JPH07218641A - Radiation measuring apparatus - Google Patents

Radiation measuring apparatus

Info

Publication number
JPH07218641A
JPH07218641A JP1172394A JP1172394A JPH07218641A JP H07218641 A JPH07218641 A JP H07218641A JP 1172394 A JP1172394 A JP 1172394A JP 1172394 A JP1172394 A JP 1172394A JP H07218641 A JPH07218641 A JP H07218641A
Authority
JP
Japan
Prior art keywords
container
measuring
measurement
light
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1172394A
Other languages
Japanese (ja)
Other versions
JP2711218B2 (en
Inventor
Koichi Miki
功一 三木
Hiroaki Niwayama
宏明 庭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP1172394A priority Critical patent/JP2711218B2/en
Publication of JPH07218641A publication Critical patent/JPH07218641A/en
Application granted granted Critical
Publication of JP2711218B2 publication Critical patent/JP2711218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To provide a radiation measuring apparatus in which the radiation can be shielded perfectly through a simple structure and the radiation can be measured accurately with high efficiency while allowing reduction in size. CONSTITUTION:A measuring container 12 is moved to a first moving position in a measuring chamber 14 by means of a container moving mechanism 22 comprising a hollow outer shaft 20 and an inner shaft 18 sliding in the outer shaft 20 in the axial direction thereof and then the measuring chamber 14 is shielded by means of a first shielding shutter 24. The inner shaft 18 is then slid to move the container 12 to the measuring position in the measuring chamber 14. A second shielding shutter 26 is opened only when the first shutter 24 is closed thus releasing the shielding of a photomultiplier tube 16. Furthermore, when the container 12 is moved into the measuring chamber 14, an air damper section 28 imparts pneumatic urging force to the container 12 and removes vibration thereof caused by the operation of the container moving mechanism 22 thus measuring the radiation accurately with high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体シンチレータを利
用して試料に含まれる放射線の量を測定する放射線測定
装置の測定室の遮光構造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a light-shielding structure of a measuring chamber of a radiation measuring apparatus for measuring the amount of radiation contained in a sample by using a liquid scintillator.

【0002】[0002]

【従来の技術】放射性同位元素を用いた分析・検査の分
野において、試料液中にいかなる核種がどの程度含まれ
ているかを精度よく分類測定する必要がある。そこで、
放射線測定の一手法として、従来から液体シンチレータ
を用いた放射線測定が行われている。この放射線測定
は、液体シンチレータの中へ測定対象である試料を混
ぜ、試料から放射される放射線をシンチレータの発光と
して捕らえ、これを例えば光電子増倍管などで検出する
ものである。そして、その検出結果、すなわちパルスカ
ウント数などから試料の放射能量等が換算される。
2. Description of the Related Art In the field of analysis / inspection using radioisotopes, it is necessary to accurately classify and measure which nuclide and what amount are contained in a sample solution. Therefore,
As a method of measuring radiation, radiation measurement using a liquid scintillator has been conventionally performed. In this radiation measurement, a sample to be measured is mixed in a liquid scintillator, the radiation emitted from the sample is captured as light emission of the scintillator, and this is detected by, for example, a photomultiplier tube. Then, the amount of radioactivity of the sample is converted from the detection result, that is, the pulse count number.

【0003】このような放射線測定に用いられるシンチ
レータの発光は極めて弱いため、この微弱光を精度よく
検出するため感度の非常に高い光電子増倍管が使用され
る。つまり、外光のような強い光がこの光電子増倍管の
動作時に直接測定面に当たると飽和状態になり光電子増
倍管の破損を招いていた。従って、光電子増倍管を用い
る場合、外光を完全に遮断(遮光)した暗室で行う必要
があった。
Since the light emitted from the scintillator used for such radiation measurement is extremely weak, a photomultiplier tube having a very high sensitivity is used to detect this weak light with high accuracy. That is, when intense light such as external light directly hits the measurement surface during operation of the photomultiplier tube, the photomultiplier tube is saturated and the photomultiplier tube is damaged. Therefore, when the photomultiplier tube is used, it is necessary to perform it in a dark room in which external light is completely blocked (shielded).

【0004】図5に遮光構造を有する放射線測定装置の
一例を示す。この放射線測定装置50は液体シンチレー
タと試料が入れられた測定容器52が底面に容器取出し
孔54aを有する専用ラック54に収納された状態で、
図5左方向から容器取出し位置(図示する位置)に移動
して来る。専用ラック54がこの位置に移動してきたこ
とが確認されると、容器昇降機構56のラック側昇降ア
ーム56aが支点56bを中心に回動してラック側昇降
リフト58を押し上げ、さらに容器取出し孔54aを通
過して測定容器52を専用ラック54から取り出し、上
方に待機している容器保持機構60に保持させる。この
容器保持機構60は所定の保持機構、例えばバキューム
チャックや機械的なチャック機構によって確実に測定容
器52を保持し、遮光ボックス62内部の格納位置62
aに測定容器52を格納する。遮光ボックス62は回転
テーブル64上に配置され回転軸64aを中心に回転し
て、遮光ボックス62を光電子増倍管66の配置された
測定側に移動させる。回転テーブル64の下面には複数
の凹凸形状が形成され外光が容易に光電子増倍管66に
到達しないように配慮されている。そのため光電子増倍
管66には、常時高電圧が印加され常に放射線測定可能
状態になっている。測定容器52が測定位置側に移動す
ると、容器昇降機構56の測定側昇降アーム56cが支
点56dを中心に回動し、測定側昇降リフト68を下降
させ測定容器52を遮光ボックス62から取り出し光電
子増倍管66の位置に移動させて、所定の放射線測定を
行う。測定終了後は前述した逆の動作を行い専用ラック
54に測定容器52を戻す。以上の動作を繰り返し複数
の測定容器内の試料の放射線測定を順次行う。
FIG. 5 shows an example of a radiation measuring apparatus having a light shielding structure. In this radiation measuring apparatus 50, a measurement container 52 containing a liquid scintillator and a sample is stored in a dedicated rack 54 having a container take-out hole 54a on the bottom surface,
It moves from the left direction in FIG. 5 to the container take-out position (the position shown in the figure). When it is confirmed that the dedicated rack 54 has moved to this position, the rack-side lifting arm 56a of the container lifting mechanism 56 rotates about the fulcrum 56b to push up the rack-side lifting lift 58, and further the container ejection hole 54a. The measurement container 52 is taken out from the exclusive rack 54 through the passage and is held by the container holding mechanism 60 standing by above. The container holding mechanism 60 surely holds the measurement container 52 by a predetermined holding mechanism, for example, a vacuum chuck or a mechanical chuck mechanism, and stores the measurement container 52 inside the light shielding box 62.
The measurement container 52 is stored in a. The light shielding box 62 is arranged on the rotary table 64 and rotates around the rotation shaft 64a to move the light shielding box 62 to the measurement side where the photomultiplier tube 66 is arranged. A plurality of irregular shapes are formed on the lower surface of the turntable 64 to prevent external light from easily reaching the photomultiplier tube 66. Therefore, a high voltage is constantly applied to the photomultiplier tube 66, and radiation measurement is always possible. When the measurement container 52 moves to the measurement position side, the measurement-side elevating arm 56c of the container elevating mechanism 56 rotates about the fulcrum 56d, and the measurement-side elevating lift 68 is lowered to take out the measurement container 52 from the light shielding box 62 and increase the photoelectron increasing amount. The radiation is moved to the position of the double tube 66 and a predetermined radiation measurement is performed. After the measurement is completed, the reverse operation described above is performed and the measurement container 52 is returned to the dedicated rack 54. The above operation is repeated to sequentially measure the radiation of the samples in the plurality of measurement containers.

【0005】また、他の放射線測定装置では光電子増倍
管に印加する高電圧をオン・オフして光電子増倍管の保
護を行う装置がある。この放射線測定装置は遮光構造を
簡略化するため光電子増倍管の動作時にその周囲のみの
遮光を行っている。つまり、測定容器が光電子増倍管に
対向する位置に移動した時のみ遮光を行い、遮光が完全
に行われた後、光電子増倍管に高電圧を印加して動作さ
せて光電子増倍管の保護を行っている。
Another radiation measuring apparatus includes a device for protecting a photomultiplier tube by turning on and off a high voltage applied to the photomultiplier tube. In this radiation measuring apparatus, in order to simplify the light shielding structure, only the periphery of the photomultiplier tube is shielded during operation. That is, the light is shielded only when the measuring container moves to the position facing the photomultiplier tube, and after the light is completely shielded, a high voltage is applied to the photomultiplier tube to operate the photomultiplier tube. Protects.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の放射線
測定装置は遮光を完全に行い光電子増倍管に外光が当た
らないようにするため測定容器の投入位置と測定位置を
完全に隔離する大掛かりな遮光構造を用いたり、複雑な
移動経路を用いて測定容器を遮光構造体内で移動させて
遮光を行っているので、放射線測定装置が大型化してし
まうという問題があった。
However, in the conventional radiation measuring apparatus, in order to completely shield light and prevent external light from hitting the photomultiplier tube, a large scale is required to completely separate the injection position of the measurement container and the measurement position. There is a problem that the radiation measuring apparatus becomes large in size because the measurement container is moved in the light shielding structure using a simple light shielding structure or a complicated movement path to shield light.

【0007】また、測定容器の移動経路が複雑になると
測定容器が経路周囲と擦れ合うことが多くなり静電気が
発生し、その静電気による放電の光がシンチレータの微
弱光と共に光電子増倍管に測定され測定精度を低下させ
るという問題があった。
Further, when the moving path of the measuring container becomes complicated, the measuring container often rubs the surroundings of the path to generate static electricity, and the discharge light due to the static electricity is measured by the photomultiplier tube together with the weak light of the scintillator for measurement. There was a problem of lowering the accuracy.

【0008】さらに、遮光構造を簡略化するため光電子
増倍管に印加する高電圧のオン・オフを行うと測定の度
に高電圧が安定するまで測定を待つ必要があり測定効率
を著しく低下するという問題があった。
Furthermore, if the high voltage applied to the photomultiplier tube is turned on / off to simplify the light shielding structure, it is necessary to wait for the measurement until the high voltage stabilizes at each measurement, which significantly reduces the measurement efficiency. There was a problem.

【0009】本発明は、上記従来の問題に鑑みなされた
ものであり、その目的は、簡単な構造で遮光を完全に行
うと共に、正確な放射線測定を効率よく行うことのでき
る小型化が可能な放射線測定装置を提供することであ
る。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to completely shield light with a simple structure and to achieve miniaturization capable of efficiently performing accurate radiation measurement. It is to provide a radiation measuring device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、測定室に配置された光電子増倍管によっ
て、測定容器内の液体シンチレータの微弱発光を検出し
て放射線量を測定する放射線測定装置において、中空状
の外シャフトと該外シャフトの中空内部を軸線方向に摺
動する内シャフトとから成り、内外両シャフトの移動に
よって測定容器を測定室内の第1移動位置に移動させ、
さらに内シャフトの摺動によって測定容器を測定室の測
定位置に移動させる容器移動機構と、前記容器移動機構
によって測定容器を第1移動位置に移動させた後、測定
室の入口部分を覆って測定室内部に対して遮光を行う開
閉自在な第1遮光シャッタと、前記第1遮光シャッタの
閉鎖時のみ光電子増倍管に対する遮光を解除する開閉自
在な第2遮光シャッタと、測定容器を測定室に移動する
時に測定容器に空気圧力による付勢力を与え前記容器移
動機構の動作に伴う測定容器の振動を排除するエアダン
パ部と、を有することを特徴とする。
In order to achieve the above object, the present invention measures the radiation dose by detecting weak light emission of a liquid scintillator in a measuring container by a photomultiplier tube arranged in a measuring chamber. In the radiation measuring apparatus according to claim 1, the hollow outer shaft and the inner shaft that slides in the hollow inside of the outer shaft in the axial direction are moved, and the measurement container is moved to the first movement position in the measurement chamber by the movement of both the inner and outer shafts. ,
Further, the container moving mechanism for moving the measuring container to the measuring position of the measuring chamber by sliding the inner shaft, and the measuring container after moving the measuring container to the first moving position by the container moving mechanism, the measurement is performed by covering the inlet portion of the measuring chamber. A first light-blocking shutter that can be opened and closed to block light from the inside of the chamber, a second light-blocking shutter that can be opened and closed to release light blocking from the photomultiplier tube only when the first light-blocking shutter is closed, and a measurement container in the measurement chamber. And an air damper part for applying a biasing force to the measuring container by air pressure when moving, and for eliminating vibration of the measuring container due to the operation of the container moving mechanism.

【0011】[0011]

【作用】上記構成によれば、試料及び液体シンチレータ
を入れた測定容器を容器移動機構によって測定室内の第
1移動位置と測定位置に段階的に移動する。第1移動位
置に測定容器が移動すると測定室の入口部分を第1遮光
シャッタによって覆い測定室内に外光が入らないように
する。測定室の入口部分で遮光が完全に行われると、容
器移動機構は測定容器を測定位置に移動させると共に、
第1遮光シャッタ開放時に閉鎖されていた第2遮光シャ
ッタを開放して光電子増倍管による測定を開始する。
According to the above construction, the measuring container containing the sample and the liquid scintillator is moved stepwise to the first moving position and the measuring position in the measuring chamber by the container moving mechanism. When the measurement container moves to the first movement position, the entrance portion of the measurement chamber is covered by the first light-shielding shutter to prevent outside light from entering the measurement chamber. When the light is completely shielded at the entrance of the measurement chamber, the container moving mechanism moves the measurement container to the measurement position, and
The second light-blocking shutter, which was closed when the first light-blocking shutter was opened, is opened to start the measurement by the photomultiplier tube.

【0012】また、測定容器を測定室に移動する時にエ
アダンパ部によって測定容器に空気圧力による付勢力を
与え、前記容器移動機構の動作に伴う測定容器の振動を
排除する。
Further, when the measuring container is moved to the measuring chamber, an urging force due to the air pressure is applied to the measuring container by the air damper section to eliminate the vibration of the measuring container due to the operation of the container moving mechanism.

【0013】[0013]

【実施例】以下、本発明の好適な実施例を図面に基づい
て説明する。図1〜図3は放射線測定装置の構成及び動
作を示す概略図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. 1 to 3 are schematic diagrams showing the configuration and operation of the radiation measuring apparatus.

【0014】この放射線測定装置10は試料及び液体シ
ンチレータを入れた測定容器12を測定室14の測定位
置に配置された光電子増倍管16の位置まで移動させる
内シャフト18及び該内シャフト18に周設された外シ
ャフト20を有する容器移動機構22と、測定室14の
入口部分に設けられた第1遮光シャッタ24と、測定室
14内部の光電子増倍管16に対向して設けられ第1遮
光シャッタ24の閉鎖時にみ開放される第2遮光シャッ
タ26と、測定容器12を測定室14に移動する時に測
定容器12に空気圧力による付勢力を与え前記容器移動
機構22の動作に伴う測定容器12の振動を排除するエ
アダンパ部28とから構成されている。
The radiation measuring apparatus 10 includes an inner shaft 18 for moving a measuring container 12 containing a sample and a liquid scintillator to a position of a photomultiplier tube 16 arranged at a measuring position of a measuring chamber 14 and a circumference of the inner shaft 18. A container moving mechanism 22 having an outer shaft 20 provided therein, a first light-shielding shutter 24 provided at the entrance of the measurement chamber 14, and a first light-shielding member provided so as to face the photomultiplier tube 16 inside the measurement chamber 14. The second light-blocking shutter 26 that is opened only when the shutter 24 is closed, and the measurement container 12 that is provided with an urging force of the air pressure to the measurement container 12 when the measurement container 12 is moved to the measurement chamber 14 And an air damper portion 28 for eliminating the vibration of the.

【0015】図1において、測定容器12は、底面部に
容器取出し孔30aを有し複数の測定容器12を収納可
能な専用ラック30に収納され、所定ピッチで図中矢印
A方向に移動可能な移送コンベア32によって測定開始
位置に搬送される。測定容器12が測定開始位置に到達
すると移送コンベア32は停止し、同時に容器移動機構
22の駆動モータ34(例えば、パルスモータ等の精密
制御可能なモータ)が図中矢印L方向に回転を開始す
る。駆動モータ34にはプーリ34aが固定され、該プ
ーリ34aには駆動ベルト36が巻回されている。従っ
て、駆動モータ34が図中矢印L方向に回転すると、駆
動ベルト36は図中矢印B方向に従動する。前記駆動ベ
ルト36の一部は連結部材38を介して先端に容器押上
パッド18aを有する内シャフト18の下端に固定され
ている。この内シャフト18は上端に第1遮光シャッタ
24と係合する係合溝20aを有する中空状の外シャフ
ト20の中空部内に摺動可能に挿入されている。また、
外シャフト20の下端部にはストッパ20bが周設され
ると共に、該外シャフト20を常時上方向に付勢するス
プリング40が固定されている。従って、駆動モータ3
4によって内シャフト18が上方に移動すると外シャフ
ト20もスプリング40によって上方に移動する。この
時、外シャフト20の上端は内シャフト18の容器押上
パッド18aの下端に当接しているため内シャフト18
と外シャフト20は同時に移動する。
In FIG. 1, the measuring container 12 is housed in a dedicated rack 30 having a container take-out hole 30a on the bottom surface and capable of accommodating a plurality of measuring containers 12, and is movable at a predetermined pitch in the direction of arrow A in the figure. It is conveyed to the measurement start position by the transfer conveyor 32. When the measurement container 12 reaches the measurement start position, the transfer conveyor 32 stops, and at the same time, the drive motor 34 (for example, a precisely controllable motor such as a pulse motor) of the container moving mechanism 22 starts rotating in the direction of arrow L in the figure. . A pulley 34a is fixed to the drive motor 34, and a drive belt 36 is wound around the pulley 34a. Therefore, when the drive motor 34 rotates in the direction of arrow L in the figure, the drive belt 36 follows the direction of arrow B in the figure. A part of the drive belt 36 is fixed to the lower end of the inner shaft 18 having a container push-up pad 18a at the tip through a connecting member 38. The inner shaft 18 is slidably inserted into the hollow portion of the hollow outer shaft 20 having an engaging groove 20a that engages with the first light shielding shutter 24 at the upper end. Also,
A stopper 20b is provided around the lower end of the outer shaft 20, and a spring 40 that constantly biases the outer shaft 20 upward is fixed. Therefore, the drive motor 3
When the inner shaft 18 moves upward by 4, the outer shaft 20 also moves upward by the spring 40. At this time, since the upper end of the outer shaft 20 is in contact with the lower end of the container lifting pad 18a of the inner shaft 18, the inner shaft 18
And the outer shaft 20 move simultaneously.

【0016】図2は、内シャフト18と外シャフト20
が専用ラック30の容器取出し孔30aを通過し、測定
容器12を第1移動位置まで押し上げた状態を示してい
る。ストッパ20bが容器移動機構22の上壁に当接し
て、測定容器12が第1移動位置に到達すると駆動モー
タ34が一時停止し、同時に所定の駆動機構、例えばエ
アシリンダ42によって水平方向に移動可能な第1遮光
シャッタ24が外シャフト20の左右より突出し、係合
溝20aに係合して測定容器12を収納した測定室14
と外部とを遮断して測定室14に対して遮光を行う。本
実施例では2段構造を有する第1遮光シャッタ24を用
いて外光が測定室内部に入り込まないように完全に遮光
を行う。
FIG. 2 shows an inner shaft 18 and an outer shaft 20.
Shows the state in which the measurement container 12 has been pushed up to the first movement position after passing through the container extraction hole 30a of the dedicated rack 30. When the stopper 20b comes into contact with the upper wall of the container moving mechanism 22 and the measuring container 12 reaches the first moving position, the drive motor 34 is temporarily stopped, and at the same time, it can be moved horizontally by a predetermined drive mechanism, for example, the air cylinder 42. The first light-blocking shutter 24 protrudes from the left and right of the outer shaft 20 and engages with the engagement groove 20a to accommodate the measurement container 12 in the measurement chamber 14
The measurement chamber 14 is shielded from the outside by blocking the light from the outside. In the present embodiment, the first light-shielding shutter 24 having a two-stage structure is used to perform complete light-shielding so that outside light does not enter the inside of the measurement chamber.

【0017】一方、光電子増倍管16は測定室14の左
右に対向して設けられ、第1遮光シャッタ24が開放さ
れている時に光電子増倍管16に対して遮光を行う第2
遮光シャッタ26が各光電子増倍管16の正面に配置さ
れている。この第2遮光シャッタ26には伸縮自在な多
段式の容器ガイド44が係合され、容器ガイド44の下
面には容器押え44a(図1参照)が設けられ、容器移
動機構22によって上昇してきた測定容器12を確実に
受け止める。
On the other hand, the photomultiplier tubes 16 are provided on the left and right sides of the measuring chamber 14 so as to face each other, and the photomultiplier tubes 16 are shielded from light when the first light-shielding shutter 24 is opened.
A light shielding shutter 26 is arranged in front of each photomultiplier tube 16. An expandable and retractable multi-stage container guide 44 is engaged with the second light-shielding shutter 26, a container retainer 44a (see FIG. 1) is provided on the lower surface of the container guide 44, and the container moving mechanism 22 raises the measurement. Reliably receives the container 12.

【0018】測定容器12の上昇が始まり測定容器12
が容器押え44aを押し上げると、測定容器12は容器
押え44aの上面によって段状に形成された容器ガイド
44を1段ずつ縮め、第1移動位置まで移動する。この
時、測定容器12は容器ガイド44によって形成される
エアダンパ部28によって生じる下向きの付勢力によっ
て測定容器12を押え込み、容器移動機構22の駆動に
よる振動、例えばパルスモータの段階的な回転によって
生じる上下振動等、を排除する。つまり、測定容器12
の上昇に伴って容器ガイド44が縮まりエアダンパ部2
8の容積が縮小すると、エアダンパ部28内部で空気の
流れが発生し、エアダンパ部28の上端に設けられたエ
ア開閉弁28aを持ち上げ、エア解放口28bを塞ぎエ
アダンパ部28内部の空気圧力を上昇させる。そして、
この空気圧力の上昇は下向きの付勢力を発生し容器ガイ
ド44の縮まり動作を抑制し、測定容器12を下向きに
押え込み、測定容器12が上下に振動することを防止す
る。
The measurement container 12 starts to rise and the measurement container 12 starts.
When pushes up the container retainer 44a, the measurement container 12 moves the container guide 44, which is formed in a stepped shape by the upper surface of the container retainer 44a, one step at a time and moves to the first movement position. At this time, the measuring container 12 is pressed down by the downward biasing force generated by the air damper portion 28 formed by the container guide 44, and is vibrated by the driving of the container moving mechanism 22, for example, the vertical movement caused by the stepwise rotation of the pulse motor. Eliminate vibration, etc. That is, the measurement container 12
As the container rises, the container guide 44 contracts and the air damper 2
When the volume of 8 is reduced, an air flow is generated inside the air damper portion 28, the air opening / closing valve 28a provided at the upper end of the air damper portion 28 is lifted, the air release port 28b is closed, and the air pressure inside the air damper portion 28 is increased. Let And
This increase in air pressure generates a downward urging force to suppress the contraction operation of the container guide 44, presses the measurement container 12 downward, and prevents the measurement container 12 from vibrating up and down.

【0019】このように測定容器12の移動時の振動を
排除すると測定容器12が周辺部材と接触することによ
って生じる摩擦による静電気を排除することが可能にな
る。すなわち、静電気の放電によって発生する火花が排
除され、シンチレータの微弱光のみが正確に測定され測
定精度の低下を排除することができる。
By eliminating the vibration during the movement of the measuring container 12 in this way, it is possible to eliminate the static electricity due to the friction caused by the contact of the measuring container 12 with the peripheral members. That is, the sparks generated by the discharge of static electricity are eliminated, and only the weak light of the scintillator is accurately measured, and it is possible to eliminate the decrease in measurement accuracy.

【0020】第1遮光シャッタ24による遮光が完全に
行われると、図3に示すように駆動モータ34が回転を
再開し、内シャフト18のみを上方に移動させる。内シ
ャフト18によって測定容器12が押し上げられると、
縮まった容器ガイド44は、さらに測定室14内部を上
昇する。同時に、容器ガイド44の容器押え44aの上
面は、図4に示すように光電子増倍管16の正面に配置
されている第2遮光シャッタ26の押上爪26aを押し
上げ、第2遮光シャッタ26の開放を行う。また、図3
に示すように前述したエアダンパ部28は、第2遮光シ
ャッタ26を開放する時も付勢力を発生し、測定容器1
2の移動時の振動を排除する。
When the light is completely shielded by the first light-shielding shutter 24, the drive motor 34 restarts to rotate only the inner shaft 18 upward as shown in FIG. When the measurement container 12 is pushed up by the inner shaft 18,
The contracted container guide 44 further rises inside the measurement chamber 14. At the same time, the upper surface of the container presser 44a of the container guide 44 pushes up the push-up claw 26a of the second light-shielding shutter 26 arranged in front of the photomultiplier tube 16 as shown in FIG. 4 to open the second light-shielding shutter 26. I do. Also, FIG.
As described above, the air damper portion 28 described above generates a biasing force even when the second light-shielding shutter 26 is opened, and the measurement container 1
Eliminate vibration when moving 2.

【0021】従って、第1遮光シャッタ24によって測
定室14の遮光が完全に行われた後に、光電子増倍管1
6に対する遮光が解除され、シンチレータの微弱光の測
定が行われるので外光の影響を受けない正確な測定を行
うことができる。さらに、測定容器12はエアダンパ部
28の作用によって振動を起こさないため、静電気等に
よる火花の影響を受けずシンチレータの微弱光の測定を
正確に行うことができる。
Therefore, after the measurement chamber 14 is completely shielded from light by the first light shielding shutter 24, the photomultiplier tube 1 is
Since the light shielding for 6 is released and the weak light of the scintillator is measured, it is possible to perform accurate measurement that is not affected by external light. Furthermore, since the measurement container 12 does not vibrate due to the action of the air damper portion 28, weak light of the scintillator can be accurately measured without being affected by sparks due to static electricity or the like.

【0022】測定位置に移動した測定容器12の測定が
終了すると前述した動作を逆に行い、放射線測定装置1
0は第2遮光シャッタ26の閉鎖、第1遮光シャッタ2
4の開放の順で行い、測定容器12を専用ラック30の
所定の位置に収納する。測定容器12が下降する時は、
エアダンパ部28のエア開閉弁28aは開き、外部から
空気が流入するためエアダンパ部28を構成する容器ガ
イド44は重力によって容易に下降し、測定容器待機状
態(図1の状態)に戻ることができる。
When the measurement of the measurement container 12 moved to the measurement position is completed, the above-described operation is performed in reverse, and the radiation measuring apparatus 1
0 is the closing of the second light shielding shutter 26, and the first light shielding shutter 2
4 is performed in the order of opening, and the measurement container 12 is stored in a predetermined position of the dedicated rack 30. When the measuring container 12 descends,
Since the air opening / closing valve 28a of the air damper part 28 is opened, and air flows in from the outside, the container guide 44 constituting the air damper part 28 is easily lowered by gravity and can return to the measurement container standby state (state of FIG. 1). .

【0023】測定を終了した測定容器12が専用ラック
30に収納されると、移送コンベア32が所定ピッチ図
中矢印A方向に駆動して次の測定容器12の測定を開始
する。
When the measurement container 12 whose measurement has been completed is stored in the dedicated rack 30, the transfer conveyor 32 is driven in the direction of arrow A in the figure at a predetermined pitch to start the measurement of the next measurement container 12.

【0024】本実施例においては、エアダンパ部28を
容器ガイド44を利用して形成したが、別途エアダンパ
を使用してもよい。また、内外両シャフトの駆動を駆動
モータ34及びスプリング40によって行ったが、ダブ
ルストロークのシリンダ等の駆動機構を用いてもよい。
さらに、実施例においては装置の大きさを小さくするた
めに多段式の容器ガイド44を用いて説明したが、容器
ガイドの形状はこれに限定されることなく、測定容器を
ガイドできるものであればよく、第2遮光シャッタ26
も容器ガイド44に連動することなく、第1遮光シャッ
タ24の状態を検出して別機構によって駆動してもよ
い。
In this embodiment, the air damper portion 28 is formed by using the container guide 44, but an air damper may be separately used. Further, both the inner and outer shafts are driven by the drive motor 34 and the spring 40, but a drive mechanism such as a double stroke cylinder may be used.
Furthermore, in the embodiment, the multi-stage container guide 44 is used to reduce the size of the apparatus, but the shape of the container guide is not limited to this, and any container that can guide the measurement container can be used. Well, the second light-shielding shutter 26
Also, the state of the first light-shielding shutter 24 may be detected and driven by another mechanism without interlocking with the container guide 44.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
試料及び液体シンチレータを入れた測定容器を容器移動
機構によって測定室内の第1移動位置と測定位置とに段
階的に移動することが可能であり、第1遮光シャッタと
第2遮光シャッタの交互の開閉によって光電子増倍管に
対する遮光を完全に行うことが可能になる。従って、簡
単な構造で放射線測定装置の遮光を完全に行うことがで
きると共に、測定容器の移動が単純になるため放射線測
定装置を小型化することができる。
As described above, according to the present invention,
The measuring container containing the sample and the liquid scintillator can be moved stepwise to the first moving position and the measuring position in the measuring chamber by the container moving mechanism, and the first light shielding shutter and the second light shielding shutter are alternately opened and closed. This makes it possible to completely shield the photomultiplier tube. Therefore, the radiation measuring device can be completely shielded from light with a simple structure, and the radiation measuring device can be downsized because the movement of the measuring container is simplified.

【0026】また、測定容器を測定室に移動する時にエ
アダンパ部によって測定容器に空気圧力による付勢力を
与え前記容器移動機構の動作に伴う測定容器の振動を排
除し、測定容器移動に伴う静電気等による測定誤差要因
を排除し正確な放射線測定を効率よく行うことができ
る。
Further, when the measuring container is moved to the measuring chamber, an urging force due to the air pressure is applied to the measuring container by the air damper part to eliminate the vibration of the measuring container due to the operation of the container moving mechanism, and the static electricity or the like due to the movement of the measuring container. The accurate radiation measurement can be efficiently performed by eliminating the measurement error factor due to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る放射線測定装置において測定容器
の待機状態を示す概略断面図である。
FIG. 1 is a schematic sectional view showing a standby state of a measurement container in a radiation measuring apparatus according to the present invention.

【図2】本発明に係る放射線測定装置において測定容器
の第1移動位置移動状態を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing a moving state of a measurement container in a first movement position in the radiation measuring apparatus according to the present invention.

【図3】本発明に係る放射線測定装置において測定容器
の測定位置移動状態を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing a measurement position moving state of a measurement container in the radiation measuring apparatus according to the present invention.

【図4】本発明に係る放射線測定装置において容器ガイ
ド及び第2遮光シャッタ部分の略拡大図である。
FIG. 4 is a schematic enlarged view of a container guide and a second light-shielding shutter portion in the radiation measuring apparatus according to the present invention.

【図5】従来の放射線測定装置の構成を示す概略断面図
である。
FIG. 5 is a schematic cross-sectional view showing the configuration of a conventional radiation measuring apparatus.

【符号の説明】[Explanation of symbols]

10 放射線測定装置 16 光電子増倍管 18 内シャフト 20 外シャフト 22 容器移動機構 24 第1遮光シャッタ 26 第2遮光シャッタ 28 エアダンパ部 10 Radiation Measuring Device 16 Photomultiplier Tube 18 Inner Shaft 20 Outer Shaft 22 Container Moving Mechanism 24 First Shading Shutter 26 Second Shading Shutter 28 Air Damper Section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定室に配置された光電子増倍管によっ
て、測定容器内の液体シンチレータの微弱発光を検出し
て放射線量を測定する放射線測定装置において、 中空状の外シャフトと該外シャフトの中空内部を軸線方
向に摺動する内シャフトとから成り、内外両シャフトの
移動によって測定容器を測定室内の第1移動位置に移動
させ、さらに内シャフトの摺動によって測定容器を測定
室の測定位置に移動させる容器移動機構と、 前記容器移動機構によって測定容器を第1移動位置に移
動させた後、測定室の入口部分を覆って測定室内部に対
して遮光を行う開閉自在な第1遮光シャッタと、 前記第1遮光シャッタの閉鎖時のみ光電子増倍管に対す
る遮光を解除する開閉自在な第2遮光シャッタと、 測定容器を測定室に移動する時に測定容器に空気圧力に
よる付勢力を与え前記容器移動機構の動作に伴う測定容
器の振動を排除するエアダンパ部と、 を有することを特徴とする放射線測定装置。
1. A radiation measuring apparatus for measuring a radiation dose by detecting weak light emission of a liquid scintillator in a measuring container by a photomultiplier tube arranged in a measuring chamber, wherein a hollow outer shaft and a hollow outer shaft It consists of an inner shaft that slides in the hollow interior in the axial direction. The inner and outer shafts move to move the measuring container to the first moving position in the measuring chamber, and the sliding of the inner shaft moves the measuring container to the measuring position in the measuring chamber. And a container movement mechanism for moving the measurement container to a first movement position by the container movement mechanism, and a first light-blocking shutter that can be opened and closed to cover the entrance portion of the measurement chamber and shield the inside of the measurement chamber from light. A second light-blocking shutter that can be opened and closed to release the light blocking from the photomultiplier tube only when the first light-blocking shutter is closed; Radiation measuring apparatus comprising: the air damper unit to eliminate the vibration of the measuring container in connection with an operation of said container moving mechanism gives a biasing force by the gas pressure, the.
JP1172394A 1994-02-03 1994-02-03 Radiation measurement device Expired - Fee Related JP2711218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172394A JP2711218B2 (en) 1994-02-03 1994-02-03 Radiation measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172394A JP2711218B2 (en) 1994-02-03 1994-02-03 Radiation measurement device

Publications (2)

Publication Number Publication Date
JPH07218641A true JPH07218641A (en) 1995-08-18
JP2711218B2 JP2711218B2 (en) 1998-02-10

Family

ID=11785967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172394A Expired - Fee Related JP2711218B2 (en) 1994-02-03 1994-02-03 Radiation measurement device

Country Status (1)

Country Link
JP (1) JP2711218B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278971A (en) * 2006-04-11 2007-10-25 Aloka Co Ltd Sample measuring device
JP2007278973A (en) * 2006-04-11 2007-10-25 Aloka Co Ltd Sample measuring device
JP2007278974A (en) * 2006-04-11 2007-10-25 Aloka Co Ltd Sample measuring device
WO2015053136A1 (en) * 2013-10-09 2015-04-16 日立アロカメディカル株式会社 Sample measuring device
JP2015075403A (en) * 2013-10-09 2015-04-20 日立アロカメディカル株式会社 Sample measurement instrument
JP2015075402A (en) * 2013-10-09 2015-04-20 日立アロカメディカル株式会社 Sample measuring device
EP3654021A4 (en) * 2017-07-14 2021-04-07 HORIBA Advanced Techno, Co., Ltd. Biological sample analysis device
KR20230084790A (en) * 2021-12-06 2023-06-13 한국원자력안전기술원 Method and apparatus for measuring radioactivity in water

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278971A (en) * 2006-04-11 2007-10-25 Aloka Co Ltd Sample measuring device
JP2007278973A (en) * 2006-04-11 2007-10-25 Aloka Co Ltd Sample measuring device
JP2007278974A (en) * 2006-04-11 2007-10-25 Aloka Co Ltd Sample measuring device
JP4603504B2 (en) * 2006-04-11 2010-12-22 アロカ株式会社 Sample measuring device
WO2015053136A1 (en) * 2013-10-09 2015-04-16 日立アロカメディカル株式会社 Sample measuring device
JP2015075403A (en) * 2013-10-09 2015-04-20 日立アロカメディカル株式会社 Sample measurement instrument
JP2015075402A (en) * 2013-10-09 2015-04-20 日立アロカメディカル株式会社 Sample measuring device
CN105793713A (en) * 2013-10-09 2016-07-20 株式会社日立制作所 Sample measuring device
US9791577B2 (en) 2013-10-09 2017-10-17 Hitachi, Ltd. Sample measuring device
EP3654021A4 (en) * 2017-07-14 2021-04-07 HORIBA Advanced Techno, Co., Ltd. Biological sample analysis device
US11280741B2 (en) 2017-07-14 2022-03-22 Horiba Advanced Techno, Co., Ltd. Biological sample analysis device
KR20230084790A (en) * 2021-12-06 2023-06-13 한국원자력안전기술원 Method and apparatus for measuring radioactivity in water

Also Published As

Publication number Publication date
JP2711218B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3561891B2 (en) Microplate light shielding means and luminescence measuring device
US3645690A (en) Automated chemical analyzer
US3493749A (en) Counting statistics in radioactive sampling apparatus by sample rotation
JP7165657B2 (en) biological sample analyzer
JP2831466B2 (en) Luminescence measurement system and luminometer device
JP2711218B2 (en) Radiation measurement device
US3859528A (en) Gamma ray apparatus with sample changer
JP6730396B2 (en) Measuring chamber, operating method of measuring chamber, chemiluminescence measuring method of measuring chamber, and chemiluminescence detector
CN110794156A (en) Measuring chamber for full-automatic chemiluminescence immunoassay analyzer
JP2936973B2 (en) Luminescence measuring device
JP7157056B2 (en) Sample analyzer
US3809897A (en) Sample changing and light sealing device for liquid scintillation spectrometer
US3663816A (en) Sample-conveying mechanism for scintillation counting
US2500492A (en) Apparatus for handling materials
US20220228191A1 (en) Biological sample analysis apparatus and biological sample analysis method
US3852599A (en) Vial transfer mechanism
US6123903A (en) Chemiluminescence measuring apparatus
US4220855A (en) Scintillation counter with rotatable light seal
US4924093A (en) Beta counting means and apparatus
US3922542A (en) Device for the continuous analysis of samples especially by non-dispersive x-ray fluorescence
US4242582A (en) Means for expelling sample carriers from a radiation measuring apparatus
CN211741317U (en) Measuring chamber for full-automatic chemiluminescence immunoassay analyzer
US3488497A (en) Liquid scintillation counting apparatus
CN117705518B (en) Boiler flue gas detection equipment
CN219533165U (en) Chemiluminescence immunoassay dense light detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20121024

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees