JP3874545B2 - Water-soluble epoxy resin composition and method for producing the same - Google Patents

Water-soluble epoxy resin composition and method for producing the same Download PDF

Info

Publication number
JP3874545B2
JP3874545B2 JP22624698A JP22624698A JP3874545B2 JP 3874545 B2 JP3874545 B2 JP 3874545B2 JP 22624698 A JP22624698 A JP 22624698A JP 22624698 A JP22624698 A JP 22624698A JP 3874545 B2 JP3874545 B2 JP 3874545B2
Authority
JP
Japan
Prior art keywords
epoxy resin
water
epoxy
polyfunctional amine
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22624698A
Other languages
Japanese (ja)
Other versions
JP2000053745A (en
Inventor
祐一 伊東
貢一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP22624698A priority Critical patent/JP3874545B2/en
Publication of JP2000053745A publication Critical patent/JP2000053745A/en
Application granted granted Critical
Publication of JP3874545B2 publication Critical patent/JP3874545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、産業上有用な高分子材料であるエポキシ樹脂の水溶性エポキシ樹脂組成物、及びその製造方法に関する。
【0002】
【従来の技術】
従来エポキシ樹脂は、その耐溶剤性、耐水性、防錆性、耐摩耗性等の有用な高分子材料として、様々な産業分野で用いられてきた。特に塗料分野ではこれらの性質を利用した塗料が多く市販されている。
【0003】
ところで、これらの塗料分野で用いられているエポキシ樹脂の多くは、有機溶剤を主溶剤とする溶剤可溶型エポキシ樹脂である。
しかし、近年、環境問題に対応すべく水性塗料が注目されており、様々な樹脂系で試みられており、商品化されている。エポキシ樹脂に関しても、その水性化方法が発明されている。例えば、エポキシ樹脂とカルボキシル基を有するアクリルモノマーを、過酸化物系ラジカル開始剤を用いて水素引き抜き反応を利用したグラフト重合から得られたものや、特開平10−183055号公報に例示されるようなエポキシ樹脂をポリオキシアルキルアミンと反応させてから得られるものが挙げられている。
【0004】
ところで、これらのエポキシ樹脂を水性化する方法は、いずれもエポキシ樹脂骨格の他にアクリル樹脂やポリオキシアミン等の構造が樹脂構造中に導入されるため、連続的なエポキシ樹脂骨格を得ることと、水性化させることとのバランスを保つことが困難である。
【0005】
例えば、カルボキシル基を有するアクリル樹脂をエポキシ樹脂に導入する方法による水溶性エポキシ樹脂の場合、エポキシ樹脂の分子量を増加させる際には、共重合されうるアクリル樹脂の酸価や相溶化パラメーター(Sp値)のバランスを考慮しなければならなく、さらに、樹脂自体の安定性がエポキシ樹脂に対するアクリル樹脂のグラフト化率に左右され、設計が煩雑である。また、得られた樹脂は分岐構造が多くなるため、分子量の割には粘度が高く、実用上使用しにくいものとなる。
【0006】
一方、ポリオキシアミンをエポキシ樹脂と共重合する場合は、得られる水溶性エポキシ樹脂は直鎖状のポリマーが得られるが、水性化するのに必要なオキシエチレン鎖の含有量が増し、エポキシ樹脂特有の剛直な樹脂骨格が得られなくなる。
【0007】
【発明が解決しようとする課題】
本発明は、エポキシ樹脂の骨格をそのまま残し、自由な設計度を有する、新規な水溶性エポキシ樹脂組成物、及びその製法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者等はかかる所望、すなわち、エポキシ樹脂の骨格をそのまま残し、自由な設計度を有し、かつ水性化させるべく、鋭意検討した結果、非プロトン系水溶性有機溶剤中で、一分子鎖中に2個以上のエポキシ基を有するエポキシ樹脂と多官能アミンを用いて重付加反応を行い、得られた変性エポキシ樹脂にカルボキシル基を導入し、さらに中和することによりエポキシ樹脂を自由に水性化させ得る知見を見い出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、[1] 下記一般式(1)(化3)で表せられる多官能アミン変性エポキシ樹脂の変性物
【化3】

Figure 0003874545
(式(1) 中、X1 はエポキシ基と多官能アミン、又はエポキシ基と下記一般式(2)(化4)
【化4】
Figure 0003874545
(式(2) 中、R2 は多官能アルカノールアミン由来構造のものを示し、X3 飽和無水カルボン酸由来構造のものを示す。)で表せられる多官能アルカノールアミン無水カルボン酸付加物と付加反応したもののうち、活性プロトンを1個以上有する構造のものを示す。X2 はエポキシ基と多官能アミン、又は上記一般式(2)(化2)で表せられる多官能アルカノールアミン無水カルボン酸付加物と付加反応した構造のものを示し、X3 飽和無水カルボン酸由来構造のものを示す。また、R1 は1分子鎖中2個以上のエポキシ基を有するエポキシ樹脂由来構造のものを示し、n及びmはゼロではない整数を示す。)であり、また、[2] 上記[1]記載の多官能アミン変性エポキシ樹脂変性物を必須成分として含んでなる水溶性エポキシ樹脂組成物であり、また、[3] 水溶性有機溶剤中で、一分子鎖中に2個以上のエポキシ基を有するエポキシ樹脂と多官能アミンを用いて重付加反応を行い、得られた変性エポキシ樹脂にカルボキシル基を導入し、次いで中和することを特徴とする上記[2]記載の水溶性エポキシ樹脂組成物の製造方法であり、また、[4] 一分子鎖中に2個以上のエポキシ基を有するエポキシ樹脂と多官能アミンを用いて重付加反応させる際に、多官能アミン中の活性水素のモル数(B)に対するエポキシ基のモル数(A)の比(すなわちA/B)を、0を越えかつ1未満の範囲として行うことを特徴とする、上記[3]に記載の水溶性エポキシ樹脂組成物の製造方法であり、また、[5] 水溶性有機溶剤が非プロトン系有機溶剤である上記[3]又は[4]に記載の水溶性エポキシ樹脂組成物の製造方法である。
【0010】
【発明の実施の形態】
以下に本発明を詳しく説明する。
この樹脂組成物及びその製造方法において、用いられるエポキシ樹脂としては、一分子鎖中にエポキシ基を2個以上もつものであればよく、例えば、ビスフェノールA−ジグリシジルエーテル、ビスフェノールA−ジグリシジルエーテルのε−カプロラクトン開環付加物、ビスフェノールF−ジグリシジルエーテル、ビスフェノールS−ジグリシジルエーテル、ノボラックグリシジルエーテル、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル、テトラグリシジルアミノジフェニルメタン、3,4−エポキシ−6−メチルシクロヘキシルメチルカルボキシレート、トリグリシジルイソシアヌレート、3,4−エポキシシクロヘキシルメチルカルボキシレート、ポリプロピレンジグリシジルエーテル、ポリブタジエン叉はポリサルファイドの両末端ジグリシジルエーテル修飾物等であり、好ましくはビスフェノールA−ジグリシジルエーテル、ビスフェノールF−ジグリシジルエーテルである。
【0011】
本発明の水溶性エポキシ樹脂組成物の製法を例示すれば、ガラス製四つ口フラスコ(撹拌機、温度計、外部加熱機、冷却管、凝縮器及び窒素導入管付き)等の一般的な樹脂製造用反応容器を用い、先ず、エポキシ樹脂を非プロトン系水溶性有機溶剤に溶解させる。
【0012】
この際、アルコール・セロソルブ等のプロトン系水溶性有機溶剤を用いたりすると、カルボキシル基を導入する際に、用いた無水カルボン酸が、このプロトン系有機溶剤と反応してしまい、エポキシ樹脂にカルボキシル基が導入されないし、また、低分子のカルボキシル基化合物が生成し、塗料等に用いた際に、水性化不足や物性が著しく低下することにもなり、好ましくない。
【0013】
また、非プロトン系の芳香族系溶剤等を用いて、エポキシ樹脂を多官能アミン変性し、さらに無水カルボン酸でエポキシ樹脂中にカルボキシル基を導入した後、水溶性溶剤に置換する方法では、エポキシ樹脂の溶解力が不足し、エポキシ基と多官能アミンの活性プロトンとの反応を完結させることが困難である。この際、エポキシ基が残存すると、カルボキシル基導入時に、変性エポキシ樹脂中の残存エポキシ基と開環したカルボキシル基との反応が起こり、ゲル化するため実用に向かない。また、エポキシ樹脂の多官能アミンとの重付加反応時に高分子化できないことにもなってしまう。
【0014】
本発明に用いられる非プロトン系有機溶剤としては、ジオキサン等の環状エーテル類、グライム、ジグライム等のオキシエチレン鎖のジアルキルエーテル類、アセトン等が挙げられ、これらを単独でも、あるいは2種類以上混合して用いることができる。
【0015】
なお、カルボキシル基を導入した後に、プロトン系水溶性有機溶剤を追加することは何ら問題ない。この際に追加できる溶剤としては、セロソルブ系溶剤、イソプロピルアルコール、メタノール等のアルコール系溶剤等のプロトン系水溶性溶剤等が挙げられる。
【0016】
次に、この非プロトン系有機溶剤に溶解させたエポキシ樹脂に、エポキシ基のモル数(A)と多官能アミン中の活性水素のモル数(B)との比〔(A)/(B)〕が、0より大きく、かつ1より小さくなる範囲で多官能アミンを添加し、100〜110℃で6時間以上反応させる。すると、エポキシ基が完全に多官能アミンで付加された変性エポキシ樹脂が得られる。
【0017】
この際に、エポキシ樹脂にエポキシ基のモル数(A)と多官能アミン中の活性水素のモル数(B)との比(A)/(B)を1となる量で反応させたりすると、得られる樹脂は分子量の無限大なものとなってしまうことになる。また、上記比(A)/(B)が1を越えて反応させるような場合は、エポキシ基と多官能アミンの活性プロトンとの反応の際にエポキシ基が残存することになり、カルボキシル基を導入する際にエポキシ基とカルボキシル基との反応が起こってゲル化してしまうようになることから好ましくない。
【0018】
本発明の製造方法で用いられる多官能アミンとは、活性水素を1分子中に2個以上有するアミンである。具体的には、イソプロパノールアミン、モノプロパノールアミン、モノブタノールアミン、モノエタノールアミン、ジエチレントリアミン、エチレンジアミン、ブチルアミン、プロピルアミン、イソホロンジアミン、テトラヒドロフルフリルアミン、キシレンジアミン、ジアミンジフェニルメタン、ジアミノスルホン、オクチルアミン、メタフェニレンジアミン、アミルアミン、ヘキシルアミン、ノニルアミン、デシルアミン、トリエチレンテトラミン、テトラメチレンペンタミン、ジメチルアミノプロピルアミン、N−アミノエチルピペラジン、メタセンジアミン、ジアミノジフェニルスルホン等が挙げられる。これらのうちでも、本発明では無水カルボン酸と反応しうるアルカノールアミン類を用いるのが、より好ましい。
【0019】
次に、上記により得られた多官能アミン変性エポキシ樹脂の非プロトン系水溶性有機溶剤溶液中に無水カルボン酸を添加し、90〜95℃で反応させると、多官能アミン変性エポキシ樹脂の側鎖にカルボキシル基を有するエポキシ樹脂が得られる。
【0020】
ここで用いられる無水カルボン酸としては、一分子中にカルボキシル基が2個以上有する化合物の無水物であればよく、例えば、無水コハク酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸、無水トリメリット酸等があげられる。
【0021】
次に、得られた多官能アミン変性エポキシ樹脂の側鎖にカルボキシル基を有するエポキシ樹脂が非プロトン系溶剤に溶解した樹脂液に塩基性化合物を用いて、カルボキシル基と当量付近以上で中和する。さらに、イオン交換水等で転相することで、水溶性エポキシ樹脂が得られる。
【0022】
ここで用いる塩基性化合物としては、アミン類、アルカリ土類金属の水酸化物及び又はアルカリ金属の水酸化物等があげられ、具体的には、アミン類としてトリエチルアミン、トリエタノールアミン、3−プロパノールアミン、ジメチルエタノールアミン、アンモニア水等であり、特に大きな制限はない。また、アルカリ土類金属の水酸化物及びアルカリ金属の水酸化物としては、水酸化カルシウム、水酸化ナトリウム等があげられる。
【0023】
【実施例】
以下、実施例及び比較例によって本発明をさらに具体的に説明するが、本発明はこれらにより限定されるものではない。以下において、%は全て重量基準である。
【0024】
[実施例1]
ガラス製四つ口フラスコ(撹拌機、温度計、外部加熱機、冷却管、凝縮器及び窒素導入管付き)にジグライム60.0g、ビスフェノールA型エポキシ樹脂(エポミックR302:三井化学(株)製)100g(エポキシ基モル数(A)=0.16モル)を加え、70℃まで昇温しながら攪拌し、エポキシ樹脂が完全に溶解したことを確認した。ここに、モノエタノールアミン7.0g(活性水素モル数(B)=0.23モル)(エポキシ基のモル数(A)と多官能アミン中の活性水素のモル数(B)との比(A)/(B)=0.70)を加え、100℃で6時間反応せしめた。続いて、70℃まで冷却し、ここに、無水コハク酸19.7gを添加し、再び95℃まで昇温し1時間反応し、多官能アミン変性エポキシ樹脂の側鎖にカルボキシル基を有するエポキシ樹脂のジグライム溶液を得た。この樹脂液を60℃まで冷却し、29%アンモニア水11.5gを添加し、60℃に保ちながら30分混合攪拌した。ここにイオン交換水175.6gを30分かけて滴下し、水溶性エポキシ樹脂組成物(不揮発分32.8%、ガードナー粘度Z3 +3/4 at25℃、数平均分子量5550、重量平均分子量11870(ポリスチレン換算/ゲルパーミエーションクロマトグラフィー)、酸価29.5KOHmg/g)を得た。
【0025】
[実施例2]
ガラス製四つ口フラスコ(撹拌機、温度計、外部加熱機、冷却管、凝縮器及び窒素導入管付き)にジグライム59.6g、ビスフェノールA型エポキシ樹脂(エポミックR302:三井化学(株)製)70.0gとポリサルファイドの両末端ジグリシジルエーテル修飾物(フレップ80:東レチオコール(株)製)30.0g(エポキシ基モル数合計(A)=0.18モル)を加え、70℃まで昇温しながら攪拌し、エポキシ樹脂が完全に溶解したことを確認した。ここに、モノエタノールアミン7.4g(活性水素モル数(B)=0.24モル)(エポキシ基のモル数(A)と多官能アミン中の活性水素のモル数(B)との比(A)/(B)=0.75)を加え、100℃で6時間反応せしめた。続いて、70℃まで冷却し、ここに、無水コハク酸19.1gを添加し、再び95℃まで昇温し1時間反応し、多官能アミン変性エポキシ樹脂の側鎖にカルボキシル基を有するエポキシ樹脂のジグライム溶液を得た。この樹脂液を60℃まで冷却し、トリエチルアミン19.3gを添加し60℃に保ちながら30分混合攪拌した。ここにイオン交換水162.3gを30分かけて滴下し、水溶性エポキシ樹脂組成物(不揮発分36.3%、ガードナー粘度J+1/4 at25℃、数平均分子量2700、重量平均分子量14400、酸価33.1KOHmg/g)を得た。
【0026】
[実施例3]
ガラス製四つ口フラスコ(撹拌機、温度計、外部加熱機、冷却管、凝縮器及び窒素導入管付き)にジグライム17.9g、ポリサルファイドの両末端ジグリシジルエーテル修飾物(フレップ80:東レチオコール(株)製)30.0g(エポキシ基モル数合計(A1 )=0.069モル)を加え、70℃まで昇温しながら攪拌し、ポリサルファイドの両末端ジグリシジルエーテル修飾物が完全に溶解したことを確認した。ここに、モノエタノールアミン4.2g(活性水素モル数(B1 )=0.138モル)を加え、100℃で6時間反応せしめた。これに、ジグライム41.9gとビスフェノールA型エポキシ樹脂(エポミックR302:三井化学(株)製)70.0g(エポキシ基モル数合計(A2 )=0.113モル)を加え、70℃まで昇温しながら攪拌し、エポキシ樹脂が完全に溶解したことを確認した。さらに、100℃に昇温し、4時間目と5時間目で粘度を確認し、粘度上昇が無いことを確認した。ここに、さらに、モノエタノールアミン3.2g(活性水素モル数(B2 )=0.105モル)(エポキシ基のモル数(A1 +A2 )と多官能アミン中の活性水素のモル数(B1 +B2 )との比(A1 +A2 )/(B1 +B2 )=0.75)を加え、100℃で6時間反応せしめた。続いて、70℃まで冷却し、ここに、無水コハク酸19.1gを添加し、再び95℃まで昇温し1時間反応し、多官能アミン変性エポキシ樹脂の側鎖にカルボキシル基を有するエポキシ樹脂のジグライム溶液を得た。この樹脂液を60℃まで冷却し、トリエチルアミン19.3gを添加し60℃に保ちながら30分混合攪拌した。ここにイオン交換水162.3gを30分かけて滴下し、水溶性エポキシ樹脂組成物(不揮発分36.2%、ガードナー粘度I+1/2 at25℃、数平均分子量3000、重量平均分子量15300、酸価32.9KOHmg/g)を得た。
【0027】
[実施例4〜8]
表1中の実験番号(4)〜(8)に示す各エポキシ樹脂及び多官能アミン類、非プロトン系水溶性溶剤、中和用塩基性物質、転相用イオン交換水の種類及び量を変更した以外は、実施例1と同様に操作し、水溶性エポキシ樹脂組成物を得た。
【0028】
【表1】
Figure 0003874545
【0029】
[比較例1]
ガラス製四つ口フラスコ(撹拌機、温度計、外部加熱機、冷却管、凝縮器及び窒素導入管付き)にジグライム60.0g、ビスフェノールA型エポキシ樹脂(エポミックR302:三井化学(株)製)100g(エポキシ基モル数(A)=0.16モル)を加え、70℃まで昇温しながら攪拌し、エポキシ樹脂が完全に溶解したことを確認した。ここに、モノエタノールアミン4.0g(活性水素モル数(B)=0.13モル)(エポキシ基のモル数(A)と多官能アミン中の活性水素のモル数(B)との比(A)/(B)=1.23)を加え、100℃で6時間反応せしめた。続いて、70℃まで冷却し、ここに、無水コハク酸19.7gを添加し、再び95℃まで昇温した。30分後にゲル化が生じた。
【0030】
[比較例2]
ガラス製四つ口フラスコ(撹拌機、温度計、外部加熱機、冷却管、凝縮器及び窒素導入管付き)にトルエン60.0g、ビスフェノールA型エポキシ樹脂(エポミックR302:三井化学(株)製)100g(エポキシ基モル数(A)=0.16モル)を加え、70℃まで昇温しながら攪拌し、エポキシ樹脂が完全に溶解したことを確認した。ここに、モノエタノールアミン7.0g(活性水素モル数(B)=0.23モル)(エポキシ基のモル数(A)と多官能アミン中の活性水素のモル数(B)との比(A)/(B)=0.70)を加え、100℃で6時間反応せしめた。この際、10gサンプリングしたものは常温にて白濁し、溶剤のトルエンが分離した。続いて反応容器を70℃まで冷却し、ここに、無水コハク酸19.7gを添加し、再び95℃まで昇温した。反応開始後30分で反応器中の樹脂液の粘度が急上昇し、さらにこの5分後にはゲル化するに至った。
【0031】
【表2】
Figure 0003874545
【0032】
【表3】
Figure 0003874545
【0033】
ここで実施例及び比較例に関して説明すると、実施例で得られた1〜8の製造方法からは、容易に水溶性エポキシ樹脂組成物が得られることがわかる。
実施例2はビスフェノールA型エポキシ樹脂とポリサルファイドの共重合体からなる水溶性エポキシ樹脂が得られた。ポリサルファイド骨格はガラス転位点(Tg)が低く、剛直なエポキシ樹脂に可塑性を容易に付与することができ、ビスフェノールA型エポキシ樹脂とポリサルファイドの原料比を変化させることによって、連続的にTgを変化させることができる。
【0034】
実施例3は実施例2の原料組成は全く同一であるが、1次反応にて多官能アミンを用いてポリサルファイドの両末端ジグリシジルエーテル修飾物の末端を多官能アミン由来の2級アミンが生成し、さらにこの残存する活性プロトンを用いて、引き続き、ビスフェノールA型エポキシ樹脂と反応することでポリサルファイド骨格とビスフェノールA型エポキシ樹脂の交互共重合体が得られる。これは、実施例2の場合、ポリサルファイド骨格とビスフェノールA型エポキシ樹脂のランダム共重合体が得られる場合と異なる。
【0035】
次に、実施例4〜6は、原料エポキシ樹脂の種類及び量は同じであるが、重付加反応に用いる多官能アミンの量を変更することで水溶性エポキシ樹脂の分子量をコントロールできたことがわかる。
【0036】
一方、実施例7と実施例8は用いた原料エポキシ樹脂の分子量は異なるが得られた水溶性エポキシ樹脂は、Tg(実施例7:45℃、実施例8:88℃)が異なる水溶性エポキシ樹脂が得られた。
【0037】
【発明の効果】
以上の実施例の結果からも明らかなように、本発明の水溶性エポキシ樹脂組成物及び製法の特徴としては以下の点を挙げることができる。
1)主鎖の構造が、エポキシ樹脂骨格由来の骨格のみからなる水溶性エポキシ樹脂を得ることができる。
2)原料エポキシ樹脂とアミン変性時に用いるアミン類を変化させることにより得られる水溶性エポキシ樹脂の分子量、水酸基価、酸価、Tg等の性質を自由に設計できる。
3)アミン変性時に逐次反応併用すると、ブロック構造を有する水溶性エポキシ樹脂が得ることができる。
4)他の共重合組成の樹脂骨格によらない、簡便なエポキシ樹脂を水性化することが可能である。
【0038】
以上のように、本発明ではエポキシ樹脂の骨格をそのまま残し、自由な設計度を有する水溶性エポキシ樹脂組成物を得ることが可能である。また、この方法で得られた水溶性エポキシ樹脂は塗料、ラミネート用粘着剤、鋼鈑用被膜、フィルムコーティング剤等に用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-soluble epoxy resin composition of an epoxy resin, which is an industrially useful polymer material, and a method for producing the same.
[0002]
[Prior art]
Conventionally, epoxy resins have been used in various industrial fields as useful polymer materials such as solvent resistance, water resistance, rust resistance, and wear resistance. Particularly in the paint field, many paints utilizing these properties are commercially available.
[0003]
By the way, most of the epoxy resins used in these paint fields are solvent-soluble epoxy resins having an organic solvent as a main solvent.
However, in recent years, water-based paints have attracted attention in order to cope with environmental problems, and various resin systems have been tried and commercialized. An aqueous method for making an epoxy resin has been invented. For example, an epoxy resin and an acrylic monomer having a carboxyl group obtained by graft polymerization using a hydrogen abstraction reaction using a peroxide radical initiator, or as exemplified in JP-A-10-183055 And those obtained after reacting various epoxy resins with polyoxyalkylamines.
[0004]
By the way, as for the method of making these epoxy resins water-based, since structures such as acrylic resin and polyoxyamine are introduced into the resin structure in addition to the epoxy resin skeleton, a continuous epoxy resin skeleton is obtained. It is difficult to maintain a balance with making it water-based.
[0005]
For example, in the case of a water-soluble epoxy resin obtained by introducing an acrylic resin having a carboxyl group into an epoxy resin, when increasing the molecular weight of the epoxy resin, the acid value and the compatibilization parameter (Sp value) of the acrylic resin that can be copolymerized ) And the stability of the resin itself depends on the grafting ratio of the acrylic resin to the epoxy resin, and the design is complicated. Moreover, since the obtained resin has many branched structures, it has a high viscosity for the molecular weight and is difficult to use practically.
[0006]
On the other hand, when polyoxyamine is copolymerized with an epoxy resin, the resulting water-soluble epoxy resin is a linear polymer, but the content of oxyethylene chains necessary to make it water-based increases, and the epoxy resin A unique rigid resin skeleton cannot be obtained.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel water-soluble epoxy resin composition having a free design degree, leaving the skeleton of the epoxy resin as it is, and a method for producing the same.
[0008]
[Means for Solving the Problems]
The present inventors have made such a desire, that is, leaving the epoxy resin skeleton as it is, having a free design degree, and having made it water-based, as a result of intensive studies, a single molecular chain in an aprotic water-soluble organic solvent. A polyaddition reaction is carried out using an epoxy resin having two or more epoxy groups and a polyfunctional amine, a carboxyl group is introduced into the resulting modified epoxy resin, and further neutralized to make the epoxy resin freely aqueous. The present inventors have found a knowledge that can be realized and have completed the present invention.
[0009]
That is, the present invention provides [1] a modified product of a polyfunctional amine-modified epoxy resin represented by the following general formula (1) (chemical formula 3)
Figure 0003874545
(In the formula (1), X 1 represents an epoxy group and a polyfunctional amine, or an epoxy group and the following general formula (2) (Formula 4)
[Formula 4]
Figure 0003874545
(In the formula (2), R 2 represents a structure derived from a polyfunctional alkanolamine, and X 3 represents a structure derived from a saturated carboxylic anhydride .) Addition and addition of a polyfunctional alkanolamine carboxylic anhydride Among those reacted, one having a structure having one or more active protons is shown. X 2 represents an epoxy group and a polyfunctional amine, or a structure obtained by addition reaction with a polyfunctional alkanolamine carboxylic anhydride adduct represented by the above general formula (2) (Chemical Formula 2), and X 3 represents a saturated carboxylic anhydride. The thing of an origin structure is shown. R 1 represents an epoxy resin-derived structure having two or more epoxy groups in one molecular chain, and n and m represent non-zero integers. And [2] a water-soluble epoxy resin composition comprising the polyfunctional amine-modified epoxy resin-modified product described in [1] as an essential component, and [3] in a water-soluble organic solvent. Characterized in that polyaddition reaction is performed using an epoxy resin having two or more epoxy groups in one molecular chain and a polyfunctional amine, a carboxyl group is introduced into the resulting modified epoxy resin, and then neutralized. [4] The method for producing a water-soluble epoxy resin composition according to the above [2], and [4] polyaddition reaction using an epoxy resin having two or more epoxy groups in one molecular chain and a polyfunctional amine. In this case, the ratio of the number of moles of epoxy groups (A) to the number of moles of active hydrogen (B) in the polyfunctional amine (ie, A / B) is set in a range exceeding 0 and less than 1. , Described in [3] above A method for producing a water-soluble epoxy resin composition, and [5] a method for producing a water-soluble epoxy resin composition according to the above [3] or [4], wherein the water-soluble organic solvent is an aprotic organic solvent. is there.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
In this resin composition and the method for producing the same, the epoxy resin used may be one having two or more epoxy groups in one molecular chain, such as bisphenol A-diglycidyl ether, bisphenol A-diglycidyl ether. Ε-caprolactone ring-opening adduct, bisphenol F-diglycidyl ether, bisphenol S-diglycidyl ether, novolak glycidyl ether, hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, tetraglycidylaminodiphenylmethane, 3,4-epoxy- 6-methylcyclohexyl methyl carboxylate, triglycidyl isocyanurate, 3,4-epoxycyclohexyl methyl carboxylate, polypropylene diglycidyl ether, polybutadiene Are both ends diglycidyl ether-modified products of polysulfide, preferably bisphenol A- diglycidyl ether, bisphenol F- diglycidyl ether.
[0011]
If the manufacturing method of the water-soluble epoxy resin composition of this invention is illustrated, common resin, such as glass four neck flasks (with a stirrer, a thermometer, an external heater, a cooling pipe, a condenser, and a nitrogen introduction pipe) will be shown. First, an epoxy resin is dissolved in an aprotic water-soluble organic solvent using a production reaction vessel.
[0012]
At this time, if a proton-based water-soluble organic solvent such as alcohol or cellosolve is used, when the carboxyl group is introduced, the used carboxylic anhydride reacts with the proton-based organic solvent, and the epoxy resin has a carboxyl group. Is not introduced, and a low molecular weight carboxyl group compound is generated, which is not preferable because it is insufficient in water-based properties and remarkably deteriorates in properties when used in paints.
[0013]
In addition, a method in which an epoxy resin is modified with a polyfunctional amine using an aprotic aromatic solvent, a carboxyl group is introduced into the epoxy resin with carboxylic anhydride, and then replaced with a water-soluble solvent. The resin has insufficient dissolving power, and it is difficult to complete the reaction between the epoxy group and the active proton of the polyfunctional amine. At this time, if the epoxy group remains, the reaction between the remaining epoxy group in the modified epoxy resin and the ring-opened carboxyl group occurs at the time of introduction of the carboxyl group, resulting in gelation, which is not suitable for practical use. In addition, the polymer cannot be polymerized during the polyaddition reaction of the epoxy resin with the polyfunctional amine.
[0014]
Examples of the aprotic organic solvent used in the present invention include cyclic ethers such as dioxane, dialkyl ethers of oxyethylene chains such as glyme and diglyme, and acetone. These may be used alone or in combination of two or more. Can be used.
[0015]
In addition, there is no problem in adding a proton-based water-soluble organic solvent after introducing a carboxyl group. Examples of the solvent that can be added in this case include cellosolve solvents, proton-based water-soluble solvents such as alcohol solvents such as isopropyl alcohol and methanol.
[0016]
Next, in the epoxy resin dissolved in the aprotic organic solvent, the ratio of the number of moles of epoxy groups (A) to the number of moles of active hydrogen in the polyfunctional amine (B) [(A) / (B) ] Is added in a range larger than 0 and smaller than 1, and reacted at 100 to 110 ° C. for 6 hours or more. Then, the modified epoxy resin to which the epoxy group was completely added with the polyfunctional amine is obtained.
[0017]
At this time, when the epoxy resin is reacted in an amount such that the ratio (A) / (B) of the number of moles of epoxy group (A) and the number of moles of active hydrogen in the polyfunctional amine (B) is 1, The resulting resin will have an infinite molecular weight. When the ratio (A) / (B) exceeds 1, the epoxy group remains in the reaction between the epoxy group and the active proton of the polyfunctional amine, and the carboxyl group is This is not preferable because the reaction between the epoxy group and the carboxyl group occurs to cause gelation.
[0018]
The polyfunctional amine used in the production method of the present invention is an amine having two or more active hydrogens in one molecule. Specifically, isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine, diethylenetriamine, ethylenediamine, butylamine, propylamine, isophoronediamine, tetrahydrofurfurylamine, xylenediamine, diaminediphenylmethane, diaminosulfone, octylamine, metaphenylene Examples include diamine, amylamine, hexylamine, nonylamine, decylamine, triethylenetetramine, tetramethylenepentamine, dimethylaminopropylamine, N-aminoethylpiperazine, metacenediamine, and diaminodiphenylsulfone. Among these, in the present invention, it is more preferable to use alkanolamines that can react with carboxylic anhydride.
[0019]
Next, when carboxylic anhydride is added to the aprotic water-soluble organic solvent solution of the polyfunctional amine-modified epoxy resin obtained as described above and reacted at 90 to 95 ° C., the side chain of the polyfunctional amine-modified epoxy resin is obtained. An epoxy resin having a carboxyl group is obtained.
[0020]
The carboxylic anhydride used here may be an anhydride of a compound having two or more carboxyl groups in one molecule. For example, succinic anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, phthalic anhydride Examples thereof include acid and trimellitic anhydride.
[0021]
Next, the resulting polyfunctional amine-modified epoxy resin is neutralized with a basic compound in a resin solution in which an epoxy resin having a carboxyl group in the side chain is dissolved in an aprotic solvent, at or above the equivalent of the carboxyl group. . Furthermore, a water-soluble epoxy resin is obtained by phase inversion with ion exchange water or the like.
[0022]
Examples of the basic compound used here include amines, alkaline earth metal hydroxides and / or alkali metal hydroxides. Specific examples of the amines include triethylamine, triethanolamine, and 3-propanol. There are no particular restrictions, such as amine, dimethylethanolamine and aqueous ammonia. Examples of the alkaline earth metal hydroxide and alkali metal hydroxide include calcium hydroxide and sodium hydroxide.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these. In the following, all percentages are by weight.
[0024]
[Example 1]
A glass four-necked flask (with a stirrer, thermometer, external heater, cooling tube, condenser and nitrogen inlet tube) diglyme 60.0 g, bisphenol A type epoxy resin (Epomic R302: manufactured by Mitsui Chemicals, Inc.) 100 g (number of moles of epoxy group (A) = 0.16 mole) was added and stirred while heating up to 70 ° C., and it was confirmed that the epoxy resin was completely dissolved. Here, 7.0 g of monoethanolamine (number of moles of active hydrogen (B) = 0.23 mole) (ratio of moles of epoxy group (A) and moles of active hydrogen in polyfunctional amine (B) ( A) / (B) = 0.70) was added, and the mixture was reacted at 100 ° C. for 6 hours. Subsequently, the mixture was cooled to 70 ° C., 19.7 g of succinic anhydride was added thereto, the temperature was raised again to 95 ° C. and reacted for 1 hour, and an epoxy resin having a carboxyl group in the side chain of the polyfunctional amine-modified epoxy resin. A diglyme solution was obtained. The resin solution was cooled to 60 ° C., 11.5 g of 29% ammonia water was added, and the mixture was stirred for 30 minutes while maintaining the temperature at 60 ° C. 175.6 g of ion-exchanged water was added dropwise over 30 minutes, and a water-soluble epoxy resin composition (non-volatile content: 32.8%, Gardner viscosity Z 3 +3/4 at 25 ° C., number average molecular weight 5550, weight average molecular weight 11870 (Polystyrene conversion / gel permeation chromatography), acid value 29.5 KOH mg / g) were obtained.
[0025]
[Example 2]
A glass four-necked flask (with a stirrer, thermometer, external heater, cooling tube, condenser and nitrogen inlet tube) diglyme 59.6 g, bisphenol A type epoxy resin (Epomic R302: manufactured by Mitsui Chemicals, Inc.) 70.0 g and polysulfide modified at both ends with diglycidyl ether (Flep 80: manufactured by Toraythiol Co., Ltd.) 30.0 g (total number of moles of epoxy groups (A) = 0.18 mol) were added, and the temperature was raised to 70 ° C. While stirring, it was confirmed that the epoxy resin was completely dissolved. Here, 7.4 g of monoethanolamine (active hydrogen mole number (B) = 0.24 mole) (ratio of mole number of epoxy group (A) and mole number of active hydrogen in polyfunctional amine (B) ( A) / (B) = 0.75) was added, and the mixture was reacted at 100 ° C. for 6 hours. Subsequently, the mixture was cooled to 70 ° C., and 19.1 g of succinic anhydride was added thereto, the temperature was raised again to 95 ° C. and reacted for 1 hour, and an epoxy resin having a carboxyl group in the side chain of the polyfunctional amine-modified epoxy resin. A diglyme solution was obtained. The resin solution was cooled to 60 ° C., 19.3 g of triethylamine was added, and the mixture was stirred for 30 minutes while maintaining the temperature at 60 ° C. Here was added dropwise over 30 minutes of deionized water 162.3G, water-soluble epoxy resin composition (nonvolatile content 36.3%, Gardner viscosity J +1/4 AT25 ° C., a number average molecular weight 2700, a weight average molecular weight 14400, An acid value of 33.1 KOH mg / g) was obtained.
[0026]
[Example 3]
A glass four-necked flask (with a stirrer, thermometer, external heater, condenser, condenser and nitrogen inlet tube) diglyme 17.9g, polysulfide diglycidyl ether modified product (Flep 80: Toray Rethiocol ( Co., Ltd.) 30.0 g (total number of moles of epoxy groups (A 1 ) = 0.069 mol) was added and stirred while raising the temperature to 70 ° C. to completely dissolve the disulfidyl ether modified products at both ends of polysulfide. It was confirmed. To this, 4.2 g of monoethanolamine (active hydrogen mole number (B 1 ) = 0.138 mol) was added and reacted at 100 ° C. for 6 hours. To this was added 41.9 g of diglyme and 70.0 g of bisphenol A type epoxy resin (Epomic R302: manufactured by Mitsui Chemicals, Inc.) (total number of moles of epoxy groups (A 2 ) = 0.113 mol), and the temperature was raised to 70 ° C. Stirring while warming, it was confirmed that the epoxy resin was completely dissolved. Furthermore, it heated up to 100 degreeC, the viscosity was confirmed in the 4th hour and the 5th hour, and it confirmed that there was no viscosity raise. Further, 3.2 g of monoethanolamine (mole number of active hydrogen (B 2 ) = 0.105 mol) (mole number of epoxy group (A 1 + A 2 ) and number of moles of active hydrogen in polyfunctional amine ( (B 1 + B 2 ) (A 1 + A 2 ) / (B 1 + B 2 ) = 0.75) was added, and the mixture was reacted at 100 ° C. for 6 hours. Subsequently, the mixture was cooled to 70 ° C., and 19.1 g of succinic anhydride was added thereto, the temperature was raised again to 95 ° C. and reacted for 1 hour, and an epoxy resin having a carboxyl group in the side chain of the polyfunctional amine-modified epoxy resin. A diglyme solution was obtained. The resin solution was cooled to 60 ° C., 19.3 g of triethylamine was added, and the mixture was stirred for 30 minutes while maintaining the temperature at 60 ° C. Here, 162.3 g of ion-exchanged water was dropped over 30 minutes, and a water-soluble epoxy resin composition (non-volatile content: 36.2%, Gardner viscosity I +1/2 at 25 ° C., number average molecular weight 3000, weight average molecular weight 15300, An acid value of 32.9 KOH mg / g) was obtained.
[0027]
[Examples 4 to 8]
Changed the types and amounts of epoxy resins and polyfunctional amines, aprotic water-soluble solvents, basic substances for neutralization, and ion-exchanged water for phase inversion shown in Experiment Nos. (4) to (8) in Table 1. A water-soluble epoxy resin composition was obtained in the same manner as in Example 1 except that.
[0028]
[Table 1]
Figure 0003874545
[0029]
[Comparative Example 1]
A glass four-necked flask (with a stirrer, thermometer, external heater, cooling tube, condenser and nitrogen inlet tube) diglyme 60.0 g, bisphenol A type epoxy resin (Epomic R302: manufactured by Mitsui Chemicals, Inc.) 100 g (number of moles of epoxy group (A) = 0.16 mole) was added and stirred while heating up to 70 ° C., and it was confirmed that the epoxy resin was completely dissolved. Here, 4.0 g of monoethanolamine (mole number of active hydrogen (B) = 0.13 mol) (ratio of moles of epoxy group (A) and moles of active hydrogen in polyfunctional amine (B) ( A) / (B) = 1.23) was added, and the mixture was reacted at 100 ° C. for 6 hours. Then, it cooled to 70 degreeC, 19.7g of succinic anhydride was added here, and it heated up to 95 degreeC again. Gelation occurred after 30 minutes.
[0030]
[Comparative Example 2]
Glass four-necked flask (with stirrer, thermometer, external heater, condenser, condenser and nitrogen inlet tube) 60.0g of toluene, bisphenol A type epoxy resin (Epomic R302: Mitsui Chemicals) 100 g (number of moles of epoxy group (A) = 0.16 mole) was added and stirred while heating up to 70 ° C., and it was confirmed that the epoxy resin was completely dissolved. Here, 7.0 g of monoethanolamine (number of moles of active hydrogen (B) = 0.23 mole) (ratio of moles of epoxy group (A) and moles of active hydrogen in polyfunctional amine (B) ( A) / (B) = 0.70) was added, and the mixture was reacted at 100 ° C. for 6 hours. At this time, the sampled 10 g became cloudy at room temperature, and the solvent toluene was separated. Subsequently, the reaction vessel was cooled to 70 ° C., 19.7 g of succinic anhydride was added thereto, and the temperature was raised to 95 ° C. again. 30 minutes after the start of the reaction, the viscosity of the resin liquid in the reactor rapidly increased, and after 5 minutes, gelation occurred.
[0031]
[Table 2]
Figure 0003874545
[0032]
[Table 3]
Figure 0003874545
[0033]
When it demonstrates regarding an Example and a comparative example here, it turns out that a water-soluble epoxy resin composition is easily obtained from the manufacturing method of 1-8 obtained in the Example.
In Example 2, a water-soluble epoxy resin comprising a copolymer of bisphenol A type epoxy resin and polysulfide was obtained. The polysulfide skeleton has a low glass transition point (Tg) and can easily impart plasticity to a rigid epoxy resin. By changing the raw material ratio of the bisphenol A type epoxy resin and polysulfide, the Tg is continuously changed. be able to.
[0034]
In Example 3, the raw material composition of Example 2 is exactly the same, but a secondary amine derived from a polyfunctional amine is formed at the end of the polysulfide modified diglycidyl ether at both ends using a polyfunctional amine in the primary reaction. Further, by using this remaining active proton and subsequently reacting with the bisphenol A type epoxy resin, an alternating copolymer of polysulfide skeleton and bisphenol A type epoxy resin can be obtained. In the case of Example 2, this is different from the case where a random copolymer of a polysulfide skeleton and a bisphenol A type epoxy resin is obtained.
[0035]
Next, in Examples 4 to 6, the type and amount of the raw material epoxy resin are the same, but the molecular weight of the water-soluble epoxy resin could be controlled by changing the amount of the polyfunctional amine used for the polyaddition reaction. Recognize.
[0036]
On the other hand, Example 7 and Example 8 differed in the molecular weight of the raw material epoxy resin used, but the obtained water-soluble epoxy resins had different Tg (Example 7: 45 ° C., Example 8: 88 ° C.). A resin was obtained.
[0037]
【The invention's effect】
As is clear from the results of the above examples, the following points can be given as features of the water-soluble epoxy resin composition and the production method of the present invention.
1) A water-soluble epoxy resin having a main chain structure composed only of a skeleton derived from an epoxy resin skeleton can be obtained.
2) The properties such as molecular weight, hydroxyl value, acid value, Tg, etc. of the water-soluble epoxy resin obtained by changing the raw material epoxy resin and the amines used at the time of amine modification can be freely designed.
3) When a sequential reaction is used in combination with amine modification, a water-soluble epoxy resin having a block structure can be obtained.
4) A simple epoxy resin can be made water-based without depending on the resin skeleton of another copolymer composition.
[0038]
As described above, in the present invention, it is possible to leave a skeleton of an epoxy resin as it is and obtain a water-soluble epoxy resin composition having a free design degree. The water-soluble epoxy resin obtained by this method can be used for paints, laminating adhesives, steel sheet coatings, film coating agents, and the like.

Claims (4)

水溶性有機溶剤中で、一分子鎖中に2個以上のエポキシ基を有するエポキシ樹脂と多官能アミンを用いて重付加反応を行い、得られた変性エポキシ樹脂にカルボキシル基を導入し、次いで塩基性化合物で中和して得られた、下記一般式(1)(化1)で表せられる多官能アミン変性エポキシ樹脂の変性物。
Figure 0003874545
(式(1) 中、X1 はエポキシ基と多官能アミン、又はエポキシ基と下記一般式(2)(化2)
Figure 0003874545
(式(2) 中、R2 は多官能アルカノールアミン由来構造のものを示し、X3 は飽和無水カルボン酸由来構造のものを示す。)で表せられる多官能アルカノールアミン無水カルボン酸付加物と付加反応したもののうち、活性プロトンを1個以上有する構造のものを示す。X2 はエポキシ基と多官能アミン、又は上記一般式(2)(化2)で表せられる多官能アルカノールアミン無水カルボン酸付加物と付加反応した構造のものを示し、X3 は飽和無水カルボン酸由来構造のものを示す。また、R1 は1分子鎖中2個以上のエポキシ基を有するエポキシ樹脂由来構造のものを示し、n及びmはゼロではない整数を示す。)
In a water-soluble organic solvent, a polyaddition reaction is performed using an epoxy resin having two or more epoxy groups in one molecular chain and a polyfunctional amine, a carboxyl group is introduced into the resulting modified epoxy resin, and then a base A modified product of a polyfunctional amine-modified epoxy resin represented by the following general formula (1) (chemical formula 1) obtained by neutralization with a functional compound.
Figure 0003874545
(In the formula (1), X 1 represents an epoxy group and a polyfunctional amine, or an epoxy group and the following general formula (2)
Figure 0003874545
(In the formula (2), R 2 represents a structure derived from a polyfunctional alkanolamine, and X 3 represents a structure derived from a saturated carboxylic anhydride.) Addition and addition of a polyfunctional alkanolamine carboxylic anhydride Among those reacted, one having a structure having one or more active protons is shown. X 2 represents an epoxy group and a polyfunctional amine, or a structure obtained by addition reaction with a polyfunctional alkanolamine carboxylic anhydride adduct represented by the above general formula (2) (Chemical Formula 2), and X 3 represents a saturated carboxylic anhydride. The thing of an origin structure is shown. R 1 represents an epoxy resin-derived structure having two or more epoxy groups in one molecular chain, and n and m represent non-zero integers. )
請求項1記載の多官能アミン変性エポキシ樹脂変性物を必須成分として含んでなる水溶性エポキシ樹脂組成物。 A water-soluble epoxy resin composition comprising the modified polyfunctional amine-modified epoxy resin according to claim 1 as an essential component. 一分子鎖中に2個以上のエポキシ基を有するエポキシ樹脂と多官能アミンを用いて重付加反応させる際に、多官能アミン中の活性水素のモル数(B)に対するエポキシ基のモル数(A)の比(すなわちA/B)を、0を越えかつ1未満の範囲として行うことを特徴とする、請求項2に記載の水溶性エポキシ樹脂組成物の製造方法。When polyaddition reaction is performed using an epoxy resin having two or more epoxy groups in one molecular chain and a polyfunctional amine, the number of moles of epoxy groups relative to the number of moles of active hydrogen (B) in the polyfunctional amine (A ) Ratio (that is, A / B) is performed in a range of more than 0 and less than 1, the method for producing a water-soluble epoxy resin composition according to claim 2 . 水溶性有機溶剤が非プロトン系有機溶剤である請求項に記載の水溶性エポキシ樹脂組成物の製造方法。The method for producing a water-soluble epoxy resin composition according to claim 3 , wherein the water-soluble organic solvent is an aprotic organic solvent.
JP22624698A 1998-08-10 1998-08-10 Water-soluble epoxy resin composition and method for producing the same Expired - Lifetime JP3874545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22624698A JP3874545B2 (en) 1998-08-10 1998-08-10 Water-soluble epoxy resin composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22624698A JP3874545B2 (en) 1998-08-10 1998-08-10 Water-soluble epoxy resin composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000053745A JP2000053745A (en) 2000-02-22
JP3874545B2 true JP3874545B2 (en) 2007-01-31

Family

ID=16842193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22624698A Expired - Lifetime JP3874545B2 (en) 1998-08-10 1998-08-10 Water-soluble epoxy resin composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP3874545B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984587B2 (en) * 2006-03-20 2012-07-25 Dic株式会社 Aqueous epoxy resin composition, cured product thereof, novel bifunctional hydroxy compound, novel bifunctional epoxy resin, and production method thereof
CN102504199B (en) * 2011-09-23 2013-03-06 上海宜瓷龙新材料科技有限公司 Preparation method of room-temperature self-crosslinking water-based epoxy resin
JP7429560B2 (en) * 2019-02-28 2024-02-08 中国塗料株式会社 Anticorrosive paint composition
KR102273807B1 (en) * 2019-03-14 2021-07-06 주식회사 케이씨씨 Amine-amide resin composition and method for preparing thereof

Also Published As

Publication number Publication date
JP2000053745A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US10557015B2 (en) Epoxy resin-epoxy curing systems with a latent thickening tendency
JPS6399233A (en) Rod-shaped dendorimer
JPS6320251B2 (en)
JP5943997B2 (en) Surface active comb copolymer
NO780093L (en) AMINOLYSE PRODUCT.
EP2917290B1 (en) Aqueous dispersions of a multifunctional primary amine, process for its preparation, and use therof
BR112013014596B1 (en) EPOXY COMPOSITION, THERMOFIXED COATING, AND FIBER WINDING
WO1992012192A2 (en) Thermosetting reactive resin mixture, moulded article and coating made therefrom
WO2009080613A1 (en) Graft polymers having oligoalkylene imine side chains, method for the production thereof, and use thereof
TW513456B (en) Aqueous dispersions of epoxy resins
JPH042635B2 (en)
JP3874545B2 (en) Water-soluble epoxy resin composition and method for producing the same
JP2004089787A (en) Dispersant
JPS6162569A (en) Coating composition containing amidation reactant comprisingpolyamine and polycarboxyl group-containing substance
JP4327251B2 (en) Epoxy curing reagent
CN105308001A (en) Liquid dispersant composition for gypsum
US5539026A (en) Composition for improved cathodic deposition
KR20230094141A (en) Gemini type epoxy resin emulsifier and manufacturing method thereof
GB2101605A (en) Lactone-modified epoxy resin and composition containing such resin
NO329114B1 (en) Aqueous dispersions of epoxy resins, curable epoxy mixture and process for preparing an aqueous dispersion
CN106800657B (en) Copolymer and epoxy resin composite
JP7113028B2 (en) Tetrahydrofurfuryl alcohol-initiated polyetheramine and use thereof
US5300584A (en) Low viscosity diprimary amine reactive modifiers for epoxy resins
JP4267542B2 (en) Resin containing polyolefin chain and use thereof
JPH11158123A (en) Multibranched compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term