JP3872606B2 - Thermoplastic elastomer composition - Google Patents

Thermoplastic elastomer composition Download PDF

Info

Publication number
JP3872606B2
JP3872606B2 JP34923098A JP34923098A JP3872606B2 JP 3872606 B2 JP3872606 B2 JP 3872606B2 JP 34923098 A JP34923098 A JP 34923098A JP 34923098 A JP34923098 A JP 34923098A JP 3872606 B2 JP3872606 B2 JP 3872606B2
Authority
JP
Japan
Prior art keywords
component
rubber
weight
resin
thermoplastic elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34923098A
Other languages
Japanese (ja)
Other versions
JP2000169646A (en
Inventor
敦司 神野
重夫 小林
浩之 土田
宣一 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Kureha Co Ltd
Original Assignee
Kureha Elastomer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Elastomer Co Ltd filed Critical Kureha Elastomer Co Ltd
Priority to JP34923098A priority Critical patent/JP3872606B2/en
Publication of JP2000169646A publication Critical patent/JP2000169646A/en
Application granted granted Critical
Publication of JP3872606B2 publication Critical patent/JP3872606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、機械的強度、耐熱安定性、成形性、気体不透過性、制振性および遮音性に優れ、防音材、制振材およびシール材等の用途に好適なブチルゴム系の熱可塑性エラストマー組成物に関するものである。
【0002】
【従来の技術】
ゴム成分としてブチルゴムを、また樹脂成分として結晶性ポリプロピレンをそれぞれ用いた熱可塑性エラストマーは、ガスバリヤー性および制振性等に優れているが、硬度(JIS−A)が65度以上と高いため、ガスバリヤー性のゴム栓として使用するには不適当であった。この硬度を下げる手段として、オイルを添加したり、ゴム比率を増加したりすることが考えられるが、オイルを大量に添加すると、ガスバリヤー性および強度が低下し、またゴム比率を増して樹脂比率を下げると、流動性が低下して成形が困難になるという問題があった。また、スチレン系の熱可塑性エラストマー、例えばSEBS、SEPS等の配合による低硬度化も試みられたが、物理特性、機能性および成形性の全てを満足させることは困難であった。
【0003】
【発明が解決しようとする課題】
この発明は、ブチルゴム系の熱可塑性エラストマーにおいて、その配合比率の選択により、硬度(JIS−A)を45度ないし85度の広い範囲で容易に設定することを可能にし、しかもブチルゴム系の熱可塑性エラストマーが本来備えている優れた強度や伸度等の物理特性、ガスバリヤー性、制振性および遮音性等の機能特性を更に向上させることを課題にする。
【0004】
【課題を解決するための手段】
この発明の熱可塑性エラストマー組成物は、ゴム成分に部分架橋型ブチルゴムを、樹脂成分にプロピレンとそれ以外のα−オレフィンとの共重合体(以下、「共重合ポリプロピレン」という)またはポリプロピレンとエチレン・プロピレンゴムとの混合物(以下、「軟質ポリプロピレン」という)をそれぞれ用い、第3成分に脂環族飽和炭化水素樹脂を用い、上記のゴム成分40〜89重量%、樹脂成分10〜50重量%および第3成分1〜40重量%を混練してなり、有機過酸化物で部分架橋していることを特徴とする。
【0005】
この発明で用いる部分架橋型ブチルゴムは廃棄・焼却時に有毒ガスが発生しない点で好ましく、また樹脂成分と混練し、有機過酸化物を添加して行う架橋工程において、分子切断に伴う物性低下が低い点で好ましい。
【0006】
樹脂成分として用いられる軟質ポリプロピレン(ポリプロピレンとエチレン・プロピレンゴムとの混合物)および共重合ポリプロピレン(プロピレンとそれ以外のα−オレフィンとの共重合体)は、組成物の硬度が低い点で好ましい。
【0007】
この発明では、上記のゴム成分および樹脂成分以外に、第3成分として脂環族飽和炭化水素樹脂が使用される。この脂環族飽和炭化水素樹脂は、相溶性が良く、物性に優れる点で好ましい。なお、この脂環族飽和炭化水素樹脂は、エチレンやプロピレン等を製造する際に副生する分解油留分中のC4〜C10成分の重合体を水素添加することにより得られ、数平均分子量450〜2000の範囲内に設定される。
【0008】
この発明では、ゴム成分の部分架橋型ブチルゴムおよび樹脂成分の軟質ポリプロピレンまたは共重合ポリプロピレンに対し、第3成分として上記の脂環族飽和炭化水素樹脂が配合され、これによってブチルゴム系の熱可塑性エラストマーとしての硬度が低下し、しかも強度や伸度等の物理特性、ガスバリヤー性、制振性および遮音性等の機能特性が向上する。
【0009】
特に遮音性は、従来の質量則で示される理論的遮音特性よりも優れている。この質量則は、式「TL=18 log(f・M)−44」で示される。ただし、TLは材料の透過損失(dB)、fは入射音周波数(Hz )、Mは材料の面密度(kg/m2 )である。図1は、後記する実施例3(シートの厚みt=0.95mm)の遮音性と質量則(M=0.95kg/m2 )で示される遮音性とを比較したグラフである。
【0010】
そして、この発明のブチルゴム系熱可塑性エラストマーは、脂環族飽和炭化水素樹脂の第3成分を使用し、その配合量の選定により、ガラス転移温度Tg を変化させて制振性を改良することが可能である。ただし、ブチルゴムの配合比率は全量の40〜89重量%に設定され、40重量%未満では組成物のガスバリヤー性が不十分となり、89重量%を超えると組成物の流動性が低下して成形が困難になる。また、軟質ポリプレンまたは共重合ポリプレンの配合比率は全量の10〜50重量%に設定され、10重量%未満では組成物の流動性が低下して成形困難になり、50重量%を超えると組成物の硬度が過大になる。また、第3成分の脂環族飽和炭化水素樹脂の配合比率は1〜40重量%に設定され、1重量%未満では組成物の伸びが不十分になり、かつ室温域での制振性が不足し、40重量%を超えると組成物の低温特性が悪くなり、粘着性が生じて加工性が低下する。
【0011】
この発明で使用する架橋剤は有機過酸化物であり、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、1,1−ジ(t−ブチルパーオキシ)3,5,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジ(パーオキシベンゾイル)ヘキシン−3、ジクミルパーオキシド等が例示される。この中で特に1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼンは、架橋効率が上昇する点で好ましい。この有機過酸化物の配合量は、前記のゴム成分、樹脂成分および第3成分の合計100重量部に対し0.05〜3.0重量部、特に0.1〜1.0重量部が好ましく、0.05重量部未満では架橋密度が低下し、物性が悪くなり、反対に3.0重量部を超えると組成物の流動性が低下し、成形困難になる。
【0012】
この発明の熱可塑性エラストマー組成物は、前記の部分架橋型ブチルゴム、軟質ポリプレンまたは共重合ポリプレン、第3成分(脂環族飽和炭化水素樹脂)および有機過酸化物を前記の特定割合で混練して製造される。混練装置としては、バンバリーミキサー、加圧ニーダーおよび二軸押出機等の公知の混練装置を用いることができる。混練温度は140〜260℃が、混練時間は1〜30分がそれぞれ好ましい。なお、上記の配合材料に、必要に応じて架橋助剤、無機充填剤、酸化防止剤、耐候剤、帯電防止剤、着色剤等の副資材を添加することができる。
【0013】
得られた熱可塑性エラストマー組成物は、通常の熱可塑性樹脂で用いられている押出成形、カレンダー成形および射出成形等の成形方法で任意の形状に成形することができる。そして、成形品の硬度、強伸度、ガスバリヤー性、制振性、遮音性等は、ゴム成分の部分架橋型ブチルゴム、樹脂成分の軟質ポリプレンまたは共重合ポリプレンおよび第3成分の脂環族飽和炭化水素樹脂の種類や配合量の選択により、広い範囲で種々に設定することができる。
【0014】
【発明の実施の形態】
ブチルゴムとして部分架橋型ブチルゴムを、結晶性オレフィン系樹脂として共重合ポリプロピレンまたは軟質ポリプロピレンを、第3成分の石油系炭化水素樹脂として脂環族飽和炭化水素樹脂をそれぞれ用い、この部分架橋型ブチルゴム、共重合ポリプロピレンおよび脂環族飽和炭化水素樹脂をそれぞれ40〜89重量%、10〜50重量%および1〜40重量%の割合で秤量して混練機に投入し、その合計100重量部に対し、有機過酸化物として1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼンを0.1〜1.0重量部添加し、温度140〜260℃で1〜3分間混練する。得られた熱可塑性エラストマー組成物を押出成形、カレンダー成形および射出成形等で任意の形状に成形し、遮音や制振の用途または気体不透過性を利用してシール用に用いる。
【0015】
【実施例】
ゴム成分、樹脂成分、第3成分および有機過酸化物として下記の「1」ないし「5」の材料を用意した。
1.部分架橋型ブチルゴム:ポリサー社製「ポリサーブチルXL−10000 」
2.軟質ポリプロピレン:住友化学社製「エクセレンKS37G−1」
3.共重合ポリプロピレン:三井石油化学社製「ハイポールF−327D」
4.脂環族飽和炭化水素樹脂:荒川化学工業社製「アルコンP−90」
5.1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン:化薬アクゾ社製「パーカドックス14−40」
また、比較例用として下記の材料を用意した。
6.水添SBR:日本合成ゴム社製「ダイナロン1320P」
7.プロセスオイル:出光興産社製「ダイアナプロセスオイルPW−380」
【0016】
上記の「1」ないし「7」の材料を種々の割合で配合し、混練して実施例1〜9および比較例1〜3の熱可塑性エラストマー組成物を製造した。混練機としてはブラベンダー型混練機(東洋精機社製「ラボプラストミルR−500」)を用い、温度を180℃に設定した後、ゴム成分および第3成分を投入して2分間混練し、次いで樹脂成分を投入して3分間混練し、上記のゴム成分と樹脂成分とを均一に混合した後、有機過酸化物を投入して混練し、トルクが極大値を示してから更に2分間混練した。しかるのち、温度180℃のプレス機を用い、上記の混練で得られた組成物に熱プレスを施して厚さ約1mmのシートを作り、各種の物性を測定した。
【0017】
物性測定は下記により行った。
1.硬度:JIS K−6301にしたがって測定した。
2.強度、伸度および100%モジュラス:JIS K−6301にしたがい、3号ダンベルで測定した。
3.ガスバリヤー性(酸素透過度):上記シートを直径5mmの円形に切り抜き、気体透過測定装置(理化精機工業社製「K−315N−03」)を用い、23℃における酸素の気体透過度(ml・mm/24h ・m2・atm )を測定した。
4.反発弾性:上記シートを重ねて所定の高さとし、JIS K−6301にしたがって測定した。
5.振動損失係数(tan δ):スペクトロメータ(横浜システム社製)を用い、周波数110Hz 、温度20℃で測定した。
6.遮音性(音響透過損失):音響室の室内容積をISO規格を満足する50m3以上とし、実施例3につき、周波数を種々に変えて測定した。
【0018】
上記の測定結果を材料の配合比率と共に下記の表1、2に示す。ただし、遮音性(音響透過損失)は図1に示した。なお、表1、2において、PPはポリプロピレンを、脂環族樹脂は脂環族飽和炭化水素樹脂を、MIは組成物のメルトインデックスを、M100 は100%モジュラスをそれぞれ意味する。また、「実施例」は「実」と、「比較例」は「比」とそれぞれ略記した。
【0019】
表1

Figure 0003872606
【0020】
表2
Figure 0003872606
【0021】
上記の表1、2に示すように、実施例1〜9は、硬度が45〜83度と広い範囲で変化し、反発弾性が通常低反発から無反発と呼ばれる範囲の30%以下にあり、特に実施例3〜5は10%以下であって振動吸収性に優れ、かつ酸素透過度が加硫ブチルゴムと同程度で、かつEPDMを主成分とするオレフィン系熱可塑性エラストマーの1/10程度と優れており、またtan δは0.72〜1.09という高い水準を示した。
【0022】
これに対して比較例1は、脂環族飽和炭化水素樹脂を欠くため、tan δが小さく、制振性に劣っていた。また、比較例2は、脂環族飽和炭化水素樹脂の代わりに水素添加SBRを用いたため、酸素透過度が高く、tan δが小さく、制振性に劣っていた。また、比較例3は、脂環族飽和炭化水素樹脂の代わりにプロセスオイルを用いたため、比較例2と同様に酸素透過度が高く、tan δが小さくて制振性に劣っていた。
【0023】
【発明の効果】
上記のとおり、この発明の熱可塑性エラストマーは、配合比率の選択により、硬度(JIS−A)を45度ないし85度の広い範囲で容易に設定することができ、しかも強伸度、ガスバリヤー性、制振性および遮音性等に優れている。そして、樹脂成分をポリプロピレン樹脂とエチレン・プロピレンゴムとの混合物または共重合ポリプロピレン樹脂に限定したものであるから、組成物の柔軟性が一層向上する。また、第3成分を脂環族飽和炭化水素樹脂に限定したものであるから、相溶性が向上し、物性が一層向上する。
【図面の簡単な説明】
【図1】実施例3の遮音性を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
This invention is excellent in mechanical strength, heat stability, moldability, gas impermeability, vibration damping and sound insulation, and is suitable for applications such as soundproofing materials, vibration damping materials and sealing materials, etc. It relates to a composition.
[0002]
[Prior art]
Thermoplastic elastomers using butyl rubber as the rubber component and crystalline polypropylene as the resin component are excellent in gas barrier properties and vibration damping properties, but have a high hardness (JIS-A) of 65 degrees or more. It was unsuitable for use as a gas barrier rubber stopper. As a means to reduce this hardness, it is conceivable to add oil or increase the rubber ratio. However, if a large amount of oil is added, the gas barrier property and strength are lowered, and the rubber ratio is increased to increase the resin ratio. When the value is lowered, there is a problem that fluidity is lowered and molding becomes difficult. In addition, attempts have been made to reduce the hardness by blending styrene-based thermoplastic elastomers such as SEBS and SEPS, but it has been difficult to satisfy all of the physical characteristics, functionality and moldability.
[0003]
[Problems to be solved by the invention]
This invention makes it possible to easily set the hardness (JIS-A) in a wide range of 45 to 85 degrees by selecting the blending ratio in a butyl rubber-based thermoplastic elastomer, and also butyl rubber-based thermoplastic elastomer. It is an object of the present invention to further improve physical properties such as excellent strength and elongation inherent in elastomers, and functional properties such as gas barrier properties, vibration damping properties, and sound insulation properties.
[0004]
[Means for Solving the Problems]
The thermoplastic elastomer composition of the present invention comprises a partially crosslinked butyl rubber as a rubber component and a copolymer of propylene and other α-olefin (hereinafter referred to as “ copolymerized polypropylene ”) or polypropylene and ethylene. Using a mixture with propylene rubber (hereinafter referred to as “ soft polypropylene ”) , using an alicyclic saturated hydrocarbon resin as the third component, 40 to 89% by weight of the rubber component, 10 to 50% by weight of the resin component, and It is characterized by being kneaded with 1 to 40% by weight of the third component and partially crosslinked with an organic peroxide.
[0005]
Preferably in that the toxic gas does not occur at this part partial cross-linked butyl rubber Ru used in the invention is discarded, incinerated, or kneading a resin component, in the crosslinking process carried out by adding an organic peroxide, lowering of physical properties due to molecular breakage Is preferable in terms of low.
[0006]
Soft polypropylene that is used as the resin component (a mixture of polypropylene and ethylene-propylene rubber) and copolymers of polypropylene (copolymer of propylene and other α- olefins) is preferable in that a low hardness of the composition .
[0007]
In the present invention, in addition to the rubber component and the resin component of the alicyclic saturated hydrocarbon resin is used as the third component. This alicyclic saturated hydrocarbon resin is preferable in terms of good compatibility and excellent physical properties. This alicyclic saturated hydrocarbon resin is obtained by hydrogenating a polymer of C 4 to C 10 components in a cracked oil fraction that is by-produced when producing ethylene, propylene, and the like. The molecular weight is set within a range of 450 to 2000.
[0008]
In the present invention, the above-mentioned alicyclic saturated hydrocarbon resin is blended as the third component with respect to the partially crosslinked butyl rubber as the rubber component and the soft polypropylene or copolymer polypropylene as the resin component, whereby a butyl rubber-based thermoplastic elastomer is obtained. Further, the physical properties such as strength and elongation, and functional properties such as gas barrier properties, vibration damping properties, and sound insulation properties are improved.
[0009]
In particular, the sound insulation is superior to the theoretical sound insulation shown by the conventional mass law. This mass law is represented by the formula “TL = 18 log (f · M) −44”. Here, TL is the transmission loss (dB) of the material, f is the incident sound frequency (Hz), and M is the surface density (kg / m 2 ) of the material. FIG. 1 is a graph comparing the sound insulation of Example 3 (sheet thickness t = 0.95 mm) described later and the sound insulation shown by the mass law (M = 0.95 kg / m 2 ).
[0010]
The butyl rubber-based thermoplastic elastomer of the invention, that uses the alicyclic saturated hydrocarbon tree third component of fat, by the selection of the amount thereof, to improve the vibration damping property by changing the glass transition temperature Tg Is possible. However, the blending ratio of butyl rubber is set to 40 to 89% by weight of the total amount, and if it is less than 40% by weight, the gas barrier property of the composition becomes insufficient, and if it exceeds 89% by weight, the fluidity of the composition is lowered and molded. Becomes difficult. In addition, the blending ratio of the soft or copolymerized polyprene is set to 10 to 50% by weight of the total amount, and if it is less than 10% by weight, the fluidity of the composition is lowered and molding becomes difficult. The hardness of becomes excessive. Further, the blending ratio of the alicyclic saturated hydrocarbon resin as the third component is set to 1 to 40% by weight, and if it is less than 1% by weight, the elongation of the composition becomes insufficient, and the vibration damping property at room temperature is obtained. If it is insufficient and exceeds 40% by weight, the low-temperature characteristics of the composition will deteriorate, stickiness will occur, and workability will deteriorate.
[0011]
The crosslinking agent used in the present invention is an organic peroxide such as 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butyl). Peroxy) hexyne-3,1,3-bis (t-butylperoxyisopropyl) benzene, 1,1-di (t-butylperoxy) 3,5,5-trimethylcyclohexane, 2,5-dimethyl-2 , 5-di (peroxybenzoyl) hexyne-3, dicumyl peroxide and the like. Among these, 1,3-bis (t-butylperoxyisopropyl) benzene is particularly preferable in that the crosslinking efficiency is increased. The amount of the organic peroxide is preferably 0.05 to 3.0 parts by weight, particularly preferably 0.1 to 1.0 parts by weight, based on 100 parts by weight of the rubber component, the resin component and the third component. If the amount is less than 0.05 parts by weight, the crosslink density is lowered and the physical properties are deteriorated.
[0012]
The thermoplastic elastomer composition of the present invention is obtained by kneading the partially crosslinked butyl rubber, the soft or copolymerized polyprene , the third component ( alicyclic saturated hydrocarbon resin ) and the organic peroxide at the specified ratio. Manufactured. As the kneading apparatus, known kneading apparatuses such as a Banbury mixer, a pressure kneader, and a twin screw extruder can be used. The kneading temperature is preferably 140 to 260 ° C., and the kneading time is preferably 1 to 30 minutes. In addition, auxiliary materials, such as a crosslinking adjuvant, an inorganic filler, antioxidant, a weather resistance agent, an antistatic agent, and a coloring agent, can be added to said compounding material as needed.
[0013]
The obtained thermoplastic elastomer composition can be molded into an arbitrary shape by a molding method such as extrusion molding, calender molding, and injection molding that is used in ordinary thermoplastic resins. The hardness, strong elongation, gas barrier property, vibration damping property, sound insulation property, etc. of the molded product are partially crosslinked butyl rubber as the rubber component, soft or copolymerized polyprene as the resin component, and alicyclic saturation as the third component. Various settings can be made within a wide range by selecting the type and blending amount of the hydrocarbon resin .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Partially cross-linked butyl rubber is used as the butyl rubber, copolymer polypropylene or soft polypropylene is used as the crystalline olefin resin, and alicyclic saturated hydrocarbon resin is used as the third component petroleum hydrocarbon resin. Polymerized polypropylene and alicyclic saturated hydrocarbon resin were weighed in proportions of 40 to 89% by weight, 10 to 50% by weight and 1 to 40% by weight, respectively, and charged into a kneader. 0.1-1.0 part by weight of 1,3-bis (t-butylperoxyisopropyl) benzene is added as a peroxide and kneaded at a temperature of 140-260 ° C. for 1-3 minutes. The obtained thermoplastic elastomer composition is molded into an arbitrary shape by extrusion molding, calender molding, injection molding or the like, and used for sealing by utilizing sound insulation or vibration control or gas impermeability.
[0015]
【Example】
The following materials “1” to “5” were prepared as the rubber component, the resin component, the third component, and the organic peroxide.
1. Partially cross-linked butyl rubber: "Polycer butyl XL-10000" manufactured by Polycer
2. Soft polypropylene: “Excellen KS37G-1” manufactured by Sumitomo Chemical Co., Ltd.
3. Copolymerized polypropylene: “HIPOL F-327D” manufactured by Mitsui Petrochemical Co., Ltd.
4). Alicyclic saturated hydrocarbon resin: “Arcon P-90” manufactured by Arakawa Chemical Industries, Ltd.
5. 1,3-bis (t-butylperoxyisopropyl) benzene: “Perkadox 14-40” manufactured by Kayaku Akzo
In addition, the following materials were prepared for comparative examples.
6). Hydrogenated SBR: “Dynalon 1320P” manufactured by Nippon Synthetic Rubber Co., Ltd.
7). Process oil: “Diana Process Oil PW-380” manufactured by Idemitsu Kosan Co., Ltd.
[0016]
The thermoplastic elastomer compositions of Examples 1 to 9 and Comparative Examples 1 to 3 were produced by blending the above materials “1” to “7” in various proportions and kneading. As a kneading machine, using a Brabender type kneader (“Laboplast Mill R-500” manufactured by Toyo Seiki Co., Ltd.), after setting the temperature to 180 ° C., the rubber component and the third component were added and kneaded for 2 minutes. Next, the resin component is added and kneaded for 3 minutes. After the above rubber component and resin component are uniformly mixed, the organic peroxide is added and kneaded. After the torque reaches the maximum value, the mixture is further kneaded for 2 minutes. did. Thereafter, using a press machine at a temperature of 180 ° C., the composition obtained by the above kneading was hot-pressed to produce a sheet having a thickness of about 1 mm, and various physical properties were measured.
[0017]
The physical properties were measured as follows.
1. Hardness: Measured according to JIS K-6301.
2. Strength, elongation and 100% modulus: Measured with a No. 3 dumbbell according to JIS K-6301.
3. Gas barrier property (oxygen permeability): The above sheet was cut into a circle having a diameter of 5 mm, and the gas permeability of oxygen at 23 ° C. (ml) using a gas permeation measuring device (“K-315N-03” manufactured by Rika Seiki Kogyo Co., Ltd.) · Mm / 24h · m 2 · atm) was measured.
4). Rebound resilience: The above sheets were stacked to a predetermined height and measured according to JIS K-6301.
5). Vibration loss coefficient (tan δ): Measured using a spectrometer (manufactured by Yokohama System) at a frequency of 110 Hz and a temperature of 20 ° C.
6). Sound insulation (acoustic transmission loss): The volume of the acoustic chamber was set to 50 m 3 or more satisfying the ISO standard, and the frequency was varied for Example 3 and measured.
[0018]
The above measurement results are shown in Tables 1 and 2 below together with the blending ratio of the materials. However, the sound insulation (sound transmission loss) is shown in FIG. In Table 1, 2, PP is polypropylene, alicyclic resins and alicyclic saturated hydrocarbon resins, MI is the melt index of the composition, M 100 refers respectively 100% modulus. “Example” is abbreviated as “actual”, and “comparative example” is abbreviated as “ratio”.
[0019]
Table 1
Figure 0003872606
[0020]
Table 2
Figure 0003872606
[0021]
As shown in Tables 1 and 2 above, Examples 1 to 9 have hardness varying within a wide range of 45 to 83 degrees, and the resilience is usually 30% or less of the range called low resilience to no resilience, In particular, Examples 3 to 5 are 10% or less, excellent in vibration absorption, oxygen permeability is about the same as vulcanized butyl rubber, and about 1/10 of an olefinic thermoplastic elastomer whose main component is EPDM. The tan δ was as high as 0.72 to 1.09.
[0022]
On the other hand, since Comparative Example 1 lacks the alicyclic saturated hydrocarbon resin, tan δ is small and vibration damping properties are poor. In Comparative Example 2, since hydrogenated SBR was used instead of the alicyclic saturated hydrocarbon resin, the oxygen permeability was high, tan δ was small, and the vibration damping property was poor. In Comparative Example 3, since process oil was used instead of the alicyclic saturated hydrocarbon resin, the oxygen permeability was high, the tan δ was small, and the vibration damping property was inferior, as in Comparative Example 2.
[0023]
【The invention's effect】
As described above, the thermoplastic elastomer of the present invention can easily set the hardness (JIS-A) in a wide range of 45 degrees to 85 degrees by selecting the blending ratio, and also has high elongation and gas barrier properties. Excellent vibration damping and sound insulation. And since the resin component is limited to a mixture of polypropylene resin and ethylene / propylene rubber or copolymer polypropylene resin, the flexibility of the composition is further improved. Moreover , since the third component is limited to the alicyclic saturated hydrocarbon resin, the compatibility is improved and the physical properties are further improved.
[Brief description of the drawings]
1 is a graph showing sound insulation properties of Example 3. FIG.

Claims (1)

ゴム成分に部分架橋型ブチルゴムを、樹脂成分にプロピレンとそれ以外のα−オレフィンとの共重合体またはポリプロピレンとエチレン・プロピレンゴムとの混合物をそれぞれ用い、第3成分に脂環族飽和炭化水素樹脂を用い、上記のゴム成分40〜89重量%、樹脂成分10〜50重量%および第3成分1〜40重量%を混練してなり、有機過酸化物で部分架橋していることを特徴とする熱可塑性エラストマー組成物。Partially crosslinked butyl rubber is used for the rubber component, a copolymer of propylene and other α-olefins or a mixture of polypropylene and ethylene / propylene rubber is used for the resin component, and an alicyclic saturated hydrocarbon resin is used for the third component. And 40 to 89% by weight of the rubber component, 10 to 50% by weight of the resin component, and 1 to 40% by weight of the third component, and is partially crosslinked with an organic peroxide. Thermoplastic elastomer composition.
JP34923098A 1998-12-09 1998-12-09 Thermoplastic elastomer composition Expired - Fee Related JP3872606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34923098A JP3872606B2 (en) 1998-12-09 1998-12-09 Thermoplastic elastomer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34923098A JP3872606B2 (en) 1998-12-09 1998-12-09 Thermoplastic elastomer composition

Publications (2)

Publication Number Publication Date
JP2000169646A JP2000169646A (en) 2000-06-20
JP3872606B2 true JP3872606B2 (en) 2007-01-24

Family

ID=18402370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34923098A Expired - Fee Related JP3872606B2 (en) 1998-12-09 1998-12-09 Thermoplastic elastomer composition

Country Status (1)

Country Link
JP (1) JP3872606B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160759A (en) * 2000-11-27 2002-06-04 Japan Crown Cork Co Ltd Container cover including liner with gas barrier properties and heat resisting properties
JP4112495B2 (en) * 2001-12-27 2008-07-02 シーシーアイ株式会社 Damping composition and damping structure
JP2003247581A (en) * 2002-02-27 2003-09-05 Gomuno Inaki Kk Soundproof cover structure
CA2598342C (en) * 2006-09-08 2014-10-14 Lanxess Inc. Peroxide cured thermoplastic vulcanizates comprising butyl rubber
JP5140323B2 (en) * 2007-06-01 2013-02-06 三井化学株式会社 Thermoplastic elastomer composition
JP5415698B2 (en) * 2008-01-07 2014-02-12 日東電工株式会社 Damping and reinforcing sheet and method for damping and reinforcing thin plate

Also Published As

Publication number Publication date
JP2000169646A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
US5081179A (en) Thermoplastic elastomer composition
US6087431A (en) Olefinic thermoplastic elastomer composition
EP1619218B1 (en) Thermoplastic vulcanizates with enhanced cooling and articles made therefrom
JP5216182B2 (en) Method for producing thermoplastic elastomer
KR101843217B1 (en) Thermoplastic vulcanizate composition, method of producing the same, and articles made therefrom
EP2066745B1 (en) Thermoplastic elastomer compositions, methods of making and articles made from the same
JPH06306217A (en) Thermoplastic elastomer improved in low-temperature property
US6399710B1 (en) Modification of thermolastic vulcanizates with a thermoplastic random copolymer of ethylene
KR20020071977A (en) Thermoplastic elastomers having improved adhesive properties
KR20000017554A (en) Star-branched rubber thermoplastic elastomer vulcanizates
TW202246404A (en) Thermoplastic vulcanizate compositions including cyclic olefin copolymers
JP3872606B2 (en) Thermoplastic elastomer composition
JP3750769B2 (en) Thermoplastic elastomer composition
JPH0613628B2 (en) Thermoplastic elastomer composition
JPH07126452A (en) Thermoplastic elastomer composition
KR102116133B1 (en) Method producing of foam compounds having high resilience and anti slip property
KR100477345B1 (en) Process for preparing thermoplastic elastomer composition
JP2004123977A (en) Resin composition for gasket, and medical instrument using the same
JPH1087902A (en) Crosslinked resin composition
US20080103244A1 (en) Adhesive thermoplastic vulcanizates
JP2000212383A (en) Thermoplastic elastomer resin composition
AU619324B2 (en) Thermoplastic elastomer composition
JP2020147655A (en) Modified elastomer composition, crosslinked elastomer composition and molded body of the same
JPWO2002072690A1 (en) Olefin-based thermoplastic elastomer composition
JPH0812719A (en) Thermoplastic elastomer composition for injection molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees