JP3872067B2 - Ferritic stainless steel sheet with excellent ridging resistance, formability and secondary work brittleness resistance and method for producing the same - Google Patents

Ferritic stainless steel sheet with excellent ridging resistance, formability and secondary work brittleness resistance and method for producing the same Download PDF

Info

Publication number
JP3872067B2
JP3872067B2 JP2004084029A JP2004084029A JP3872067B2 JP 3872067 B2 JP3872067 B2 JP 3872067B2 JP 2004084029 A JP2004084029 A JP 2004084029A JP 2004084029 A JP2004084029 A JP 2004084029A JP 3872067 B2 JP3872067 B2 JP 3872067B2
Authority
JP
Japan
Prior art keywords
mass
tin
less
layer
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004084029A
Other languages
Japanese (ja)
Other versions
JP2005272865A (en
JP2005272865A5 (en
Inventor
崇史 川越
保利 秀嶋
淳一 香月
聡 鈴木
敏彦 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2004084029A priority Critical patent/JP3872067B2/en
Publication of JP2005272865A publication Critical patent/JP2005272865A/en
Publication of JP2005272865A5 publication Critical patent/JP2005272865A5/ja
Application granted granted Critical
Publication of JP3872067B2 publication Critical patent/JP3872067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、プレス成形性及び加工後のリジングの発生がない美麗な表面を維持し、さらには、耐二次加工脆性に優れるフェライト系ステンレス鋼板に関する。   The present invention relates to a ferritic stainless steel sheet that maintains a beautiful surface without press formability and generation of ridging after processing, and further has excellent secondary work brittleness resistance.

SUS430に代表されるフェライト系ステンレス鋼は、加工性及び耐食性が良好で、比較的安価であることから、厨房機器,電気製品,自動車用材料等として広範な分野で使用されている。しかしながら、昨今、フェライト系ステンレス鋼板をプレス成形する際には、より厳しい加工が行われる場合が多くなっており、高度なプレス成形性が要求されるようになっている。
また、フェライト系ステンレス鋼の連鋳片を圧延して製造した鋼板に、深絞りや曲げ等の冷間加工を施すと、リジングと称される縞状の起伏が圧延方向に沿って発生し、製品外観が著しく損なわれることがある。このため、美麗な外観が要求される成形品については、リジングの発生が目立ちにくいことが要求される。
Ferritic stainless steel represented by SUS430 has good workability and corrosion resistance and is relatively inexpensive, and is therefore used in a wide range of fields such as kitchen equipment, electrical products, and automotive materials. However, in recent years, when press-molding ferritic stainless steel sheets, more severe processing is often performed, and a high degree of press formability is required.
In addition, when cold working such as deep drawing and bending is performed on a steel plate produced by rolling a continuous cast piece of ferritic stainless steel, striped undulations called ridging occur along the rolling direction, Product appearance may be significantly impaired. For this reason, it is requested | required that the generation | occurrence | production of a ridging is not conspicuous about the molded article which the beautiful external appearance is requested | required.

さらに、フェライト系ステンレス鋼板に高度な深絞り等のプレス加工を施して成形した成形品は、例えば落下等の衝撃的な荷重が加わったとき、あるいはさらに穴拡げや張出し加工等の二次加工を施そうとしたときに、脆性的に割れやすいと言った問題点を有している。このためフェライト系ステンレス鋼板には、耐二次加工脆性に優れることも要求されている。
このように、フェライト系ステンレス鋼板には、プレス成形の際に高度な加工が可能な優れたプレス成形性、加工後の成形品にリジングの発生が目立たないこと、及び加工後の成形品において耐二次加工脆性に優れることが切望されている。
Furthermore, molded products formed by subjecting ferritic stainless steel plates to advanced deep drawing and other press processing are subjected to secondary processing such as when a shocking load such as dropping is applied, or further hole expansion and overhanging processing. When trying to apply, it has the problem that it is brittle and easily broken. For this reason, ferritic stainless steel sheets are also required to have excellent secondary work brittleness resistance.
As described above, ferritic stainless steel sheets have excellent press formability capable of advanced processing during press forming, the occurrence of ridging is not noticeable in the processed molded product, and resistance to the molded product after processing. It is anxious to be excellent in secondary processing brittleness.

ところで、フェライト系ステンレス鋼板をプレス成形したときに発生しやすいリジングは、連続鋳造時に生成した粗大な柱状晶組織が熱延工程,冷延工程で十分に破壊されず、似かよった結晶方位を有する複数の結晶粒の集まりであるコロニーを形成することに原因があると考えられている。
熱延工程後にリジングの発生を抑制する方法は、冷延及び焼鈍を複数回繰り返して再結晶を促進させることによりコロニーを分断化する方法が有効とされている。しかし、冷延及び焼鈍の繰返しによりコロニーを分断化する方法は、リジング発生の抑制には有効であるものの、複数回の冷延及び焼鈍を必要とするため工程に負荷がかかり、製造コストを上昇させることになる。そのため、安価なフェライト系鋼種を大量生産しようとする場合には望ましくない。また、冷延及び焼鈍の繰り返しによってもコロニーの影響を完全に解消することは容易ではない。
By the way, ridging that is likely to occur when ferritic stainless steel sheets are press-formed is a plurality of crystal grains with similar crystal orientations because the coarse columnar crystal structure generated during continuous casting is not sufficiently destroyed in the hot rolling process and cold rolling process. It is thought that there is a cause in forming a colony that is a collection of crystal grains.
As a method for suppressing the generation of ridging after the hot rolling step, a method of dividing colonies by repeating cold rolling and annealing a plurality of times to promote recrystallization is effective. However, although the method of fragmenting colonies by repeated cold rolling and annealing is effective in suppressing ridging, it requires multiple cold rolling and annealing processes, increasing the manufacturing cost. I will let you. Therefore, it is not desirable when mass production of inexpensive ferritic steel types is desired. Moreover, it is not easy to completely eliminate the influence of colonies even by repeated cold rolling and annealing.

このため、連続鋳造法で鋳片を製造する際に、鋳片に粗大な柱状晶組織が発達しないように、等軸晶率を増大させる溶解・鋳造法が開発されている。例えば、溶鋼温度を比較的低温に維持して鋳造する方法、溶鋼を電磁攪拌しながら鋳造する方法等である。
しかし、低温鋳造法は、溶鋼の凝固温度近くまで鋳込み温度を下げて鋳造することを要し、操業中にノズル詰り等のトラブルが発生し易く、生産性が著しく悪くなる。電磁攪拌法は、凝固組織の等軸晶化に有効であるものの、高価な設備を必要とし、また電磁攪拌の条件によってはホワイトバンド等のマクロ偏析が生じやすくなる。
したがって、耐リジング性を高レベルで改善する上で、ある程度負荷の大きな冷延・焼鈍工程を併用せざるを得ず、結果として製造コストが上昇している。
For this reason, when manufacturing a slab by a continuous casting method, the melting and casting method which increases an equiaxed crystal ratio is developed so that a coarse columnar crystal structure may not develop in a slab. For example, there are a method of casting while maintaining the molten steel temperature at a relatively low temperature, a method of casting the molten steel with electromagnetic stirring, and the like.
However, the low temperature casting method requires casting by lowering the casting temperature to near the solidification temperature of the molten steel, and troubles such as nozzle clogging are likely to occur during operation, and the productivity is remarkably deteriorated. The electromagnetic stirring method is effective for equiaxed crystallization of a solidified structure, but requires expensive equipment, and macrosegregation such as a white band tends to occur depending on the electromagnetic stirring conditions.
Therefore, in order to improve the ridging resistance at a high level, a cold rolling / annealing process having a certain load is inevitably used in combination, resulting in an increase in manufacturing cost.

最近では、フェライト系ステンレス鋼にTiを添加し、溶鋼中に生成したTiNをフェライトの核生成サイトとして利用することにより、凝固組織を微細化し、等軸晶化する技術が報告されている。
例えば、特許文献1では、Tiを0.01〜0.5%の範囲で、Ti×N≧0.0006,Ti≧6×(C+N)になるように調整された成分系において、TiNを含有しMg/Caの質量比が0.5以上を満足するMg含有酸化物の個数を制御する方法が提案されている。また、特許文献2には、TiNで覆われたMg系介在物の個数を制御することが提案されている。
しかしながら、特許文献1,2の技術に沿って成分調整し、Mg系介在物の個数を制御しても、高等軸晶率化の効果は安定しない。また等軸晶の核生成サイトに利用されるTiNが連続鋳造時にノズル閉塞を引き起こしたり、冷延板の表面疵や加工割れの起点になったりするといった問題点がある。
Recently, a technique has been reported in which Ti is added to ferritic stainless steel and TiN produced in molten steel is used as a nucleation site for ferrite to refine the solidification structure and make it equiaxed.
For example, in Patent Document 1, TiN is contained in a component system adjusted to satisfy Ti × N ≧ 0.0006, Ti ≧ 6 × (C + N) in a range of 0.01 to 0.5% Ti. A method of controlling the number of Mg-containing oxides satisfying the Mg / Ca mass ratio of 0.5 or more has been proposed. Patent Document 2 proposes controlling the number of Mg-based inclusions covered with TiN.
However, even if the components are adjusted according to the techniques of Patent Documents 1 and 2 and the number of Mg-based inclusions is controlled, the effect of increasing the equiaxed crystal ratio is not stable. In addition, TiN used for the nucleation site of equiaxed crystals causes problems such as nozzle clogging at the time of continuous casting, and the origin of surface flaws and work cracks in cold-rolled sheets.

また、他方、フェライト系ステンレス鋼板にはプレス成形性を向上させることも必要である。
フェライト系ステンレス鋼板のプレス成形性を向上させるために、数多くの提案がなされている。その代表的なものはTi,Nbの単独添加技術もしくは複合添加技術である。単独添加もしくは複合添加したTi,Nbは、マトリックスに固溶しているC,Nを炭窒化物として析出させ、マトリックスのC,N濃度を低減させることによりプレス加工性を向上させることができる。
On the other hand, it is necessary to improve the press formability of the ferritic stainless steel sheet.
Many proposals have been made to improve the press formability of ferritic stainless steel sheets. A typical example is a single addition technique or a composite addition technique of Ti and Nb. Ti and Nb added individually or in combination can improve press workability by precipitating C and N dissolved in the matrix as carbonitrides and reducing the C and N concentration of the matrix.

しかしながら、プレス成形の高度化に伴い、近年プレス成形性のさらなる向上が要求されている。そして、限界絞り比で2.3以上の深絞り性を有することが求められている。さらに、上記のような、単にTi,Nbを単独添加もしくは複合添加する技術は、リジングの発生を回避する手段や耐二次加工脆性を向上させる手段については全く検討されていない。
TiやNbを添加してプレス成形性を高めた低C,Nのフェライト系ステンレス鋼板の耐二次加工脆性に関して、特許文献3には、TiとBを添加する技術が提案されている。
しかしながら、Bの含有によって延びやランクフォード値rが低下してしまうという弊害が生じやすくなっている。
However, with the advancement of press molding, in recent years, further improvement in press moldability has been demanded. And it is calculated | required to have deep drawability of 2.3 or more by a limit drawing ratio. Furthermore, the technique of simply adding Ti or Nb alone or in combination as described above has not been studied at all for means for avoiding ridging and improving secondary work brittleness resistance.
Regarding the secondary work embrittlement resistance of a low C, N ferritic stainless steel sheet in which press formability is improved by adding Ti or Nb, Patent Document 3 proposes a technique of adding Ti and B.
However, the inclusion of B tends to cause a negative effect that the elongation and the Rankford value r are lowered.

特開2001−288542号公報JP 2001-288542 A 特開2000−192199号公報JP 2000-192199 A 特公平2−7391号公報Japanese Patent Publication No.2-7391

このように、フェライト系ステンレス鋼板に高度なプレス成形を施すに当たってはプレス成形性、耐リジング性及び耐二次加工脆性の3つの特性が要求されるが、臨界絞り比2.3以上でリジングの発生が軽微で、しかも耐二次加工脆性にも優れるフェライト系ステンレス鋼板は未だ提供されていない。
そこで、本発明は、このような問題点を解消すべく案出されたものであり、鋼中に分散析出するTiNや他の介在物・析出物の形態を制御することにより、等軸晶率を高め、耐リジング性を改善するとともに、プレス成形性と耐二次加工脆性をも向上させたフェライト系ステンレス鋼板を提供することを目的とする。
As described above, when performing advanced press forming on a ferritic stainless steel sheet, three properties of press formability, ridging resistance and secondary work brittleness resistance are required. A ferritic stainless steel sheet that is lightly generated and excellent in secondary work brittleness resistance has not yet been provided.
Therefore, the present invention has been devised to solve such problems, and by controlling the form of TiN and other inclusions / precipitates that are dispersed and precipitated in the steel, the equiaxed crystal ratio is improved. An object of the present invention is to provide a ferritic stainless steel sheet that improves ridging resistance and also improves press formability and secondary work brittleness resistance.

本発明のフェライト系ステンレス鋼板は、その目的を達成するため、C:0.05質量%以下,Si:0.01〜2.0質量%,Mn:2.0質量%以下,S:0.0001〜0.007質量%,Cr:9.0〜40.0質量%,Nb:0.05〜0.8質量%,B:0.0001〜0.03質量%,Al:0.05質量%以下,Mg:0.0001〜0.001質量%,Ca:0.001質量%以下を含み、かつTiとNの濃度積(Ti質量%×N質量%)が0.0007〜0.004の関係を満たすように調整され、残部がFe及び不可避的不純物からなる組成を有するとともに、下記(a),(b),(c)で示す層が内層から(a),(b),(c)の順で積層された三層構造のTiN系介在物が、鋼板断面において10個/mm2以上の頻度で存在することを特徴とする。
(a)層:質量比でMg/S≧5を満足する酸化物及び硫化物からなる介在物
(b)層:TiN
(c)層:Nb(C+N)及び/又はTiC及び/又はTiS
In order to achieve the object, the ferritic stainless steel sheet of the present invention has C: 0.05% by mass or less, Si: 0.01 to 2.0% by mass, Mn: 2.0% by mass or less, S: 0.00%. 0001 to 0.007 mass%, Cr: 9.0 to 40.0 mass%, Nb: 0.05 to 0.8 mass%, B: 0.0001 to 0.03 mass%, Al: 0.05 mass% %, Mg: 0.0001 to 0.001 mass%, Ca: 0.001 mass% or less, and the concentration product of Ti and N (Ti mass% × N mass%) is 0.0007 to 0.004. And the balance is composed of Fe and inevitable impurities, and the following layers (a), (b), and (c) are formed from the inner layers (a), (b), ( c) TiN-based inclusions having a three-layer structure laminated in the order of 10 / mm 2 or more in the cross section of the steel sheet It exists in the above frequency.
(A) Layer: inclusion comprising oxide and sulfide satisfying Mg / S ≧ 5 by mass ratio (b) Layer: TiN
(C) Layer: Nb (C + N) and / or TiC and / or TiS

鋼成分として、さらにZr:0.5質量%以下,V:0.5質量%以下,REM:0.1質量%以下,Mo:2.0質量%以下,Cu:2.0質量%以下の1種又は2種以上を含むものであってもよい。
上記のような三層構造を有する析出物が出現するフェライト系ステンレス鋼板は、上記組成を有する鋼の製鋼段階において、精錬容器としてMgO含有率が40質量%以上の耐火物を溶鋼接触面の50%以上に用いたものを使用し、冷間圧延工程において、仕上げ圧延前に880〜980℃で均熱20秒以上の焼鈍を行うことで得られる。
As steel components, Zr: 0.5 mass% or less, V: 0.5 mass% or less, REM: 0.1 mass% or less, Mo: 2.0 mass% or less, Cu: 2.0 mass% or less 1 type or 2 types or more may be included.
In the ferritic stainless steel sheet in which the precipitate having the three-layer structure as described above appears, a refractory having a MgO content of 40% by mass or more is used as a refining vessel in the steelmaking stage of the steel having the above composition. % Is used, and in the cold rolling process, annealing is performed at 880 to 980 ° C. for 20 seconds or more before soaking.

本発明では、Al,Si,Mn,Mg,Ti,N等、各元素の含有量を細かく規定するとともに、生成したTiN系介在物の断面構造及び分散状態をも細かく規定することにより、耐リジング性,加工性及び二次加工性に優れたフェライト系ステンレス鋼板を得ることができ、深絞り、曲げ等の冷間加工を施した場合にあっても、皺状の起伏が発生しない耐リジング性に優れた材料が得られる。
このため、外観に優れた厨房機器用、各種電気機器用あるいは自動車用等の材料として広範な分野に低コストの板材を提供することができる。
In the present invention, the content of each element such as Al, Si, Mn, Mg, Ti, and N is finely defined, and the cross-sectional structure and dispersion state of the generated TiN inclusions are also finely defined. Ferritic stainless steel sheet with excellent workability, workability and secondary workability, and ridging resistance that does not cause saddle-like undulations even when cold working such as deep drawing and bending is performed An excellent material can be obtained.
For this reason, it is possible to provide a low-cost plate material in a wide range of fields as a material for kitchen equipment, various electric equipments, and automobiles having an excellent appearance.

本発明者等は、等軸晶の核生成サイトとして有効なTiNについて調査・研究して得られた知見をベースとし、より確実な方法で介在物組成を制御して等軸晶率を高め、かつ冷延工程での焼鈍条件を制御することによって、三層構造を有するTiN系介在物を生成させ、その個数を制御することにより、プレス成形性及び耐リジング性に優れ、かつ耐二次加工脆性にも優れるフェライト系ステンレス鋼板を得ることができたものである。
以下にその詳細を説明する。
Based on the knowledge obtained by investigating and researching TiN that is effective as a nucleation site for equiaxed crystals, the inventors have increased the equiaxed crystal ratio by controlling the inclusion composition in a more reliable method, In addition, by controlling the annealing conditions in the cold rolling process, TiN inclusions having a three-layer structure are generated, and by controlling the number of them, the press formability and ridging resistance are excellent, and secondary processing resistance A ferritic stainless steel sheet having excellent brittleness can be obtained.
Details will be described below.

一般的に、フェライト系ステンレス溶鋼が凝固するとき、TiN系介在物が存在すると等軸晶が増大するといわれている。TiN系介在物が高等軸晶率化に及ぼす要因として、(1)TiNが溶鋼に濡れやすいこと、(2)フェライトとの結晶格子の不整合度が小さいTiNを核としてフェライトが晶出しやすくなること、(3)TiNは溶鋼の液相線温度付近で生成するため浮上・分離し難いこと、等が挙げられる。したがって、溶鋼の液相線温度近傍でTiNが生成する条件が整ったとき、生成したTiNが介在物として浮上・分離される前にフェライトの核形成サイトとして有効に作用し、高等軸晶率化が図られるといえる。   Generally, it is said that equiaxed crystals increase when TiN inclusions are present when ferritic stainless steel melts. Factors affecting the increase in equiaxed crystallinity by TiN inclusions are: (1) TiN is easily wetted by molten steel, and (2) Ferrite is easily crystallized with TiN as the nucleus, which has a small degree of crystal lattice mismatch. (3) Since TiN is generated near the liquidus temperature of molten steel, it is difficult to float and separate. Therefore, when conditions for TiN generation near the liquidus temperature of molten steel are prepared, it effectively acts as a nucleation site for ferrite before the generated TiN floats and separates as inclusions, thereby increasing the equiaxed crystallinity. Can be said.

ところで、TiN系介在物は、TiN単独で生成した単独型(図1のa)と、酸化物,硫化物等の介在物を核として生成した複合型(図1のb)に大別される。「鉄と鋼」,87(2001),707によると、等軸晶生成に与える影響は、TiNの核となる酸化物の種類に応じて異なり、MgO・Al23の核が高等軸晶率化に好ましいとされている。
しかし、工業ベースの生産では、耐火物,スラグ,脱酸剤由来の脱酸生成物等の影響が大きく、純粋なMgO・Al23を溶鋼中の介在物として生成させることは困難である。
By the way, TiN-based inclusions are roughly classified into a single type (a in FIG. 1) generated by TiN alone and a composite type (b in FIG. 1) generated using inclusions such as oxides and sulfides as nuclei. . According to “Iron and Steel”, 87 (2001), 707, the effect on the formation of equiaxed crystals varies depending on the type of oxide that forms the core of TiN, and the nuclei of MgO · Al 2 O 3 are highly equiaxed crystals. It is said that it is preferable for efficiency.
However, in industrial-based production, the influence of refractories, slag, deoxidation products derived from deoxidizers, etc. is large, and it is difficult to produce pure MgO · Al 2 O 3 as inclusions in molten steel. .

そこで、TiNの核となる介在物について詳細に調査・検討した結果、溶鋼成分が特定の条件を満足しているとき、工業的ベースの生産でもTiNの核となりやすい介在物が生成し、結果として高等軸晶率化が図られることを見出した。
本成分系では、Al,Mg,Ca,Sを量的に規制することにより、TiNの核となるMg/Sの質量比:5以上の酸化物,硫化物を生成させている。図2に示すように、(a)質量比でMg/S≧5を満足する酸化物及び硫化物からなる介在物1を核として、その周囲に(b)TiNの層2及び(c)Nb(C+N)及び/又はTiC及び/又はTiSの層3を順じ析出させている。このうち(a)層を核として生成した(b)層のTiNまでが、凝固段階で生成し、等軸晶の核生成サイトとして有効に働き、等軸晶率を増大させている。
Therefore, as a result of investigating and examining the inclusions that become the core of TiN in detail, when the molten steel components satisfy specific conditions, inclusions that are likely to become the core of TiN are generated even in industrial-based production. It has been found that a higher equiaxed crystal ratio can be achieved.
In this component system, oxides and sulfides having a mass ratio of Mg / S: 5 or more, which are the cores of TiN, are generated by quantitatively regulating Al, Mg, Ca, and S. As shown in FIG. 2, (b) TiN layer 2 and (c) Nb around (a) inclusion 1 made of oxide and sulfide satisfying Mg / S ≧ 5 in mass ratio as a nucleus. A layer 3 of (C + N) and / or TiC and / or TiS is sequentially deposited. Of these, the TiN of the (b) layer produced with the layer (a) as a nucleus is produced in the solidification stage, effectively acting as a nucleation site for equiaxed crystals, and increasing the equiaxed crystal ratio.

(a)層の質量比でMg/S≧5を満足する酸化物,硫化物系介在物を生成させるためには、Mg:0.0001〜0.001質量%,Al:0.05質量%以下,Ca:0.001質量%以下,S:0.0001〜0.007質量%の規制が必要である。Mgが不足し、Al,Ca,Sが過剰な場合には、生成する介在物が(b)層のTiNの核になり難く、等軸晶の生成サイトとして有効に作用できず、等軸晶率が低くなる。
なお、(a)層のMg/Sの質量比が5未満である酸化物,硫化物系介在物を核とする(b)層までのTiNも認められる場合もあるが、これは凝固時点で生成したものではなく凝固後に生成したものと考えられ、核生成サイトとして有効に作用するものではないと考えられる。
(A) In order to produce oxides and sulfide inclusions satisfying Mg / S ≧ 5 in the mass ratio of layers, Mg: 0.0001 to 0.001 mass%, Al: 0.05 mass% Hereinafter, regulation of Ca: 0.001 mass% or less and S: 0.0001 to 0.007 mass% is necessary. When Mg is insufficient and Al, Ca, and S are excessive, the generated inclusions are unlikely to become TiN nuclei in layer (b) and cannot effectively act as equiaxed crystal production sites. The rate is lowered.
Note that TiN up to (b) layer with oxide / sulfide inclusions as the core in (a) Mg / S mass ratio of less than 5 may also be observed, but this is It is thought that it was not formed but formed after solidification, and is not considered to function effectively as a nucleation site.

また、Mg/Sの質量比が5以上の酸化物,硫化物系介在物を核とする(b)層までのTiNが生成しても、所定数以上の数が存在しないと効果的に高等軸晶率化を達成することはできない。高等軸晶率化に必要な条件を検討したところ、Ti,Nの成分条件として、TiとNの濃度積(Ti質量%×N質量%)が0.0007以上の条件下では、(a)層のMg/Sの質量比が5以上の酸化物,硫化物系介在物を核とする(b)層のTiNが鋼断面において10個/mm2以上の割合で分散し、等軸晶が増大した。 Also, even when TiN is produced up to the layer (b) having oxide / sulfide inclusions as the core with a mass ratio of Mg / S of 5 or more, if there is no more than a predetermined number, it is effectively higher Axial crystallisation cannot be achieved. When the conditions necessary for increasing the equiaxed crystal ratio were examined, as a component condition of Ti and N, when the concentration product of Ti and N (Ti mass% × N mass%) was 0.0007 or more, (a) (B) TiN of the layer having a Mg / S mass ratio of 5 or more and sulfide inclusions as the core is dispersed at a rate of 10 pieces / mm 2 or more in the steel cross section, and equiaxed crystals are formed. Increased.

さらに、上記成分に加えて、Nb:0.8質量%以下,B:0.0001〜0.03質量%に調整することにより、凝固段階に生成した(b)層までのTiNの周囲に凝固後の冷却,熱延工程及び焼鈍工程において、(c)層のNb(C+N)及び/又はTiC及び/又はTiS層が取り囲むように析出する。
すなわち、内層から順に(a)質量比でMg/S≧5を満足する酸化物及び硫化物からなる介在物、(b)TiN、(c)Nb(C+N)及び/又はTiC及び/又はTiSの三層構造を有するTiN系介在物が、従来の単独型TiN、もしくは複合型TiNの作用による等軸晶率化の向上による耐リジング性の改善以上の効果をもたらすことを見出した。
Furthermore, in addition to the above components, Nb: 0.8% by mass or less, B: 0.0001 to 0.03% by mass, solidified around TiN up to (b) layer generated in the solidification stage In the subsequent cooling, hot rolling step, and annealing step, the Nb (C + N) and / or TiC and / or TiS layer of the (c) layer is deposited so as to surround it.
That is, in order from the inner layer (a) inclusions composed of oxides and sulfides satisfying Mg / S ≧ 5 by mass ratio, (b) TiN, (c) Nb (C + N) and / or TiC and / or TiS It has been found that TiN inclusions having a three-layer structure have an effect more than the improvement of ridging resistance due to the improvement of equiaxed crystallinity by the action of conventional single type TiN or composite type TiN.

さらには、この三層構造のTiN系介在物は、深絞り性を主体とするプレス成形性及び耐二次加工脆性にも、従来にはない際立った改善効果を有することを見出した。しかしながら、深絞り性を主体とするプレス成形性及び耐二次加工脆性の改善に有効に作用させるためには、凝固段階で生成した(b)層までのTiNの周囲に一様に(c)層のNb(C+N)及び/又はTiC及び/又はTiS層を析出させる必要がある。熱延工程後の熱延板では、Nb(C+N)及び/又はTiC及び/又はTiS層が一部のみ析出している形態のTiNも認められる。このような熱延板を通常の製造方法により製造しても、耐リジング性の改善は得られるものの、深絞り性を主体とするプレス成形性及び耐二次加工脆性の改善効果は小さい。   Furthermore, the present inventors have found that this three-layered TiN-based inclusion has a remarkable improvement effect in press formability mainly composed of deep drawability and secondary work brittleness resistance, which has not been achieved in the past. However, in order to effectively improve the press formability mainly composed of deep drawability and the resistance to secondary work brittleness, uniformly (c) around TiN up to the (b) layer formed in the solidification stage. It is necessary to deposit the Nb (C + N) and / or TiC and / or TiS layer of the layer. In the hot-rolled sheet after the hot-rolling step, TiN in a form in which only a part of the Nb (C + N) and / or TiC and / or TiS layer is deposited is also observed. Even if such a hot-rolled sheet is produced by a normal production method, ridging resistance can be improved, but the effect of improving the press formability and the secondary work brittleness resistance mainly with deep drawability is small.

そこで、冷延焼鈍工程において、仕上げ圧延前に880〜980℃で均熱20秒以上の焼鈍を行うことにより、凝固段階で生成した(b)層までのTiNの周囲に一様に(c)層のNb(C+N)及び/又はTiC及び/又はTiS層を析出させると、耐リジング性,深絞り性を主体とするプレス成形性及び耐二次加工脆性の改善効果が得られることを見出した。   Therefore, in the cold rolling annealing step, by annealing at 880 to 980 ° C. for 20 seconds or more before finish rolling, uniformly around the TiN up to the layer (b) generated in the solidification stage (c) It has been found that when Nb (C + N) and / or TiC and / or TiS layers of the layer are deposited, an improvement effect of press formability mainly composed of ridging resistance and deep drawability and secondary work brittleness resistance can be obtained. .

三層構造を有するTiN系介在物は、単独型TiNもしくは複合型TiN系介在物よりも冷延工程における歪みの集積度に有効に作用すると考えられる。そして、この歪みの集積によりコロニーは破壊されると考えられる。また、三層構造を有するTiN系介在物は、冷延集合組織に影響を及ぼし、深絞り性に有効である{111}集合組織を発達させると考えられる。さらにまた、三層構造を有するTiN系介在物の最外層にある(c)層のNb(C+N)及び/又はTiC及び/又はTiS層が二次加工時の応力集中を緩和し、耐二次加工脆性を改善すると考えられる。   TiN-based inclusions having a three-layer structure are considered to act more effectively on the degree of strain accumulation in the cold rolling process than single-type or composite TiN-based inclusions. And it is thought that a colony is destroyed by accumulation of this distortion. Moreover, it is thought that the TiN-based inclusion having a three-layer structure develops a {111} texture that affects the cold-rolled texture and is effective for deep drawability. Furthermore, the Nb (C + N) and / or TiC and / or TiS layer of the (c) layer, which is the outermost layer of the TiN-based inclusion having a three-layer structure, relieves stress concentration during secondary processing, and is resistant to secondary It is thought to improve work brittleness.

本発明において規定するステンレス鋼は、例えば、真空雰囲気又は不活性雰囲気下で脱酸剤を添加し、CaO−Al23系を主成分とするスラグを溶鋼に接触させながら、スラグ/メタルを攪拌する精錬方法が採用される。スラグにはCaF2等の造滓材を含んでいてもよい。脱酸剤としては、Al,Si,Mn,Ti,REM等あるいはそれらの1種又は2種以上を含む合金が使用される。
精錬容器として、MgO含有率が40質量%以上の耐火物を溶鋼接触面の50%以上に用いたものを使用して精錬を行う。MgOを含有した耐火物をライニングした精錬容器を使用するため、耐火物中のMgOが脱酸剤によって還元され、金属Mgとして溶鋼中に一旦溶解する。そして、Mg:0.0001〜0.001質量%となり、溶鋼中の金属MgがTiNの核として好適な介在物の形成源になる。
In the stainless steel defined in the present invention, for example, a deoxidizer is added in a vacuum atmosphere or an inert atmosphere, and a slag mainly composed of a CaO—Al 2 O 3 system is brought into contact with the molten steel while a slag / metal is added. A refining method with stirring is adopted. The slag may contain a faux material such as CaF 2 . As the deoxidizer, Al, Si, Mn, Ti, REM, or the like, or an alloy containing one or more of them is used.
As a refining vessel, refining is performed using a refractory having an MgO content of 40% by mass or more for 50% or more of the molten steel contact surface. Since a smelting vessel lined with a refractory containing MgO is used, MgO in the refractory is reduced by a deoxidizing agent and once dissolved in molten steel as metallic Mg. Then, Mg: 0.0001 to 0.001 mass%, and the metal Mg in the molten steel becomes a suitable inclusion formation source as a core of TiN.

ステンレス溶鋼は、精錬容器で3分以上のガス攪拌により十分に攪拌され、Al:0.05質量%以下,Mg:0.0001〜0.001質量%,Ca:0.001質量%以下,S:0.0001〜0.007質量%を含み、しかもTiとNの濃度積(Ti質量%×N質量%)が0.0007〜0.004の範囲になるように成分調整される。
成分調整されたステンレス溶鋼はタンディッシュを経て連続鋳造されるが、タンディッシュ内の溶鋼過熱度を30〜70℃に維持することにより、ノズル閉塞が防止される。
連続鋳造されたスラブは、熱間圧延工程を経て熱延鋼帯になるが、熱延工程は常法に準じた条件下で行えばよい。熱延鋼帯に焼鈍及び冷間圧延を組み合わせて施し冷延焼鈍鋼帯を製造するが、本発明では、仕上げ圧延前の焼鈍を880〜980℃で20秒以上の条件下で行うことを必須とし、この焼鈍以外の焼鈍及び冷延は常法に準じる。
The molten stainless steel is sufficiently stirred by gas stirring for 3 minutes or more in a refining vessel, Al: 0.05 mass% or less, Mg: 0.0001 to 0.001 mass%, Ca: 0.001 mass% or less, S : Including 0.0001 to 0.007 mass%, and the components are adjusted so that the concentration product of Ti and N (Ti mass% × N mass%) is in the range of 0.0007 to 0.004.
Although the component-adjusted stainless molten steel is continuously cast through a tundish, nozzle clogging is prevented by maintaining the superheat degree of the molten steel in the tundish at 30 to 70 ° C.
The continuously cast slab becomes a hot-rolled steel strip through a hot rolling process, but the hot-rolling process may be performed under conditions according to a conventional method. A cold-rolled annealed steel strip is manufactured by combining the hot-rolled steel strip with annealing and cold rolling. In the present invention, it is essential to perform annealing before finish rolling at 880-980 ° C. for 20 seconds or longer. And annealing and cold rolling other than this annealing are in accordance with conventional methods.

次に、本発明が対象とするフェライト系ステンレス鋼の合金成分,含有量等を詳細に説明する。
C:0.05質量%以下
フェライト系ステンレス鋼の強度を上昇させる効果がある。しかしながら、過剰に含有させると耐食性や製造性を劣化させることになるので、C含有量は0.05質量%以下に規定した。
Next, the alloy components, contents, and the like of the ferritic stainless steel targeted by the present invention will be described in detail.
C: 0.05% by mass or less There is an effect of increasing the strength of the ferritic stainless steel. However, since it will degrade corrosion resistance and manufacturability if it is contained excessively, the C content is specified to be 0.05% by mass or less.

Si:0.01〜2.0質量%
耐食性及び強度を改善する合金成分であるが、過剰に含まれると製造性を劣化させる原因となるので、Si含有量は0.01〜2.0質量%の範囲に規定した。
Mn:2.0質量%以下
Siと同様に耐食性及び強度を改善する合金元素であるが、過剰に含まれるとその効果が劣化することから、Mn含有量の上限は2.0質量%に規定した。
Si: 0.01-2.0 mass%
Although it is an alloy component that improves corrosion resistance and strength, if it is contained excessively, it causes deterioration of manufacturability, so the Si content is specified in the range of 0.01 to 2.0 mass%.
Mn: 2.0 mass% or less Although it is an alloy element that improves the corrosion resistance and strength in the same manner as Si, its effect deteriorates if it is contained in excess, so the upper limit of Mn content is specified to 2.0 mass% did.

S:0.0001〜0.007質量%
三層構造を有するTiN系介在物を生成させるために重要な成分である。(c)層のTiSを生成させるためには0.0001質量%以上のSが必要である。しかし、0.007質量%を超えるSが含有されると、(a)層の介在物中のMg/Sが5よりも小さくなってしまい、等軸晶の核生成サイトとして有効な形態の(b)層までのTiNが必要量生成できなくなる。したがって、Sの含有量は0.0001〜0.007質量%の範囲に規定した。
S: 0.0001 to 0.007 mass%
This is an important component for producing TiN inclusions having a three-layer structure. (C) In order to generate TiS of the layer, 0.0001% by mass or more of S is required. However, when more than 0.007 mass% S is contained, Mg / S in the inclusions in the layer (a) becomes smaller than 5 and is in an effective form as an equiaxed nucleation site ( b) The required amount of TiN up to the layer cannot be generated. Therefore, the content of S is specified in the range of 0.0001 to 0.007% by mass.

Cr:9〜40質量%
フェライト系ステンレス鋼の耐食性を維持するために重要な合金成分であり、9質量%以上の含有が必要とされる。しかし、40質量%を超える多量のCrを含有させると製造性が悪化する。このため、Cr含有量は、9〜40質量%の範囲に規定した。
Nb:0.05〜0.8質量%
三層構造を有するTiN系介在物の(c)層のNb(C+N)を生成させるのに必要な元素であり0.05質量%以上の含有が必要とされる。しかし、0.8質量%を超える過剰な含有は、製造性や加工性を低下させることになるので、Nb含有量は0.8質量%以下に規定した。
Cr: 9-40 mass%
It is an important alloying component for maintaining the corrosion resistance of ferritic stainless steel, and it is required to contain 9% by mass or more. However, if a large amount of Cr exceeding 40% by mass is contained, productivity is deteriorated. For this reason, Cr content was prescribed | regulated in the range of 9-40 mass%.
Nb: 0.05 to 0.8 mass%
It is an element necessary for generating Nb (C + N) in the (c) layer of the TiN-based inclusion having a three-layer structure, and it is necessary to contain 0.05% by mass or more. However, an excessive content exceeding 0.8% by mass decreases the manufacturability and workability, so the Nb content is regulated to 0.8% by mass or less.

B:0.0001〜0.03質量%
三層構造を有するTiN系介在物の(c)層のTiS層を生成させるために間接的に必要な元素であり、0.0001質量%以上の含有によりSの粒界偏析が抑制され、(c)層のTiSが生成するようになる。また、製品の二次加工性を改善する作用も有するが、0.03質量%を超える過剰の含有は、逆に熱間加工性や二次加工性を悪化させる原因となる。このため、B含有量は0.0001〜0.03質量%の範囲とする。
B: 0.0001 to 0.03 mass%
It is an element that is indirectly necessary for generating the TiS layer of the (c) layer of TiN-based inclusions having a three-layer structure, and inclusion of 0.0001% by mass or more suppresses grain boundary segregation of S ( c) TiS of layer is generated. Moreover, although it has the effect | action which improves the secondary workability of a product, excessive inclusion exceeding 0.03 mass% will cause a hot workability and a secondary workability to deteriorate conversely. For this reason, B content shall be the range of 0.0001-0.03 mass%.

Al:0.05質量%以下
三層構造を有するTiN系介在物の核となる(a)層の形態に影響を及ぼす成分である。等軸晶の核生成サイトとして有効な形態の(b)層までのTiNを生成させるためにはAl含有量を0.05質量%以下に規制する必要がある。Al含有量が0.05質量%を超えると、介在物中のMg/Sの質量比が5を下回り、必要量の(b)層までのTiNの生成が困難となる。
Al: 0.05% by mass or less Al is a component that affects the form of the layer (a) serving as the nucleus of a TiN-based inclusion having a three-layer structure. In order to produce TiN up to the (b) layer in a form effective as a nucleation site for equiaxed crystals, the Al content needs to be regulated to 0.05% by mass or less. When the Al content exceeds 0.05% by mass, the mass ratio of Mg / S in the inclusion is less than 5, and it becomes difficult to generate TiN up to the required amount of the (b) layer.

Mg:0.0001〜0.001質量%
三層構造を有するTiN系介在物の核となる(a)層の形態に影響を及ぼす成分である。等軸晶の核生成サイトとして有効な形態の(b)層までのTiNを生成させるためには、0.0001質量%以上のMgが必要である。Mg含有量が0.001質量%を超えるとMgSが生成してしまい、Mg/Sの質量比が5を下回り、必要量の(b)層までのTiNの生成が困難となる。また、(c)層にTiSも生成できなくなる。したがって、Mg含有量の上限は0.001質量%に規定した。
精錬容器としてMgO含有率が40質量%以上の耐火物を溶鋼接触面の50%以上に用いたものを使用することにより、耐火物からのMgの溶解は0.001質量%以下に調整することができる。
Mg: 0.0001 to 0.001 mass%
It is a component that affects the form of the layer (a) which is the nucleus of the TiN-based inclusion having a three-layer structure. In order to produce TiN up to layer (b) in an effective form as an equiaxed nucleation site, 0.0001% by mass or more of Mg is required. When the Mg content exceeds 0.001% by mass, MgS is generated, and the mass ratio of Mg / S is less than 5, making it difficult to generate TiN up to the required amount of the (b) layer. Further, TiS cannot be generated in the layer (c). Therefore, the upper limit of the Mg content is regulated to 0.001% by mass.
By using a refractory with a MgO content of 40% by mass or more as 50% or more of the molten steel contact surface as a refining vessel, the dissolution of Mg from the refractory shall be adjusted to 0.001% by mass or less. Can do.

Ca:0.001質量%以下
三層構造を有するTiN系介在物の核となる(a)層の形態に影響を及ぼす成分である。等軸晶の核生成サイトとして有効な形態の(b)層までのTiNを生成させるためには、0.001質量%以上のCaが必要である。Ca含有量が0.001質量%を超えると、Mg/Sの質量比が5を下回り、必要量の(b)層までのTiNの生成が困難となる。
Ca: 0.001% by mass or less Ca is a component that affects the form of the layer (a) serving as the nucleus of the TiN-based inclusion having a three-layer structure. In order to generate TiN up to the layer (b) in an effective form as an equiaxed nucleation site, 0.001% by mass or more of Ca is necessary. If the Ca content exceeds 0.001% by mass, the Mg / S mass ratio is less than 5, making it difficult to produce TiN up to the required amount of the (b) layer.

TiとNの濃度積(Ti質量%×N質量%):0.0007〜0.004
Tiは、凝固時に生成する(b)層までのTiNを溶鋼中に生成させる上で必要な合金成分である。本成分系では、Al,Mg,Ca,S含有量の規制によってTiNの核となる(a)層のMg/Sの質量比が5以下の酸化物,硫化物系介在物が溶鋼中に分散しているので、この介在物を核として(b)層までのTiNが生成する。等軸晶の核生成サイトとして有効で必要量の(b)層までのTiNを生成させるためには、TiとNの濃度積(Ti質量%×N質量%)を0.0007以上に調整する必要がある。しかし、過剰のTi,Nが含まれると、TiNがクラスターとなって、鋳造時のノズル閉塞、表面疵等の原因となることから、TiとNの濃度積の上限は0.004に設定した。
Concentration product of Ti and N (Ti mass% × N mass%): 0.0007 to 0.004
Ti is an alloy component necessary for producing TiN up to the (b) layer produced during solidification in molten steel. In this component system, oxides and sulfide inclusions having a Mg / S mass ratio of 5 or less in the layer (a), which is the core of TiN due to restrictions on the content of Al, Mg, Ca, and S, are dispersed in the molten steel. Therefore, TiN up to the layer (b) is generated using this inclusion as a nucleus. In order to generate TiN up to the (b) layer that is effective as a nucleation site for equiaxed crystals, the concentration product of Ti and N (Ti mass% × N mass%) is adjusted to 0.0007 or more. There is a need. However, if excessive Ti and N are contained, TiN becomes a cluster and causes nozzle clogging and surface flaws during casting, so the upper limit of the concentration product of Ti and N is set to 0.004. .

Zr:0.5質量%以下
必要に応じて添加される合金元素である。鋼中のC,Nを固定して析出物を生成し、耐食性と加工性を改善する作用を有する。しかし、0.5質量%を超える過剰添加は、製造性や加工性を低下させることになるので、添加する場合も0.5質量%以下とする。
V:0.5質量%以下
必要に応じて添加される合金元素である。鋼中のC,Nを固定して析出物を生成し、耐食性と加工性を改善する作用を有する。しかし、0.5質量%を超える過剰添加は、製造性や加工性を低下させることになるので、添加する場合も0.5質量%以下とする。
REM(希土類元素):0.1質量%以下
必要に応じて添加される合金元素である。熱間加工性を改善する作用を有する。しかし、0.1質量%を超える過剰添加は、逆に熱間加工性を低下させることになるので、REM(希土類元素)を添加する場合も0.1質量%以下とする。
Zr: 0.5 mass% or less An alloy element added as necessary. Fixes C and N in steel to form precipitates, and has the effect of improving corrosion resistance and workability. However, since excessive addition exceeding 0.5 mass% will reduce manufacturability and workability, also when adding, it shall be 0.5 mass% or less.
V: 0.5 mass% or less An alloy element added as necessary. Fixes C and N in steel to form precipitates, and has the effect of improving corrosion resistance and workability. However, since excessive addition exceeding 0.5 mass% will reduce manufacturability and workability, also when adding, it shall be 0.5 mass% or less.
REM (rare earth element): 0.1% by mass or less An alloy element added as necessary. Has the effect of improving hot workability. However, excessive addition exceeding 0.1 mass% conversely reduces hot workability, so even when REM (rare earth element) is added, the content is made 0.1 mass% or less.

Mo:2.0質量%以下
必要に応じて添加される合金元素である。耐食性や強度を向上させる作用を有する。しかし、2.0質量%を超える過剰添加は、生産性や加工性を低下させることになるので、添加する場合も2.0質量%以下とする。
Cu:2.0質量%以下
必要に応じて添加される合金元素である。耐食性や強度を向上させる作用を有する。しかし、2.0質量%を超える過剰添加は、生産性や加工性を低下させることになるので、添加する場合も2.0質量%以下とする。
Mo: 2.0% by mass or less Mo is an alloy element added as necessary. Has the effect of improving corrosion resistance and strength. However, excessive addition exceeding 2.0% by mass decreases productivity and workability, so even when added, the content is made 2.0% by mass or less.
Cu: 2.0% by mass or less An alloy element added as necessary. Has the effect of improving corrosion resistance and strength. However, excessive addition exceeding 2.0% by mass decreases productivity and workability, so even when added, the content is made 2.0% by mass or less.

他の成分
以上の合金成分の他に、Y:0.05質量%以下,W:1.0質量%以下,Ag:0.5質量%以下,Sn:0.5質量%以下,Co:1.0質量%以下,Zn:0.5質量%以下等の1種又は2種以上を添加してもよい。不純物として含まれるPは0.05質量%以下に規制されている限り特性に影響を及ぼすことはない。
In addition to other alloy components, Y: 0.05% by mass or less, W: 1.0% by mass or less, Ag: 0.5% by mass or less, Sn: 0.5% by mass or less, Co: 1 You may add 1 type (s) or 2 or more types, such as 0.0 mass% or less and Zn: 0.5 mass% or less. As long as P contained as an impurity is regulated to 0.05% by mass or less, it does not affect the characteristics.

三層構造を有するTiN系介在物の(a)層:Mg/Sの質量比が5以上の介在物
等軸晶の核生成サイトとして有効な(b)層までのTiNを分散させる上では、(a)層の核となるMg/S質量比≧5の酸化物,硫化物系介在物を生成させることが重量である。介在物のMg/S質量比が5に満たないと高等軸晶率化が望めない。
Mg/Sの質量比は、脱酸剤による脱酸を行った後に、3分間以上のガス攪拌を行い、脱Sを行った後に成分調整を行い、Al,Mg,Ca,Sを規定の成分範囲内にすることにより達成できる。
なお、Mg/S質量比≧5の介在物は、Mg,S以外にAl,Ca,O,Si,Mn,Cr等が含まれている酸化物,硫化物であり、Mg/Sの質量比以外、含有量等の制約は加わらない。また、介在物の組成は、例えばX線マイクロアナライザーを用いた定量分析で測定できる。
(A) layer of TiN-based inclusions having a three-layer structure: When dispersing TiN up to (b) layer effective as an nucleation site of an equiaxed crystal with a mass ratio of Mg / S of 5 or more , (A) It is weight to generate oxides and sulfide inclusions having a Mg / S mass ratio ≧ 5 as the core of the layer. If the Mg / S mass ratio of the inclusions is less than 5, high equiaxed crystallinity cannot be expected.
The mass ratio of Mg / S is determined by degassing with a deoxidizing agent, then stirring the gas for 3 minutes or more, adjusting the components after desulfurizing S, and setting Al, Mg, Ca, and S as specified components. This can be achieved by making it within the range.
Inclusions with Mg / S mass ratio ≧ 5 are oxides and sulfides containing Al, Ca, O, Si, Mn, Cr, etc. in addition to Mg and S, and the mass ratio of Mg / S. Other than the above, there are no restrictions on content. The composition of inclusions can be measured by quantitative analysis using, for example, an X-ray microanalyzer.

三層構造を有するTiN系介在物の個数:10個/mm 2 以上
高等軸晶率化に及ぼす三層構造を有するTiN系介在物の影響は、凝固段階に生成する(b)層のTiNを形成した介在物の数によって決まる。また、凝固後の冷却,熱間圧延,冷間圧延を経て、(c)層のNb(C+N)及び/又はTiC及び/又はTiSが生成し最終的に三層構造を有するTiN系介在物となり、この(c)層がリジング性改善,プレス成形性改善,及び二次加工脆性改善にも効果的である。その改善効果は、例えばX線マイクロアナライザーを用いた定量分析で測定して(a),(b)及び(c)層の条件を満たす三層構造を有するTiN系介在物の数が10個/mm2以上の割合で最終的に成形品鋼断面に分散しているとき、顕著に現れる。
なお、(b)層TiNには、微量のC,O,S等を含んでいても、耐リジング性,深絞りを主体としたプレス成形性及び耐二次加工脆性に及ぼす三層構造TiN系介在物の影響は変わらない。また、(c)層は、Nb(C+N)及び/又はTiC及び/又はTiSが主体であるが、他の炭窒化物生成元素を含んでいても差し支えない。
Number of TiN-based inclusions having a three-layer structure: 10 pieces / mm 2 or more The influence of TiN-based inclusions having a three-layer structure on increasing the equiaxed crystal ratio is caused by the formation of TiN in the solidification stage (b) It depends on the number of inclusions formed. In addition, after solidification cooling, hot rolling, and cold rolling, (c) layer Nb (C + N) and / or TiC and / or TiS is formed, and finally becomes a TiN-based inclusion having a three-layer structure. The layer (c) is also effective in improving ridging, press formability, and secondary work brittleness. The improvement effect is, for example, that the number of TiN-based inclusions having a three-layer structure satisfying the conditions of the layers (a), (b) and (c) measured by quantitative analysis using an X-ray microanalyzer is 10 / mm 2. It appears remarkably when it is finally dispersed in the steel cross section of the molded product at the above ratio.
In addition, even if the TiN of the layer (b) contains a small amount of C, O, S, etc., it has a three-layer structure TiN which affects ridging resistance, press formability mainly composed of deep drawing, and secondary work brittleness resistance. The effect of system inclusions remains the same. The layer (c) is mainly composed of Nb (C + N) and / or TiC and / or TiS, but may contain other carbonitride-forming elements.

三層構造を有するTiN系介在物の分散割合は、真空雰囲気又は不活性雰囲気において、脱酸を行った後に、100〜500NL/分の流量でガス攪拌を3分以上行い、その金属チタンあるいはフェロチタン等のTi含有合金を添加することによって制御できる。TiとNの濃度積を大きくする、すなわちTi含有合金の添加量を増やす、あるいは攪拌ガスにN2含有ガスを用いると、TiN系介在物の分散個数は増加する。 The dispersion ratio of the TiN inclusion having a three-layer structure is such that after deoxidation in a vacuum atmosphere or an inert atmosphere, gas stirring is performed for 3 minutes or more at a flow rate of 100 to 500 NL / min, and the titanium or ferrometal It can be controlled by adding a Ti-containing alloy such as titanium. Increasing the concentration product of Ti and N, that is, increasing the addition amount of the Ti-containing alloy, or using an N 2 -containing gas as the stirring gas increases the number of dispersed TiN-based inclusions.

冷延工程における仕上げ圧延前の焼鈍:(880〜980℃)×均熱20秒以上
本発明は、三層構造を有するTiN系介在物の形成を最大の特徴とするものである。耐リジング性,深絞りを主体としたプレス成形及び耐二次加工脆性の改善に三層構造を有するTiN系介在物を有効に活用するためには、(b)層までのTiNに(c)層のNb(C+N)及び/又はTiC及び/又はTiS層を一様に析出させることが必要である。そのためには、冷延工程において、880〜980℃で均熱20秒以上の焼鈍を施す必要がある。均熱温度が、880℃に満たないと(b)層までのTiNに一様に(c)層が析出せず、980℃を超えると(c)層が一部再固溶する。また均熱時間が20秒に達しないと、(b)層までのTiNに一様に(c)層が析出しない。
この(c)層析出の熱処理は、深絞り性を主体とするプレス成形性を改善するために、仕上げ圧延前の焼鈍時に行う。常法の連続焼鈍酸洗ラインを通板する仕上げ焼鈍において、(c)層のNb(C+N)及び/又はTiC及び/又はTiS層が一部再固溶するが、(b)層までのTiNの周囲から完全に固溶することはない。
Annealing before finish rolling in the cold rolling step: (880 to 980 ° C.) × soaking for 20 seconds or more The present invention is characterized by the formation of TiN-based inclusions having a three-layer structure. In order to effectively utilize TiN-based inclusions having a three-layer structure for improving ridging resistance, deep drawing mainly for press forming and secondary work brittleness resistance, (b) TiN up to layer (c) It is necessary to deposit the Nb (C + N) and / or TiC and / or TiS layers of the layer uniformly. For this purpose, it is necessary to perform annealing at 880 to 980 ° C. for 20 seconds or more in the cold rolling process. If the soaking temperature is less than 880 ° C., the (c) layer does not deposit uniformly on TiN up to the (b) layer, and if it exceeds 980 ° C., the (c) layer partially dissolves again. If the soaking time does not reach 20 seconds, the (c) layer is not uniformly deposited on the TiN up to the (b) layer.
This heat treatment for layer deposition (c) is performed at the time of annealing before finish rolling in order to improve the press formability mainly composed of deep drawability. In finish annealing in which a conventional continuous annealing pickling line is passed, the Nb (C + N) and / or TiC and / or TiS layer of the (c) layer is partially re-dissolved, but the TiN up to the (b) layer It does not dissolve completely from the surroundings.

表1に示す成分組成を有するフェライト系ステンレス鋼(80トン/チャージ)を電気炉,転炉,VOD工程を経て溶製し、スラブに連続鋳造した。VODプロセスの真空精錬では、真空度を50〜200Paに維持した真空炉内でポーラスプラグを通じて溶鋼中にArを100〜500NL/分の流量で吹き込んだ。精錬容器には、表2に示すように、鋼番号8を除いてMgOを40%以上含むマグドロ系及びマグクロ系耐火物を、溶鋼接触面全体の50%以上に使用したものを用いた。鋼番号8には、MgOを30%含むマグドロ系及びマグクロ系耐火物を溶鋼接触面全体の40%に使用したものを用いた。
得られたスラブから切り出した試験片の、スラブの厚さに対する等軸晶帯の厚みの割合を数点測定し、測定値を平均化して等軸晶率を算出した。算出結果の平均値を等軸晶率として表3に示した。
Ferritic stainless steel (80 tons / charge) having the composition shown in Table 1 was melted through an electric furnace, converter, and VOD process, and continuously cast into a slab. In the vacuum refining of the VOD process, Ar was blown into the molten steel at a flow rate of 100 to 500 NL / min through a porous plug in a vacuum furnace maintained at a vacuum degree of 50 to 200 Pa. As shown in Table 2, the refining vessel used was a Magdro-type refractory containing 40% or more of MgO and Magcro-type refractory except for Steel No. 8, which was used for 50% or more of the entire molten steel contact surface. Steel No. 8 used was a magdro and magcro refractory containing 30% MgO used for 40% of the entire molten steel contact surface.
Several ratios of the thickness of the equiaxed crystal zone to the slab thickness of the test piece cut out from the obtained slab were measured, and the measured values were averaged to calculate the equiaxed crystal ratio. The average value of the calculation results is shown in Table 3 as the equiaxed crystal ratio.

次いで、常法に従ってスラブを熱延し、熱延板を製造した。冷間圧延及び焼鈍を組合せ、板厚0.8mmの冷延焼鈍板を製造した。
各冷延焼鈍板について、以下の試験で三層構造のTiN系介在物の分散割合、耐リジング性、耐二次加工性の評価を行った。
Next, the slab was hot-rolled according to a conventional method to produce a hot-rolled sheet. Cold rolling and annealing were combined to produce a cold rolled annealed plate with a thickness of 0.8 mm.
Each cold-rolled annealed plate was evaluated for the dispersion ratio, ridging resistance, and secondary workability of the three-layered TiN inclusions in the following tests.

Figure 0003872067
Figure 0003872067

Figure 0003872067
Figure 0003872067

三層構造を有するTiN系介在物の形態及び分散状態
冷延焼鈍板から切出された試験片の圧延方向及び板厚方向に平行な断面に研磨し、X線マイクロアナライザーを用いて(a)層の核となる介在物及び(c)層について定量分析した。分析結果から、(a)層がMg/Sの質量比が5以上の介在物であり、しかも(b)層のTiNと(c)層として一様なNb(C+N)及び/又はTiC及び/又はTiS層が生成している介在物を三層構造を有するTiN系介在物とした。
分析は少なくとも10個以上の全TiNに対して行い、三層構造を有するTiN系介在物の全TiNに対する割合を求めた。また、光学顕微鏡で介在物の分散個数をカウントし、単位面積当りの全TiNの分散個数を算出した。そして三層構造を有するTiN系介在物の割合と単位面積当りの全TiNの分散個数の積として、三層構造を有するTiN系介在物の分散割合を算出した。
The shape of the TiN inclusions having a three-layer structure and a dispersed state of the specimens cut from the cold-rolled annealed plate are polished to a cross section parallel to the rolling direction and the plate thickness direction, and using an X-ray microanalyzer (a) The inclusions serving as the core of the layer and (c) layer were quantitatively analyzed. From the analysis results, (a) the layer is an inclusion having an Mg / S mass ratio of 5 or more, and (b) TiN of the layer and (c) uniform Nb (C + N) and / or TiC and / or Alternatively, the inclusion in which the TiS layer is generated is a TiN inclusion having a three-layer structure.
The analysis was performed on at least 10 total TiNs, and the ratio of TiN inclusions having a three-layer structure to the total TiNs was determined. Further, the number of dispersed inclusions was counted with an optical microscope, and the number of dispersed TiN per unit area was calculated. Then, the dispersion ratio of the TiN-based inclusions having the three-layer structure was calculated as the product of the ratio of the TiN-based inclusions having the three-layer structure and the number of dispersed TiNs per unit area.

耐リジング性
冷延焼鈍板から切出されたJIS5号引張試験片に20%の引張変形を付与した後、試験片表面の目視観察でリジング性の判定を行った。
リジングが発生しないもしくは非常に軽微であるものを判定1とし、リジングの悪化とともに5段階で評価した。リジング判定2以下のものが実用上問題のないリジングレベルといえる。
After imparting 20% tensile deformation to a JIS No. 5 tensile test piece cut out from a ridging-resistant cold-rolled annealed plate, the ridging property was determined by visual observation of the surface of the test piece.
A case in which ridging did not occur or was very slight was determined as a decision 1, and was evaluated in 5 stages along with deterioration of ridging. A ridging level of 2 or less can be said to be a ridging level having no practical problem.

限界絞り比
実質的なプレス成形性を評価するために、成形試験機においてブランク径を変えてカップ成形試験を行い、各冷延焼鈍板の限界絞り比(LDR)を求めた。ポンチ直径は40mm,ポンチRは3mm,ダイス直径は42mm,ダイスRは5mmであり、ステンレス鋼用プレス油を冷延焼鈍板裏表面に塗布し、試験を行った。
本条件にて、従来の鋼板では限界絞り比が2.1程度であったので、限界絞り比が2.3以上を優れたプレス成形性と判断した。
Limit drawing ratio In order to evaluate the substantial press formability, a cup forming test was conducted by changing the blank diameter in a forming tester, and the drawing ratio (LDR) of each cold-rolled annealed plate was obtained. The punch diameter was 40 mm, the punch R was 3 mm, the die diameter was 42 mm, and the die R was 5 mm. A stainless steel press oil was applied to the back surface of the cold-rolled annealed plate and tested.
Under these conditions, the limit drawing ratio of the conventional steel sheet was about 2.1, so that the limit drawing ratio of 2.3 or more was judged to be excellent press formability.

耐二次加工脆性
耐二次加工脆性試験は、3段絞りにより絞り比4の直径15mmのカップを作製した。作製したカップを耳部を切断して−10℃に保持し、その後、当該カップを頂点が5度の円錐ポンチ上に被せ、その上に1kgの重鎮を高さ20cmから落下させることにより、拡管方向に衝撃的な歪みを加え、カップ側壁部に現れる脆性割れの発生の有無を調べた。
衝撃的な歪みの付与は5個のカップについて行い、全てにおいて割れ発生がなかった場合を○,2mm以下の軽微な割れの発生が2個以下のものを△,2mm以上の割れが1個でも生じた場合を×として判断した。○を実用上問題のないレベルと判断した。
Secondary work brittleness resistance In the secondary work brittleness resistance test, a cup having a drawing ratio of 4 and a diameter of 15 mm was prepared by three-stage drawing. The prepared cup is cut at the ear and kept at -10 ° C, and then the cup is placed on a conical punch having a vertex of 5 degrees, and 1 kg of heavyweight is dropped from the height of 20 cm to expand the tube. A shocking strain was applied in the direction, and the presence or absence of brittle cracks appearing on the side wall of the cup was examined.
Impulsive strain is applied to 5 cups. If there are no cracks in all, ○, occurrence of minor cracks of 2 mm or less is △, and cracks of 2 mm or more are 1 When it occurred, it was judged as x. ○ was judged as a practically acceptable level.

等軸晶率,仕上げ圧延前焼鈍の焼鈍温度及び均熱時間,(a)層が質量比でMg/Sが5以上の介在物である三層構造を有するTiN系介在物の単位面積当りの個数,並びに材料特性の評価結果を併せて表3に示す。
成分組成が本発明範囲内の鋼番号1〜5(本発明例)で仕上げ冷延前の焼鈍条件が、温度880〜980℃で均熱20秒以上の条件を満たすサンプル番号1A,2A,2B,3A,4A,5A及び5Bでは、(a)層が質量比でMg/Sが5以上の介在物である三層構造のTiN系介在物の個数が10個/mm2以上となり、冷延焼鈍板のリジング判定,限界絞り比及び耐二次加工脆性のいずれの評価も良好であった。
Equiaxial crystal ratio, annealing temperature and soaking time of annealing before finish rolling, (a) per unit area of TiN-based inclusion having a three-layer structure in which the layer is an inclusion with a mass ratio of Mg / S of 5 or more Table 3 shows the evaluation results of the number and material characteristics.
Sample numbers 1A, 2A, and 2B where the composition is steel numbers 1 to 5 (examples of the present invention) within the scope of the present invention and the annealing conditions before finish cold rolling satisfy the conditions of a temperature of 880 to 980 ° C and a soaking rate of 20 seconds or more. , 3A, 4A, 5A, and 5B, the number of TiN-based inclusions having a three-layer structure in which (a) layer is an inclusion having a mass ratio of Mg / S of 5 or more is 10 pieces / mm 2 or more, and cold rolling All evaluations of ridging judgment, limit drawing ratio and secondary work brittleness resistance of the annealed sheet were good.

これに対して、成分組成が本発明範囲内の鋼番号1〜5(本発明例)であっても、仕上げ冷延前の焼鈍条件が規定の範囲を外れたサンプル番号1B,1C,2C,2D,2E,3B,3C,4Bでは、請求項で規定しているような三層構造を有するTiN系介在物の出現個数が不足し、所望の限界絞り比等を得ることができていない。
また、鋼番号6はB含有量が低くCa含有量が高い。鋼番号7はAl含有量が高くTiとNの濃度積(Ti質量%×N質量%)が低くなっている。鋼番号8は、使用した精錬容器の耐火物はMgO含有率が低く、しかも溶鋼接触面でのMgO系耐火物の使用率が低かったために、鋼中のMg含有量が低かった。さらにまた、鋼番号9はB含有量が低くTiとNの濃度積(Ti質量%×N質量%)も低くかった。このように、本発明で規定している成分組成範囲を満たしていない鋼では、規定した条件の仕上げ圧延前焼鈍を施しても、(a)層が質量比でMg/Sが5以上の介在物である三層構造のTiN系介在物の出現個数が少なくなっている。このため、限界絞り比が小さく、耐二次加工脆性の評価も悪くなっている。しかも等軸晶率も低くなっているためリジング判定も悪くなっている。
On the other hand, even if the component composition is steel numbers 1 to 5 (invention examples) within the scope of the present invention, the annealing conditions before finish cold rolling were out of the specified range. Sample numbers 1B, 1C, 2C, In 2D, 2E, 3B, 3C, and 4B, the number of TiN inclusions having a three-layer structure as defined in the claims is insufficient, and a desired limit drawing ratio or the like cannot be obtained.
Steel No. 6 has a low B content and a high Ca content. Steel No. 7 has a high Al content and a low concentration product of Ti and N (Ti mass% × N mass%). Steel No. 8 had a low MgO content in the refractory used in the smelting vessel and a low MgO refractory usage rate on the molten steel contact surface, so the Mg content in the steel was low. Furthermore, Steel No. 9 had a low B content and a low concentration product of Ti and N (Ti mass% × N mass%). As described above, in steel that does not satisfy the component composition range specified in the present invention, even if annealing is performed before finish rolling under the specified conditions, (a) the layer has a mass ratio of Mg / S of 5 or more. The number of TiN inclusions having a three-layer structure, which is an object, has decreased. For this reason, the limit drawing ratio is small, and the evaluation of secondary work brittleness resistance is also poor. Moreover, since the equiaxed crystal ratio is low, the ridging judgment is also poor.

Figure 0003872067
Figure 0003872067

単独型TiN及び二層構造のTiN系介在物の断面を説明する図The figure explaining the section of single type TiN and the TiN inclusion of the two-layer structure 三層構造のTiN系介在物の断面を説明する図The figure explaining the section of the TiN inclusion of the three-layer structure

符号の説明Explanation of symbols

1:酸化物・硫化物系介在物 2:TiN 3:Nb(C+N),TiC,TiS 1: Oxide / sulfide inclusions 2: TiN 3: Nb (C + N), TiC, TiS

Claims (3)

C:0.05質量%以下,Si:0.01〜2.0質量%,Mn:2.0質量%以下,S:0.0001〜0.007質量%,Cr:9.0〜40.0質量%,Nb:0.05〜0.8質量%,B:0.0001〜0.03質量%,Al:0.05質量%以下,Mg:0.0001〜0.001質量%,Ca:0.001質量%以下を含み、かつTiとNの濃度積(Ti質量%×N質量%)が0.0007〜0.004の関係を満たすように調整され、残部がFe及び不可避的不純物からなる組成を有するとともに、下記(a),(b),(c)で示す層が内層から(a),(b),(c)の順で積層された三層構造のTiN系介在物が、鋼板断面において10個/mm2以上の頻度で存在することを特徴とする耐リジング性,成形性及び耐二次加工脆性に優れたフェライト系ステンレス鋼板。
(a)層:質量比でMg/S≧5を満足する酸化物及び硫化物からなる介在物
(b)層:TiN
(c)層:Nb(C+N)及び/又はTiC及び/又はTiS
C: 0.05 mass% or less, Si: 0.01-2.0 mass%, Mn: 2.0 mass% or less, S: 0.0001-0.007 mass%, Cr: 9.0-40. 0 mass%, Nb: 0.05 to 0.8 mass%, B: 0.0001 to 0.03 mass%, Al: 0.05 mass% or less, Mg: 0.0001 to 0.001 mass%, Ca : 0.001% by mass or less, and the concentration product of Ti and N (Ti mass% × N mass%) is adjusted to satisfy the relationship of 0.0007 to 0.004, with the balance being Fe and inevitable impurities And a TiN-based inclusion having a three-layer structure in which the following layers (a), (b), and (c) are laminated in the order of (a), (b), and (c): Is present at a frequency of not less than 10 pieces / mm 2 in the cross section of the steel sheet, and ridging resistance, formability and Ferritic stainless steel plate with excellent secondary processing brittleness.
(A) Layer: inclusion comprising oxide and sulfide satisfying Mg / S ≧ 5 by mass ratio (b) Layer: TiN
(C) Layer: Nb (C + N) and / or TiC and / or TiS
鋼成分として、さらにZr:0.5質量%以下,V:0.5質量%以下,REM:0.1質量%以下,Mo:2.0質量%以下,Cu:2.0質量%以下の1種又は2種以上を含むものである請求項1に記載の耐リジング性,成形性及び耐二次加工脆性に優れたフェライト系ステンレス鋼板。   As steel components, Zr: 0.5 mass% or less, V: 0.5 mass% or less, REM: 0.1 mass% or less, Mo: 2.0 mass% or less, Cu: 2.0 mass% or less The ferritic stainless steel sheet excellent in ridging resistance, formability, and secondary work brittleness resistance according to claim 1, wherein the ferritic stainless steel sheet is one or more kinds. 請求項1又は2に記載の組成を有する鋼の製鋼段階において、精錬容器としてMgO含有率が40質量%以上の耐火物を溶鋼接触面の50%以上に用いたものを使用し、冷間圧延工程において、仕上げ圧延前に880〜980℃で均熱20秒以上の焼鈍を行うことを特徴とする請求項1又は2に記載の耐リジング性,成形性及び耐二次加工脆性に優れたフェライト系ステンレス鋼板の製造方法。   In the steelmaking stage of the steel having the composition according to claim 1 or 2, using a refractory having an MgO content of 40% by mass or more as a refining vessel for 50% or more of the molten steel contact surface, cold rolling The ferrite excellent in ridging resistance, formability and secondary work brittleness resistance according to claim 1 or 2, wherein annealing is performed at 880 to 980 ° C for 20 seconds or more before soaking in the process. Of manufacturing stainless steel sheet.
JP2004084029A 2004-03-23 2004-03-23 Ferritic stainless steel sheet with excellent ridging resistance, formability and secondary work brittleness resistance and method for producing the same Expired - Fee Related JP3872067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084029A JP3872067B2 (en) 2004-03-23 2004-03-23 Ferritic stainless steel sheet with excellent ridging resistance, formability and secondary work brittleness resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084029A JP3872067B2 (en) 2004-03-23 2004-03-23 Ferritic stainless steel sheet with excellent ridging resistance, formability and secondary work brittleness resistance and method for producing the same

Publications (3)

Publication Number Publication Date
JP2005272865A JP2005272865A (en) 2005-10-06
JP2005272865A5 JP2005272865A5 (en) 2006-02-16
JP3872067B2 true JP3872067B2 (en) 2007-01-24

Family

ID=35172846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084029A Expired - Fee Related JP3872067B2 (en) 2004-03-23 2004-03-23 Ferritic stainless steel sheet with excellent ridging resistance, formability and secondary work brittleness resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3872067B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266706A (en) * 2007-04-19 2008-11-06 Nisshin Steel Co Ltd Method for continuously casting ferritic stainless steel slab
JP6837600B2 (en) 2018-03-30 2021-03-03 日鉄ステンレス株式会社 Ferritic stainless steel with excellent rigging resistance
JP6617182B1 (en) * 2018-09-05 2019-12-11 日鉄ステンレス株式会社 Ferritic stainless steel sheet

Also Published As

Publication number Publication date
JP2005272865A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
CN109642294B (en) Steel sheet and method for producing same
JP4725415B2 (en) Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof
WO2016068139A1 (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
US9771638B2 (en) Cold-rolled steel sheet
TWI473887B (en) High strength cold rolled steel sheet having excellent deep drawing property and bake hardening property and a method for manufacturing the same
TW200912013A (en) High tensile-strength galvanized steel sheet and process for manufacturing high tensile-strength galvanized steel sheet
WO1999053113A1 (en) Steel sheet for can and manufacturing method thereof
EP1688510B1 (en) Thin steel sheet excelling in surface property, moldability and workability and process for producing the same
CN114502760B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
TW201437389A (en) High strength hot-rolled steel sheet and method for producing the same
JP2018024908A (en) Steel sheet and method of manufacturing the steel sheet
JP4051778B2 (en) Steel plate for cans suitable for 3-piece cans with good surface properties
JP3872067B2 (en) Ferritic stainless steel sheet with excellent ridging resistance, formability and secondary work brittleness resistance and method for producing the same
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
CN111549285B (en) Ultra-low carbon tin plate with excellent corrosion resistance and preparation method thereof
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP2005307234A (en) Ferritic stainless steel sheet having excellent ridging resistance and surface characteristic and method for manufacturing the same
JP4259097B2 (en) Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same
TW202006155A (en) Steel plate
JP2007186789A (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability, and its manufacturing method
JP2004204252A (en) Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR
KR101169510B1 (en) Cold-rolled steel sheet, galvannealed steel sheet and processes for production of both
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JP2002003993A (en) High strength steel sheet and high strength galvanized steel sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees