作棒の先端部に突出した突起9が嵌合できる大きさに作られている。本スピンナーローター4は、孔部11の内壁に溝部12を有する点以外は、従来のスピンナーローターと何ら変わるところはない。
【0023】
NMR試料管の設定操作は、次のようにして行なわれる。先ず最初に、スピンナーローター4をNMR試料管3に装着させる。次に、操作棒の内筒7の突起9が外筒8の窓10から内側に向けて折り畳まれた状態で、操作棒の先端部をスピンナーローター4の孔部11に差し込む。次に、内筒7を周方向に回転させて突起9を外筒8の窓10から外側に向けて突出させ、スピンナーローター4の溝部12に嵌合させる。その結果、NMR試料管3とスピンナーローター4は、操作棒の先端部に固着・保持されるので、ハウジング5の上端の開口部からNMR検出器2に向けて操作棒を挿入し、NMR検出器2の頭部にNMR試料管3とスピンナーローター4を設定する。最後に、内筒7を周方向に回転させて突起9を外筒8の窓10から内側に向けて折り畳み、NMR試料管3とスピンナーローター4を操作棒から切り離して、操作棒を引き抜く。
【0024】
NMR試料管3とスピンナーローター4をNMR検出器2から取り出す場合には、その逆の手順で操作を行なう。すなわち、先ず最初に、操作棒の内筒7の突起9が外筒8の窓10から内側に向けて折り畳まれた状態で、ハウジング5の上端の開口部からNMR検出器2に向けて操作棒を挿入し、その先端部をNMR検出器2の頭部に設定されているスピンナーローター4の孔部11に差し込む。次に、内筒7を周方向に回転させて突起9を外筒8の窓10から外側に向けて突出させ、スピンナーローター4の溝部12に嵌合させる。その結果、NMR試料管3とスピンナーローター4は、操作棒の先端部に固着・保持されるので、NMR検出器2からハウジング5の上端の開口部に向けて操作棒を引き抜いて、NMR検出器2の頭部からNMR試料管3とスピンナーローター4を取り出す。最後に、内筒7を周方向に回転させて突起9を外筒8の窓10から内側に向けて折り畳み、NMR試料管3とスピンナーローター4を操作棒から切り離す。
【0025】
尚、本発明には、さまざまな変形が可能である。例えば、本実施例では、操作棒側に凸部、スピンナーローター側に凹部を設けたが、これを逆にしても良い。また、本実施例では、操作棒を二重筒構造にして凸部の出し入れを行なわせるように構成したが、この操作は必ずしも二重筒構造でなければ行なえないものではなく、この操作を一重筒構造で行なわせても良い。例えば、出し入れ可能な突起を筒の先端部に等間隔に設け、普段は突起を筒の内側に収納しておく。そして、必要なときに、筒の内側から棒で押すことにより、筒の外側に向けて突起を突出させるようにする。
【0026】
【発明の効果】
以上述べたごとく、本発明のNMR試料管の操作方法によれば、従来の空気圧を利用した方法に代えて、操作棒を用いてNMR試料管のNMR検出器への導入およびNMR検出器からの取り出しを行なうようにしたので、NMR試料管をNMR検出器に導入したりNMR検出器から取り出したりする際に、NMR試料管が破損するリスクを大幅に低減することが可能になった。
【図面の簡単な説明】
【図1】従来のNMR装置の構成を示す図である。
【図2】本発明にかかるNMR試料管の設定方法の一実施例を示す図である。
【符号の説明】
1・・・超電導磁石、2・・・NMR検出器、3・・・NMR試料管、4・・・スピンナーローター、5・・・ハウジング、6・・・給気口、7・・・内筒、8・・・外筒、9・・・突起、10・・・窓、11・・・孔部、12・・・溝部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation method of an NMR sample tube used when an NMR sample tube is introduced into or removed from an NMR detector in an NMR apparatus, and particularly, the risk of damage to the NMR sample tube is greatly increased. The present invention relates to a method of operating an NMR sample tube that can be reduced to a minimum.
[0002]
[Prior art]
FIG. 1 shows the structure of the main part of a conventional NMR apparatus. An NMR detector 2 is set in the vertical hole portion of the superconducting magnet 1 that generates a strong static magnetic field. An NMR sample tube 3 containing a liquid sample is set in the NMR detector 2. Furthermore, the spinner rotor 4 used for rotating the NMR sample tube 3 at the time of NMR measurement is attached to the NMR sample tube 3 for the purpose of sharpening the linearity of the NMR signal.
[0003]
As apparent from FIG. 1, the NMR detector 2 is inserted deep in the vertical hole of the superconducting magnet 1, and the NMR sample tube 3 is inserted into the head of the NMR detector 2, so that it is usually external. Can not be withdrawn by hand. For this reason, a housing 5 is provided along the vertical hole of the superconducting magnet 1 as a passage for taking in and out the NMR sample tube 3 and is connected to the head of the NMR detector 2.
[0004]
When the NMR sample tube 3 is introduced into the NMR detector 2, air is previously fed into the housing 5 from the lower air supply port 6 using a compressor (not shown), and the NMR sample tube 3 is opened at the upper end of the housing 5 by the air pressure. The NMR sample tube 3 is lowered along the housing 5 to the position of the NMR detector 2 by allowing it to float in the vicinity and then lowering the air pressure. Further, when the NMR sample tube 3 is taken out from the NMR detector 2, air is sent from an air supply port 6 below the NMR detector 2 by a compressor (not shown), and the NMR sample tube 3 is floated along the housing 5 by the air pressure. Then, it is moved to the opening at the upper end of the housing 5.
[0005]
During these operations, the buoyancy due to the air pressure is received mainly by the portion of the spinner rotor 4 attached to the NMR sample tube 3, so that in order to obtain a good descent / levitation operation, the inner periphery of the housing 5 is used. It is important that the clearance between the portion and the outer peripheral portion of the spinner rotor 4 is appropriately provided.
[0006]
However, the presence of this clearance, on the contrary, may cause the shaft shake of the NMR sample tube 3 during the descent / levitation operation. The bottom of the NMR sample tube 3 often comes into contact with the inlet of the NMR detector 2 due to shaft wobbling, and sometimes the NMR sample tube 3 is broken. This is an unavoidable difficulty as long as a pneumatic sample introduction mechanism is used, and in many cases, by slowing the descent and levitation of the NMR sample tube 3, the probability of this breakage is lowered. I have to.
[0007]
[Problems to be solved by the invention]
In such a configuration, the normal NMR measurement is made so that the probability of breakage of the NMR sample tube 3 as described above is sufficiently small. However, in recent years, the following new situations have arisen.
[0008]
(1) In order to ensure detection sensitivity when measuring a very small amount of a valuable sample with a low yield, an extremely thin NMR sample tube and a thin NMR detector that matches the outer diameter of the sample tube may be used.
[0009]
(2) When a weak NMR signal is observed, an extremely thin NMR sample tube may be used in order to improve detection sensitivity.
[0010]
(3) Samples that are not allowed to be scattered in the environment, such as radioactive substances, may be measured.
[0011]
Among these, in the cases of (1) and (2), the probability of breakage of the NMR sample tube is greatly deteriorated. In the case of (1) and (3), even if the probability is small, the probability of damage of the NMR sample tube cannot be ignored.
[0012]
The object of the present invention is to provide an NMR sample that can greatly reduce the risk of damage to the NMR sample tube when the NMR sample tube is introduced into or removed from the NMR detector. It is to provide a tube setting method.
[0013]
[Means for Solving the Problems]
In order to achieve this object, the method of operating an NMR sample tube according to the present invention includes an NMR sample tube equipped with a spinner rotor between an NMR detector installed inside the superconducting magnet and the outside of the superconducting magnet. A method of operating an NMR sample tube for taking in and out,
The upper part of the spinner rotor that is in contact with the NMR sample tube is provided with a hole that opens upward, a fitting part is provided on the inner periphery of the spinner rotor side, and an operating rod is fitted to the fitting part. It is characterized in that to carry out the loading and unloading of the NMR sample tube by.
[0014]
In addition, the NMR sample tube is operated using an operation rod for inserting and removing the NMR sample tube equipped with the spinner rotor between the NMR detector installed inside the superconducting magnet and the outside of the superconducting magnet. And
The operation rod has a double cylinder structure including an inner cylinder and an outer cylinder, and a protrusion provided on the inner cylinder protrudes from a window provided on the outer cylinder, and is fitted into a groove provided on the spinner rotor. It is characterized by the fact that they are combined .
[0015]
An NMR sample tube operation tool for inserting and removing the NMR sample tube equipped with the spinner rotor between the NMR detector installed inside the superconducting magnet and the outside of the superconducting magnet,
An operating rod having a fitting portion that can be fitted to a fitted portion provided on the spinner rotor side, and the operating rod is foldable provided on the inner cylinder, the outer cylinder, and the inner cylinder. It is characterized by comprising a projection and a window provided on the outer cylinder for projecting the projection .
[0016]
Moreover, the operation rod is characterized that you have made of non-magnetic material that is not attracted by the magnetic force.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an embodiment of the operating rod for the NMR sample tube used in the present invention. In the figure, (a) is a cross-sectional view of the operating rod used in the present invention, (b) is an external view of components constituting the operating rod used in the present invention, and (c) is a cross-sectional view of the spinner rotor used in the present invention. FIG.
[0020]
In this embodiment, as shown in FIGS. 2 (a) and 2 (b), an operating rod having a double tube structure comprising an inner cylinder 7 and an outer cylinder 8 having an inner diameter slightly larger than the outer diameter of the inner cylinder 7 is provided. Use. Several protrusions (convex portions) 9 are provided at the front end portion of the inner cylinder 7 at equal intervals along the outer periphery of the cylinder. Further, the same number of windows 10 as the number of projections 9 are provided at the tip of the outer cylinder 8 at positions corresponding to the positions of the projections 9 provided at the tip of the inner cylinder 7. 7 projections 9 are formed so as to pass through the window 10 and protrude toward the outside of the outer cylinder 8. They are made of non-magnetic materials that are not attracted by magnetic forces for use in strong magnetic fields.
[0021]
The protrusion 9 of the inner cylinder 7 protruding outward from the window 10 of the outer cylinder 8 is folded inside the inner cylinder 7 when the inner cylinder 7 is rotated in the circumferential direction in the outer cylinder 8, The tube 8 is configured to be retracted inward from the window 10. Further, when the inner cylinder 7 is further rotated so that the position of the protrusion 9 once retracted matches the position of the window 10 of the outer cylinder 8, the protrusion 9 again protrudes outward from the window 10 of the outer cylinder 8. It is configured.
[0022]
FIG. 2C shows the spinner rotor 4 mounted on the NMR sample tube 3. As shown in FIG. 2 (c), the spinner rotor 4 used in this embodiment includes a hole 11 that can be inserted into the tip of the operation rod, and a groove (carved on the inner wall of the hole 11). (Concave portion) 12. The groove 12 is formed in a size that allows the projection 9 protruding from the tip of the operation rod to be fitted. The present spinner rotor 4 is not different from the conventional spinner rotor except that the groove portion 12 is provided on the inner wall of the hole portion 11.
[0023]
The setting operation of the NMR sample tube is performed as follows. First, the spinner rotor 4 is attached to the NMR sample tube 3. Next, with the projection 9 of the inner cylinder 7 of the operation rod folded inward from the window 10 of the outer cylinder 8, the tip of the operation rod is inserted into the hole 11 of the spinner rotor 4. Next, the inner cylinder 7 is rotated in the circumferential direction so that the protrusion 9 protrudes outward from the window 10 of the outer cylinder 8 and is fitted into the groove 12 of the spinner rotor 4. As a result, the NMR sample tube 3 and the spinner rotor 4 are fixed and held at the tip of the operation rod. Therefore, the operation rod is inserted from the opening at the upper end of the housing 5 toward the NMR detector 2, and the NMR detector is inserted. An NMR sample tube 3 and a spinner rotor 4 are set on the head of 2. Finally, the inner cylinder 7 is rotated in the circumferential direction, the projection 9 is folded inward from the window 10 of the outer cylinder 8, the NMR sample tube 3 and the spinner rotor 4 are separated from the operation rod, and the operation rod is pulled out.
[0024]
When taking out the NMR sample tube 3 and the spinner rotor 4 from the NMR detector 2, the operation is performed in the reverse order. That is, first, in a state where the projection 9 of the inner cylinder 7 of the operating rod is folded inward from the window 10 of the outer cylinder 8, the operating rod is directed from the opening at the upper end of the housing 5 toward the NMR detector 2. Is inserted, and the tip is inserted into the hole 11 of the spinner rotor 4 set at the head of the NMR detector 2. Next, the inner cylinder 7 is rotated in the circumferential direction so that the protrusion 9 protrudes outward from the window 10 of the outer cylinder 8 and is fitted into the groove 12 of the spinner rotor 4. As a result, the NMR sample tube 3 and the spinner rotor 4 are fixed and held at the tip of the operation rod, so that the operation rod is pulled out from the NMR detector 2 toward the opening at the upper end of the housing 5 to obtain the NMR detector. The NMR sample tube 3 and the spinner rotor 4 are taken out from the head of 2. Finally, the inner cylinder 7 is rotated in the circumferential direction, the projection 9 is folded inward from the window 10 of the outer cylinder 8, and the NMR sample tube 3 and the spinner rotor 4 are separated from the operation rod.
[0025]
Various modifications can be made to the present invention. For example, in this embodiment, the convex portion is provided on the operating rod side and the concave portion is provided on the spinner rotor side, but this may be reversed. Further, in this embodiment, the operation rod is configured to have a double cylinder structure so that the protrusions can be taken in and out. However, this operation is not necessarily performed unless the double cylinder structure is used, and this operation is performed in a single way. You may make it carry out with a cylinder structure. For example, protrusions that can be taken in and out are provided at equal intervals on the tip of the cylinder, and the protrusions are usually stored inside the cylinder. When necessary, the protrusion is projected toward the outside of the cylinder by pushing with a stick from the inside of the cylinder.
[0026]
【The invention's effect】
As described above, according to the method of operating the NMR sample tube of the present invention, instead of the conventional method using air pressure, the operation rod is used to introduce the NMR sample tube into the NMR detector and from the NMR detector. Since the extraction is performed, it is possible to greatly reduce the risk of the NMR sample tube being damaged when the NMR sample tube is introduced into the NMR detector or removed from the NMR detector.
[Brief description of the drawings]
FIG. 1 is a diagram showing the configuration of a conventional NMR apparatus.
FIG. 2 is a diagram showing an embodiment of a method for setting an NMR sample tube according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Superconducting magnet, 2 ... NMR detector, 3 ... NMR sample tube, 4 ... Spinner rotor, 5 ... Housing, 6 ... Air inlet, 7 ... Inner cylinder 8 ... outer cylinder, 9 ... projection, 10 ... window, 11 ... hole, 12 ... groove.

Claims (4)

スピンナーローターが装着されたNMR試料管を、超電導磁石の内部に設置されたNMR検出器と超電導磁石の外部との間で出し入れするためのNMR試料管の操作方法であって、
前記スピンナーローターのNMR試料管と接する部分の上部に上方に開口した孔部を設け、該孔部のスピンナーローター側内周に被嵌合部を設け、該被嵌合部に操作棒を嵌合させて前記NMR試料管の出し入れを行なうようにしたことを特徴とするのNMR試料管の操作方法。
An NMR sample tube operating method for inserting and removing an NMR sample tube equipped with a spinner rotor between an NMR detector installed inside a superconducting magnet and the outside of the superconducting magnet,
The upper part of the spinner rotor that is in contact with the NMR sample tube is provided with a hole that opens upward, a fitting part is provided on the inner periphery of the spinner rotor side, and an operating rod is fitted to the fitting part. The method for operating an NMR sample tube, wherein the NMR sample tube is taken in and out.
スピンナーローターが装着されたNMR試料管を、超電導磁石の内部に設置されたNMR検出器と超電導磁石の外部との間で出し入れするための操作棒を用いたNMR試料管の操作方法であって、
前記操作棒は、内筒と外筒から成る二重筒構造を持ち、内筒に設けられた突起部を外筒に設けられた窓部から突出させて、スピンナーローターに設けられた溝部に嵌合させるようにしたことを特徴とするNMR試料管の操作方法。
An NMR sample tube operation method using an operation rod for inserting and removing an NMR sample tube equipped with a spinner rotor between an NMR detector installed inside the superconducting magnet and the outside of the superconducting magnet,
The operation rod has a double cylinder structure including an inner cylinder and an outer cylinder, and a protrusion provided on the inner cylinder protrudes from a window provided on the outer cylinder, and is fitted into a groove provided on the spinner rotor. A method for operating an NMR sample tube, characterized in that the two are combined.
スピンナーローターが装着されたNMR試料管を、超電導磁石の内部に設置されたNMR検出器と超電導磁石の外部との間で出し入れするためのNMR試料管の操作用具であって、
前記スピンナーローター側に設けられた被嵌合部と嵌合可能な嵌合部を備えた操作棒であり、該操作棒は、内筒と、外筒と、内筒に設けられた折り畳み可能な突起部と、該突起部を突出させるために外筒に設けられた窓部とを備えて成ることを特徴とするNMR試料管の操作用具。
An NMR sample tube operating tool for taking in and out an NMR sample tube equipped with a spinner rotor between an NMR detector installed inside a superconducting magnet and the outside of the superconducting magnet,
Ri operating rod der having a fitted portion to be fitted to the fitting portion provided in the spinner rotor side,該操Sakubo includes an inner cylinder, an outer cylinder, foldable provided on the inner cylinder Do projection and, the operation tool of NMR sample tube, wherein forming isosamples a window portion provided on the outer tube in order to project the protrusion portion.
前記操作棒は、磁力によって吸引されない非磁性な材料で作られていることを特徴とする請求項1、2、または3記載のNMR試料管の操作方法または操作用具。4. The NMR sample tube operating method or operation tool according to claim 1, wherein the operating rod is made of a nonmagnetic material that is not attracted by magnetic force.
JP2000044002A 2000-02-22 2000-02-22 Method and tool for operating NMR sample tube Expired - Fee Related JP3876103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044002A JP3876103B2 (en) 2000-02-22 2000-02-22 Method and tool for operating NMR sample tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044002A JP3876103B2 (en) 2000-02-22 2000-02-22 Method and tool for operating NMR sample tube

Publications (2)

Publication Number Publication Date
JP2001235526A JP2001235526A (en) 2001-08-31
JP3876103B2 true JP3876103B2 (en) 2007-01-31

Family

ID=18566834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044002A Expired - Fee Related JP3876103B2 (en) 2000-02-22 2000-02-22 Method and tool for operating NMR sample tube

Country Status (1)

Country Link
JP (1) JP3876103B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212213A (en) * 2006-02-08 2007-08-23 Jeol Ltd Automatic sample exchange device for nmr device
DE102020204379B3 (en) 2020-04-03 2021-05-20 Bruker Switzerland Ag Magnetically compensated NMR rotor and method of design and manufacture

Also Published As

Publication number Publication date
JP2001235526A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3725086B2 (en) Apparatus for sample tube transport and accurate positioning in high resolution NMR spectrometers.
US4088944A (en) NMR Spectrometer employing self centering turbine
JP3876103B2 (en) Method and tool for operating NMR sample tube
US4739270A (en) High speed spinner for NMR spectrometer
US3681683A (en) Gyromagnetic resonance spectrometer utilizing an improved sample spinning and ejecting structure
US4176979A (en) Ball-point pen
JP2017009579A (en) Mas-stator with suctioning device
US4020697A (en) Gas sampling probe
WO2005116677A1 (en) Sample catcher for nmr apparatus and method utilizing thereof
CN209350235U (en) A kind of scriber
CN212290895U (en) High sampling tube storage device for food nutrition safety inspection of security
JP4073379B2 (en) Solid state NMR probe
JP2007033110A (en) Nmr apparatus
JPH07218641A (en) Radiation measuring apparatus
CN218647408U (en) Safety detection device for marinated food
CN217820297U (en) Harmful gas detection device
US3807544A (en) Universal ribbon spool having a magnetic adapter with a rupturable diaphragm
CN209387338U (en) A kind of Geology Drilling sampling apparatus
CN216595526U (en) Radioisotope pollution detection device
CN211077082U (en) A spray bottle for permeating detection agent
CN207798432U (en) A kind of novel sampling dissolving sample-adding integrated device
CN208323842U (en) Cylinder graphite base turning tool
JP2007212213A (en) Automatic sample exchange device for nmr device
CN219573042U (en) Gradient measuring device for building engineering
US2504166A (en) Gimbal mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees