JP3871642B2 - Steam turbine system - Google Patents

Steam turbine system Download PDF

Info

Publication number
JP3871642B2
JP3871642B2 JP2002368236A JP2002368236A JP3871642B2 JP 3871642 B2 JP3871642 B2 JP 3871642B2 JP 2002368236 A JP2002368236 A JP 2002368236A JP 2002368236 A JP2002368236 A JP 2002368236A JP 3871642 B2 JP3871642 B2 JP 3871642B2
Authority
JP
Japan
Prior art keywords
pressure
steam turbine
steam
valve
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368236A
Other languages
Japanese (ja)
Other versions
JP2004197672A (en
Inventor
洋 藤本
利雄 西田
幸男 平中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002368236A priority Critical patent/JP3871642B2/en
Publication of JP2004197672A publication Critical patent/JP2004197672A/en
Application granted granted Critical
Publication of JP3871642B2 publication Critical patent/JP3871642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コジェネレーションシステムの発電装置駆動用のガスエンジンからの排熱などによりタービンを駆動する蒸気タービンシステムに関する。
【0002】
【従来の技術】
このような蒸気タービンシステムとしては、従来、ガスエンジンから排出される高温排ガスをボイラに供給し、ボイラでアンモニア‐水系溶液の高温蒸気を発生させ、その高温蒸気で蒸気タービンを駆動し、蒸気タービンに連動連結した圧縮機などを駆動するように構成したものがあった(特許文献1、図1参照)。
【0003】
上記システムにおいて、ガスエンジンの停止など、高温排ガスの発生が停止されて蒸気タービンの運転を停止したときに、蒸気タービンとボイラおよび復水器それぞれを接続する蒸気供給管および蒸気排出管それぞれに設けた開閉弁を閉じ、蒸気タービンの回転軸をシール状態で回転可能に支持する軸シール機構からアンモニアが漏洩することを防止するようにしている。
【0004】
【特許文献1】
特開2002−48426号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来例の場合、蒸気タービン内の蒸気が冷却されるに伴って蒸気タービンの内部の圧力が低下し、軸シール機構を通じて空気が流入してしまい、蒸気タービンの性能が低下する問題があった。
【0006】
本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明の蒸気タービンシステムは、運転停止時における蒸気タービン内への空気の流入を防止できるようにすることを目的とし、また、請求項2に係る発明の蒸気タービンシステムは、運転停止後におけるアンモニアの漏洩を安価にして抑制できるようにすることを目的とする。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、上述のような目的を達成するために、
アンモニアと水の混合媒体を加熱して蒸気を発生するボイラと、
前記ボイラからの高圧蒸気で回転動力を得る蒸気タービンと、
前記蒸気タービンの回転軸をシール状態で回転可能に支持する軸シール機構と、
前記蒸気タービンから排出される蒸気を液化する復水器とを備えた蒸気タービンシステムにおいて、
前記ボイラと前記蒸気タービンとを接続する蒸気供給管に設けられて、蒸気の供給を停止する第1の開閉弁と、
前記蒸気タービンと前記復水器とを接続する蒸気排出管に設けられて、蒸気の排出を停止する第2の開閉弁と、
前記第1および第2の開閉弁の少なくとも一方と並列に設けられるバイパス配管と、
前記バイパス配管に設けられて前記蒸気タービン内の圧力を制御する圧力制御弁と、
前記軸シール機構の外側の圧力を測定する外部圧力計と、
前記蒸気タービン内の圧力を測定する圧力計と、
前記蒸気タービンの運転停止時に、前記圧力計で測定される前記蒸気タービン内の圧力が前記外部圧力計で測定される圧力よりも設定圧力だけ高くなるように前記圧力制御弁の開度を制御する圧力制御手段とを備えて構成する。
【0008】
(作用・効果)
請求項1に係る発明の蒸気タービンシステムの構成によれば、運転停止に伴い、蒸気タービン内の圧力と軸シール機構の外側の圧力とを測定し、蒸気タービン内の圧力の方が設定圧力だけ高くなるように圧力制御弁の開度を制御し、蒸気タービン内に蒸気を導入することができる。
したがって、運転停止後に蒸気タービン内が冷却されても、その内部圧力が軸シール機構の外側の圧力より低下することを回避して、運転停止時における軸シール機構を通じての蒸気タービン内への空気の流入を防止でき、蒸気タービンの性能低下を防止できる。
【0009】
請求項2に係る発明は、前述のような目的を達成するために、
請求項1に記載の蒸気タービンシステムにおいて、
蒸気タービンと並列に蒸気供給管に接続されるタービンバイパス配管と、
前記タービンバイパス配管に設けられて蒸気の流動を停止する第3の開閉弁と、
ボイラの停止に伴い、第2の開閉弁を閉じるとともに第3の開閉弁を開き、圧力計で測定される前記蒸気タービン内の圧力が外部圧力計で測定される圧力に第1の設定圧力分を加えた圧力よりも低くなったときまたは設定時間経過後に前記第3の開閉弁を閉じ、かつ、前記第3の開閉弁を閉じた後に、前記蒸気タービン内の圧力が外部圧力計で測定される圧力に第1の設定圧力分より小さい第2の設定圧力分を加えた圧力よりも低くなったときまたは設定時間経過後に第1の開閉弁を閉じる開閉弁制御手段とを備えて構成する。
【0010】
(作用・効果)
請求項2に係る発明の蒸気タービンシステムの構成によれば、運転停止に伴い、第3の開閉弁を開いて蒸気タービン内の高圧蒸気をタービンバイパス配管を通じて逃がす。第3の開閉弁を閉じた後、蒸気タービン内の圧力が所定圧力分(第1の設定圧力分−第2の設定圧力分)低下するまでの間または設定時間が経過するまでの間は第1の開閉弁を開いておき、ボイラ内のアンモニア分を優先的に蒸発させ、ボイラ内のアンモニア分の濃度を低下し、ボイラの冷却に伴って、蒸気タービン内の圧力を早期に低下させることができる。
したがって、運転停止後に、蒸気タービンの内部圧力が軸シール機構の外側の圧力より設定以上に高い状態が継続する時間を大幅に短縮でき、運転停止後に軸シール機構を通じて漏洩するアンモニア量を減少でき、運転停止後にアンモニアの処理に要する費用とアンモニアの損失量を低減でき、運転停止後におけるアンモニアの漏洩を安価にして抑制できる。
【0011】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて詳細に説明する。
【0012】
図1は、本発明に係る蒸気タービンシステムの第1実施例を示す概略構成図であり、第1の発電機1を連動連結したガスエンジン2の排ガス配管3にNOxを除去する脱硝装置4が付設されている。
【0013】
排ガス配管3にボイラ5が接続され、アンモニアと水の混合媒体をガスエンジン2からの高温排ガスで加熱して蒸気を発生するように構成されている。
ボイラ5には、第1の開閉弁6を設けた蒸気供給管7を介して蒸気タービン8が接続され、蒸気タービン8に第2の発電機9が連動連結され、ボイラ5からの高圧蒸気で回転動力を得、ガスエンジン2からの排熱を利用して発電するように構成されている。
【0014】
蒸気タービン8には、第2の開閉弁10を設けた蒸気排出管11を介して復水器12が接続され、その復水器12とボイラ5とが配管13を介して接続され、蒸気タービン8から排出される蒸気を液化するように構成されている。
【0015】
蒸気タービン8の回転軸14が軸シール機構15にシール状態で回転可能に支持され、軸シール機構15の外側にアンモニア配管16が接続され、そのアンモニア配管16が脱硝装置4に接続され、蒸気タービン8の運転時に大きな圧力差に起因して軸シール機構15から漏洩するアンモニアを脱硝用触媒に利用して処理するように構成されている。
【0016】
蒸気排出管11において、第2の開閉弁10と並列にバイパス配管17が設けられ、そのバイパス配管17に、蒸気タービン8内の圧力を制御する圧力制御弁18が設けられている。
【0017】
アンモニア配管16には、軸シール機構15の外側の圧力を測定する外部圧力計19が設けられ、蒸気タービン8には、その内部の圧力を測定する圧力計20が設けられている。
【0018】
また、ガスエンジン2の動力取出軸21に回転停止を検出して運転停止信号を出力する回転計22が設けられ、外部圧力計19と圧力計20と回転計22とがコントローラ(CPU)23に接続され、コントローラ23に第1および第2の開閉弁6,10と圧力制御弁18とが接続されている。
【0019】
コントローラ23には、図2の制御系のブロック図に示すように、運転停止判別手段24と弁開閉手段25と圧力制御手段26とが備えられている。圧力制御手段26は、加算手段27と比較手段28と開度算出手段29とから構成されている。
【0020】
運転停止判別手段24では、回転計22からの運転停止信号に応答して弁開閉手段25に弁閉信号を出力するとともに、加算手段27および比較手段28それぞれに起動信号を出力するようになっている。弁開閉手段25では、弁閉信号に応答して第1および第2の開閉弁6,10に駆動信号を出力し、第1および第2の開閉弁6,10を閉じるようになっている。
【0021】
加算手段27では、運転停止判別手段24からの起動信号に応答して、外部圧力計19で測定される圧力に設定圧力を加算し、その加算した圧力を目標圧力として比較手段28に出力するようになっている。
【0022】
比較手段28では、運転停止判別手段24からの起動信号に応答して、加算手段27からの目標圧力と、圧力計20で測定される蒸気タービン8内の圧力とを比較し、その圧力の差分を吸収するに足る開度を算出して圧力制御弁18に駆動信号を出力し、算出開度分だけ圧力制御弁18の開度を制御し、蒸気タービン8内の圧力が外部圧力計19で測定される圧力よりも設定圧力だけ高くするように構成されている。
【0023】
この第1実施例の構成によれば、蒸気タービン8の運転停止後に、第1および第2の開閉弁6,10を閉じて蒸気タービン8内が冷却されても、その内部圧力が軸シール機構15の外側の圧力より低下することを回避して、運転停止時における軸シール機構15を通じての蒸気タービン8内への空気の流入を防止することができる。
【0024】
上記第1実施例では、圧力制御弁18を設けたバイパス配管17を、第2の開閉弁10と並列に設けているが、本発明としては、それに代えて、あるいは併設するように、第1の開閉弁6と並列に設けるようにしても良い。
また、第1および第2の開閉弁6,10としては、それぞれ複数個設けるものであっても良い。すなわち、蒸気タービン8に対して別のボイラからの蒸気を供給する蒸気供給管が接続されるとともに、その蒸気供給管に開閉弁を設ける場合には、その開閉弁も第1の開閉弁に含む。同様に、蒸気タービン8に対して別の復水器に蒸気を排出する蒸気排出管が接続されるとともに、その蒸気排出管に開閉弁を設ける場合には、その開閉弁も第2の開閉弁に含む。
【0025】
図3は、本発明に係る蒸気タービンシステムの第2実施例を示す概略構成図であり、第1実施例と異なるところは次の通りである。
すなわち、蒸気供給管7の第1の開閉弁6よりも上流側箇所に、蒸気タービン8と並列に、第3の開閉弁41を設けたタービンバイパス配管42が接続され、そのタービンバイパス配管42が復水器12に接続されている。
【0026】
外部圧力計19と圧力計20と回転計22とがコントローラ(CPU)43に接続され、コントローラ43に第1、第2および第3の開閉弁6,10,41と圧力制御弁18とが接続されている。
【0027】
コントローラ43には、図4の制御系のブロック図に示すように、圧力制御手段26(図示せず。これは第1実施例と同じであり、構成および作用の説明は省略している)と、開閉弁制御手段44が備えられている。
【0028】
開閉弁制御手段44には、運転停止判別手段45、弁開閉手段46、第1の加算手段47、第1の比較手段48、第1の弁閉判別手段49、第2の加算手段50、第2の比較手段51および第2の弁閉判別手段52が備えられている。
【0029】
運転停止判別手段45では、回転計22からの運転停止信号に応答して弁開閉手段46に弁開閉信号を出力するとともに、第1および第2の加算手段47,48、ならびに、第1および第2の比較手段50,51それぞれに起動信号を出力するようになっている。弁開閉手段46では、弁開閉信号に応答して第1、第2および第3の開閉弁6,10,41に駆動信号を出力し、第1および第3の開閉弁6,41を開くとともに第2の開閉弁10を閉じるようになっている。
【0030】
第1の加算手段47では、運転停止判別手段45からの起動信号に応答して、外部圧力計19で測定される圧力に第1の設定圧力分を加算し、その加算した圧力を設定圧力として第1の比較手段48に出力するようになっている。
【0031】
第1の比較手段48では、運転停止判別手段45からの起動信号に応答して、第1の加算手段47からの設定圧力と、圧力計20で測定される蒸気タービン8内の圧力とを比較し、蒸気タービン8内の圧力が設定圧力になったときに弁閉信号を出力するようになっている。
第1の弁閉判別手段49では、第1の比較手段48からの弁閉信号に応答して、第3の開閉弁41に駆動信号を出力し、第3の開閉弁41を閉じるようになっている。
【0032】
第2の加算手段50では、運転停止判別手段45からの起動信号に応答して、外部圧力計19で測定される圧力に第1の設定圧力分より小さい第2の設定圧力分を加算し、その加算した圧力を設定圧力として第2の比較手段51に出力するようになっている。
【0033】
第2の比較手段51では、運転停止判別手段45からの起動信号に応答して、第2の加算手段50からの設定圧力と、圧力計20で測定される蒸気タービン8内の圧力とを比較し、蒸気タービン8内の圧力が設定圧力になったときに弁閉信号を出力するようになっている。
第2の弁閉判別手段52では、第2の比較手段51からの弁閉信号に応答して、第1の開閉弁6に駆動信号を出力し、第1の開閉弁6を閉じるようになっている。他の構成は、第1実施例と同じであり、同一図番を付すことにより、その説明は省略する。
【0034】
この第2実施例の構成によれば、蒸気タービン8の運転停止に伴い、第3の開閉弁41を開いて蒸気タービン8内の高圧蒸気をタービンバイパス配管42を通じて逃がし、更に、第3の開閉弁41を閉じた後、蒸気タービン8内の圧力が所定圧力分(第1の設定圧力分−第2の設定圧力分)低下するまでの間は第1の開閉弁6を開いておき、ボイラ5内のアンモニア分を優先的に蒸発させ、ボイラ5内のアンモニア分の濃度を低下して、ボイラ5の冷却に伴って、蒸気タービン8内の圧力を早期に低下させることができる。
【0035】
上記第2実施例では、蒸気タービン8の運転停止後、圧力計20で測定される蒸気タービン8内の圧力が外部圧力計19で測定される圧力に第1の設定圧力分を加えた圧力よりも低くなったときに第3の開閉弁41を閉じるように構成しているが、その第1の設定圧力分を加えた圧力よりも低くなる時間が推定できる場合には、その時間を設定時間として、設定時間経過後に第3の開閉弁41を閉じるように構成しても良い。
【0036】
また、第3の開閉弁41を閉じた後に、蒸気タービン8内の圧力が外部圧力計19で測定される圧力に第1の設定圧力分より小さい第2の設定圧力分を加えた圧力よりも低くなったときに第1の開閉弁6を閉じるように構成しているが、その第1の設定圧力分を加えた圧力よりも低くなる時間が推定できる場合には、その時間を設定時間として、設定時間経過後に第1の開閉弁6を閉じるように構成しても良い。
【0037】
上記第2実施例において、第3の開閉弁41をリリーフ弁で構成し、そのリリーフ圧力を、蒸気タービン8の運転時には、閉じ状態を維持するように高圧に設定しておき、蒸気タービン8の運転停止に伴い、外気圧よりやや高い圧力、すなわち、実質的に、蒸気タービン8内の圧力が外部圧力計19で測定される圧力に第1の設定圧力分を加えた圧力にリリーフ圧力を切り替えるように構成しても良い。
【0038】
【発明の効果】
以上の説明から明らかなように、請求項1に係る発明の蒸気タービンシステムによれば、運転停止に伴い、蒸気タービン内の圧力と軸シール機構の外側の圧力とを測定し、蒸気タービン内の圧力の方が設定圧力だけ高くなるように圧力制御弁の開度を制御し、蒸気タービン内に蒸気を導入することができるから、運転停止後に蒸気タービン内が冷却されても、その内部圧力が軸シール機構の外側の圧力より低下することを回避して、運転停止時における軸シール機構を通じての蒸気タービン内への空気の流入を防止でき、蒸気タービンの性能低下を防止できる。
【図面の簡単な説明】
【図1】本発明に係る蒸気タービンシステムの第1実施例を示す概略構成図である。
【図2】第1実施例の制御系を示すブロック図である。
【図3】本発明に係る蒸気タービンシステムの第2実施例を示す概略構成図である。
【図4】第2実施例の制御系を示すブロック図である。
【符号の説明】
5…ボイラ
6…第1の開閉弁
7…蒸気供給管
8…蒸気タービン
10…第2の開閉弁
11…蒸気排出管
12…復水器
14…回転軸
15…軸シール機構
17…バイパス配管
18…圧力制御弁
19…外部圧力計
20…圧力計
26…圧力制御手段
41…第3の開閉弁
42…タービンバイパス配管
44…開閉弁制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam turbine system that drives a turbine by exhaust heat from a gas engine for driving a power generation device of a cogeneration system.
[0002]
[Prior art]
As such a steam turbine system, conventionally, high temperature exhaust gas discharged from a gas engine is supplied to a boiler, a high temperature steam of an ammonia-water system solution is generated by the boiler, and the steam turbine is driven by the high temperature steam. There is one configured to drive a compressor or the like interlockingly connected to the motor (see Patent Document 1 and FIG. 1).
[0003]
In the above system, when the generation of high-temperature exhaust gas is stopped, such as when the gas engine is stopped, and the operation of the steam turbine is stopped, the steam supply pipe and the steam discharge pipe that connect the steam turbine, the boiler, and the condenser, respectively, are provided. The on-off valve is closed to prevent ammonia from leaking from the shaft seal mechanism that rotatably supports the rotating shaft of the steam turbine in a sealed state.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-48426
[Problems to be solved by the invention]
However, in the case of the conventional example, as the steam in the steam turbine is cooled, the pressure inside the steam turbine is reduced, and air flows in through the shaft seal mechanism, which deteriorates the performance of the steam turbine. It was.
[0006]
This invention is made | formed in view of such a situation, Comprising: The steam turbine system of the invention which concerns on Claim 1 makes it possible to prevent inflow of the air into a steam turbine at the time of operation stop. The purpose of the steam turbine system of the invention according to claim 2 is to make it possible to reduce and suppress the leakage of ammonia after the operation is stopped.
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, the invention according to claim 1
A boiler that generates steam by heating a mixed medium of ammonia and water;
A steam turbine that obtains rotational power with high-pressure steam from the boiler;
A shaft seal mechanism that rotatably supports the rotating shaft of the steam turbine in a sealed state;
A steam turbine system comprising a condenser for liquefying steam discharged from the steam turbine,
A first on-off valve provided in a steam supply pipe connecting the boiler and the steam turbine to stop the supply of steam;
A second on-off valve provided in a steam discharge pipe connecting the steam turbine and the condenser to stop the discharge of steam;
A bypass pipe provided in parallel with at least one of the first and second on-off valves;
A pressure control valve provided in the bypass pipe for controlling the pressure in the steam turbine;
An external pressure gauge for measuring the pressure outside the shaft seal mechanism;
A pressure gauge for measuring the pressure in the steam turbine;
When the steam turbine is stopped, the opening degree of the pressure control valve is controlled so that the pressure in the steam turbine measured by the pressure gauge is higher than the pressure measured by the external pressure gauge by a set pressure. And a pressure control means.
[0008]
(Action / Effect)
According to the configuration of the steam turbine system of the first aspect of the present invention, when the operation is stopped, the pressure in the steam turbine and the pressure outside the shaft seal mechanism are measured, and the pressure in the steam turbine is only the set pressure. Steam can be introduced into the steam turbine by controlling the opening degree of the pressure control valve so as to increase.
Therefore, even if the inside of the steam turbine is cooled after the operation is stopped, the internal pressure is prevented from dropping below the pressure outside the shaft seal mechanism, and the air flow into the steam turbine through the shaft seal mechanism at the time of operation stop is avoided. Inflow can be prevented and performance degradation of the steam turbine can be prevented.
[0009]
In order to achieve the above-described object, the invention according to claim 2
The steam turbine system according to claim 1,
A turbine bypass pipe connected to the steam supply pipe in parallel with the steam turbine;
A third on-off valve provided in the turbine bypass pipe for stopping the flow of steam;
As the boiler stops, the second on-off valve is closed and the third on-off valve is opened, and the pressure in the steam turbine measured by the pressure gauge is changed to the pressure measured by the external pressure gauge by the first set pressure. The pressure in the steam turbine is measured with an external pressure gauge when the third on-off valve is closed when the pressure becomes lower than the pressure applied or after the set time has elapsed and after the third on-off valve is closed. And an on-off valve control means for closing the first on-off valve when the pressure becomes lower than a pressure obtained by adding a second set pressure smaller than the first set pressure or after a set time has elapsed.
[0010]
(Action / Effect)
According to the configuration of the steam turbine system of the second aspect of the invention, when the operation is stopped, the third on-off valve is opened to release the high-pressure steam in the steam turbine through the turbine bypass pipe. After the third on-off valve is closed, until the set time elapses until the pressure in the steam turbine decreases by a predetermined pressure (first set pressure minus second set pressure). 1. Open the on-off valve 1 to preferentially evaporate the ammonia content in the boiler, lower the ammonia content in the boiler, and reduce the pressure in the steam turbine early as the boiler cools Can do.
Therefore, after the operation is stopped, the time during which the internal pressure of the steam turbine is higher than the pressure outside the shaft seal mechanism can be greatly shortened, and the amount of ammonia leaked through the shaft seal mechanism after the operation can be reduced. It is possible to reduce the cost required for ammonia treatment and the amount of ammonia loss after the operation is stopped, and to reduce the leakage of ammonia after the operation is stopped.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is a schematic configuration diagram showing a first embodiment of a steam turbine system according to the present invention, in which a denitration device 4 for removing NOx is removed from an exhaust gas pipe 3 of a gas engine 2 in which a first generator 1 is linked and connected. It is attached.
[0013]
A boiler 5 is connected to the exhaust gas pipe 3 and is configured to generate steam by heating a mixed medium of ammonia and water with high-temperature exhaust gas from the gas engine 2.
A steam turbine 8 is connected to the boiler 5 via a steam supply pipe 7 provided with a first on-off valve 6, and a second generator 9 is linked to the steam turbine 8, and high-pressure steam from the boiler 5 is used. Rotational power is obtained and power is generated using exhaust heat from the gas engine 2.
[0014]
A condenser 12 is connected to the steam turbine 8 via a steam discharge pipe 11 provided with a second on-off valve 10, and the condenser 12 and the boiler 5 are connected via a pipe 13. 8 is configured to liquefy the steam discharged from the fuel cell 8.
[0015]
The rotating shaft 14 of the steam turbine 8 is rotatably supported by the shaft seal mechanism 15 in a sealed state, an ammonia pipe 16 is connected to the outside of the shaft seal mechanism 15, and the ammonia pipe 16 is connected to the denitration device 4. The ammonia that leaks from the shaft seal mechanism 15 due to a large pressure difference during the operation of No. 8 is used as a denitration catalyst.
[0016]
In the steam discharge pipe 11, a bypass pipe 17 is provided in parallel with the second on-off valve 10, and a pressure control valve 18 for controlling the pressure in the steam turbine 8 is provided in the bypass pipe 17.
[0017]
The ammonia pipe 16 is provided with an external pressure gauge 19 that measures the pressure outside the shaft seal mechanism 15, and the steam turbine 8 is provided with a pressure gauge 20 that measures the internal pressure.
[0018]
The power take-out shaft 21 of the gas engine 2 is provided with a tachometer 22 that detects a rotation stop and outputs an operation stop signal. The external pressure gauge 19, the pressure gauge 20, and the tachometer 22 are connected to a controller (CPU) 23. The first and second on-off valves 6 and 10 and the pressure control valve 18 are connected to the controller 23.
[0019]
As shown in the block diagram of the control system in FIG. 2, the controller 23 is provided with an operation stop determining unit 24, a valve opening / closing unit 25, and a pressure control unit 26. The pressure control means 26 includes an adding means 27, a comparing means 28, and an opening degree calculating means 29.
[0020]
The operation stop determination means 24 outputs a valve close signal to the valve opening / closing means 25 in response to an operation stop signal from the tachometer 22, and outputs an activation signal to each of the addition means 27 and the comparison means 28. Yes. The valve opening / closing means 25 outputs a drive signal to the first and second on-off valves 6 and 10 in response to the valve closing signal, and closes the first and second on-off valves 6 and 10.
[0021]
The adding means 27 adds the set pressure to the pressure measured by the external pressure gauge 19 in response to the start signal from the operation stop determining means 24, and outputs the added pressure to the comparing means 28 as a target pressure. It has become.
[0022]
The comparison means 28 compares the target pressure from the addition means 27 with the pressure in the steam turbine 8 measured by the pressure gauge 20 in response to the start signal from the operation stop determination means 24, and the difference between the pressures. The degree of opening sufficient to absorb the pressure is calculated, a drive signal is output to the pressure control valve 18, the degree of opening of the pressure control valve 18 is controlled by the calculated degree of opening, and the pressure in the steam turbine 8 is The pressure is set higher than the pressure to be measured by a set pressure.
[0023]
According to the configuration of the first embodiment, even after the operation of the steam turbine 8 is stopped, even if the first and second on-off valves 6 and 10 are closed and the inside of the steam turbine 8 is cooled, the internal pressure is maintained at the shaft seal mechanism. It is possible to prevent the pressure from falling outside the pressure 15 and prevent the inflow of air into the steam turbine 8 through the shaft seal mechanism 15 when the operation is stopped.
[0024]
In the first embodiment, the bypass pipe 17 provided with the pressure control valve 18 is provided in parallel with the second on-off valve 10. However, in the present invention, instead of or in addition to the first on-off valve 10, The opening / closing valve 6 may be provided in parallel.
Also, a plurality of first and second on-off valves 6 and 10 may be provided. That is, when a steam supply pipe for supplying steam from another boiler is connected to the steam turbine 8, and when the on-off valve is provided on the steam supply pipe, the on-off valve is also included in the first on-off valve. . Similarly, when a steam discharge pipe for discharging steam to another steam condenser is connected to the steam turbine 8 and an opening / closing valve is provided in the steam discharge pipe, the opening / closing valve is also a second opening / closing valve. Included.
[0025]
FIG. 3 is a schematic configuration diagram showing a second embodiment of the steam turbine system according to the present invention. The differences from the first embodiment are as follows.
That is, a turbine bypass pipe 42 provided with a third on-off valve 41 is connected in parallel with the steam turbine 8 at a location upstream of the first on-off valve 6 of the steam supply pipe 7. It is connected to the condenser 12.
[0026]
The external pressure gauge 19, the pressure gauge 20, and the tachometer 22 are connected to a controller (CPU) 43, and the first, second and third on-off valves 6, 10, 41 and the pressure control valve 18 are connected to the controller 43. Has been.
[0027]
As shown in the block diagram of the control system of FIG. 4, the controller 43 includes pressure control means 26 (not shown. This is the same as that in the first embodiment, and the description of the configuration and operation is omitted). On-off valve control means 44 is provided.
[0028]
The on-off valve control means 44 includes an operation stop determination means 45, a valve opening / closing means 46, a first addition means 47, a first comparison means 48, a first valve close determination means 49, a second addition means 50, Two comparison means 51 and second valve closing determination means 52 are provided.
[0029]
The operation stop determination means 45 outputs a valve opening / closing signal to the valve opening / closing means 46 in response to the operation stop signal from the tachometer 22, and the first and second addition means 47, 48, and the first and first An activation signal is output to each of the two comparison means 50 and 51. The valve opening / closing means 46 outputs drive signals to the first, second and third on-off valves 6, 10 and 41 in response to the valve on-off signal, and opens the first and third on-off valves 6 and 41. The second on-off valve 10 is closed.
[0030]
The first adding means 47 adds the first set pressure to the pressure measured by the external pressure gauge 19 in response to the start signal from the operation stop determining means 45, and uses the added pressure as the set pressure. The data is output to the first comparison means 48.
[0031]
The first comparison unit 48 compares the set pressure from the first addition unit 47 with the pressure in the steam turbine 8 measured by the pressure gauge 20 in response to the start signal from the operation stop determination unit 45. The valve closing signal is output when the pressure in the steam turbine 8 reaches the set pressure.
In response to the valve closing signal from the first comparing means 48, the first valve closing determining means 49 outputs a drive signal to the third opening / closing valve 41 to close the third opening / closing valve 41. ing.
[0032]
In response to the start signal from the operation stop determination unit 45, the second addition unit 50 adds a second set pressure smaller than the first set pressure to the pressure measured by the external pressure gauge 19, The added pressure is output to the second comparing means 51 as a set pressure.
[0033]
The second comparison means 51 compares the set pressure from the second addition means 50 with the pressure in the steam turbine 8 measured by the pressure gauge 20 in response to the start signal from the operation stop determination means 45. The valve closing signal is output when the pressure in the steam turbine 8 reaches the set pressure.
In response to the valve closing signal from the second comparing means 51, the second valve closing determining means 52 outputs a drive signal to the first opening / closing valve 6 and closes the first opening / closing valve 6. ing. Other configurations are the same as those of the first embodiment, and the description thereof is omitted by giving the same reference numerals.
[0034]
According to the configuration of the second embodiment, when the operation of the steam turbine 8 is stopped, the third on-off valve 41 is opened to release the high-pressure steam in the steam turbine 8 through the turbine bypass pipe 42, and further, the third on-off valve is opened. After the valve 41 is closed, the first on-off valve 6 is kept open until the pressure in the steam turbine 8 decreases by a predetermined pressure (first set pressure-second set pressure), and the boiler is opened. The ammonia content in the boiler 5 can be preferentially evaporated, the concentration of the ammonia content in the boiler 5 can be reduced, and the pressure in the steam turbine 8 can be lowered early as the boiler 5 is cooled.
[0035]
In the second embodiment, after the operation of the steam turbine 8 is stopped, the pressure in the steam turbine 8 measured by the pressure gauge 20 is obtained by adding the first set pressure to the pressure measured by the external pressure gauge 19. The third on-off valve 41 is configured to be closed when the pressure becomes lower, but when the time that is lower than the pressure obtained by adding the first set pressure can be estimated, the time is set as the set time. As an alternative, the third on-off valve 41 may be closed after the set time has elapsed.
[0036]
Further, after the third on-off valve 41 is closed, the pressure in the steam turbine 8 is higher than the pressure obtained by adding the second set pressure smaller than the first set pressure to the pressure measured by the external pressure gauge 19. The first on-off valve 6 is configured to close when it becomes low, but when the time that is lower than the pressure obtained by adding the first set pressure can be estimated, that time is set as the set time. The first on-off valve 6 may be closed after the set time has elapsed.
[0037]
In the second embodiment, the third on-off valve 41 is constituted by a relief valve, and the relief pressure is set to a high pressure so as to maintain a closed state during operation of the steam turbine 8. When the operation is stopped, the relief pressure is switched to a pressure slightly higher than the external atmospheric pressure, that is, the pressure obtained by adding the first set pressure to the pressure measured by the external pressure gauge 19. You may comprise as follows.
[0038]
【The invention's effect】
As is apparent from the above description, according to the steam turbine system of the first aspect of the present invention, when the operation is stopped, the pressure in the steam turbine and the pressure outside the shaft seal mechanism are measured, Since the opening of the pressure control valve can be controlled so that the pressure is higher by the set pressure, steam can be introduced into the steam turbine. By avoiding a drop from the pressure outside the shaft seal mechanism, it is possible to prevent the inflow of air into the steam turbine through the shaft seal mechanism when the operation is stopped, and to prevent the performance of the steam turbine from being deteriorated.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment of a steam turbine system according to the present invention.
FIG. 2 is a block diagram showing a control system of the first embodiment.
FIG. 3 is a schematic configuration diagram showing a second embodiment of the steam turbine system according to the present invention.
FIG. 4 is a block diagram showing a control system of a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 5 ... Boiler 6 ... 1st on-off valve 7 ... Steam supply pipe 8 ... Steam turbine 10 ... 2nd on-off valve 11 ... Steam discharge pipe 12 ... Condenser 14 ... Rotary shaft 15 ... Shaft seal mechanism 17 ... Bypass piping 18 ... pressure control valve 19 ... external pressure gauge 20 ... pressure gauge 26 ... pressure control means 41 ... third on-off valve 42 ... turbine bypass pipe 44 ... on-off valve control means

Claims (2)

アンモニアと水の混合媒体を加熱して蒸気を発生するボイラと、
前記ボイラからの高圧蒸気で回転動力を得る蒸気タービンと、
前記蒸気タービンの回転軸をシール状態で回転可能に支持する軸シール機構と、
前記蒸気タービンから排出される蒸気を液化する復水器とを備えた蒸気タービンシステムにおいて、
前記ボイラと前記蒸気タービンとを接続する蒸気供給管に設けられて、蒸気の供給を停止する第1の開閉弁と、
前記蒸気タービンと前記復水器とを接続する蒸気排出管に設けられて、蒸気の排出を停止する第2の開閉弁と、
前記第1および第2の開閉弁の少なくとも一方と並列に設けられるバイパス配管と、
前記バイパス配管に設けられて前記蒸気タービン内の圧力を制御する圧力制御弁と、
前記軸シール機構の外側の圧力を測定する外部圧力計と、
前記蒸気タービン内の圧力を測定する圧力計と、
前記蒸気タービンの運転停止時に、前記圧力計で測定される前記蒸気タービン内の圧力が前記外部圧力計で測定される圧力よりも設定圧力だけ高くなるように前記圧力制御弁の開度を制御する圧力制御手段と、
を備えたことを特徴とする蒸気タービンシステム。
A boiler that generates steam by heating a mixed medium of ammonia and water;
A steam turbine that obtains rotational power with high-pressure steam from the boiler;
A shaft seal mechanism that rotatably supports the rotating shaft of the steam turbine in a sealed state;
A steam turbine system comprising a condenser for liquefying steam discharged from the steam turbine,
A first on-off valve provided in a steam supply pipe connecting the boiler and the steam turbine to stop the supply of steam;
A second on-off valve provided in a steam discharge pipe connecting the steam turbine and the condenser to stop the discharge of steam;
A bypass pipe provided in parallel with at least one of the first and second on-off valves;
A pressure control valve provided in the bypass pipe for controlling the pressure in the steam turbine;
An external pressure gauge for measuring the pressure outside the shaft seal mechanism;
A pressure gauge for measuring the pressure in the steam turbine;
When the steam turbine is stopped, the opening degree of the pressure control valve is controlled so that the pressure in the steam turbine measured by the pressure gauge is higher than the pressure measured by the external pressure gauge by a set pressure. Pressure control means;
A steam turbine system comprising:
請求項1に記載の蒸気タービンシステムにおいて、
蒸気タービンと並列に蒸気供給管に接続されるタービンバイパス配管と、
前記タービンバイパス配管に設けられて蒸気の流動を停止する第3の開閉弁と、
ボイラの停止に伴い、第2の開閉弁を閉じるとともに第3の開閉弁を開き、圧力計で測定される前記蒸気タービン内の圧力が外部圧力計で測定される圧力に第1の設定圧力分を加えた圧力よりも低くなったときまたは設定時間経過後に前記第3の開閉弁を閉じ、かつ、前記第3の開閉弁を閉じた後に、前記蒸気タービン内の圧力が外部圧力計で測定される圧力に第1の設定圧力分より小さい第2の設定圧力分を加えた圧力よりも低くなったときまたは設定時間経過後に第1の開閉弁を閉じる開閉弁制御手段と、
を備えている蒸気タービンシステム。
The steam turbine system according to claim 1,
A turbine bypass pipe connected to the steam supply pipe in parallel with the steam turbine;
A third on-off valve provided in the turbine bypass pipe for stopping the flow of steam;
As the boiler stops, the second on-off valve is closed and the third on-off valve is opened, and the pressure in the steam turbine measured by the pressure gauge is changed to the pressure measured by the external pressure gauge by the first set pressure. The pressure in the steam turbine is measured with an external pressure gauge when the third on-off valve is closed when the pressure becomes lower than the pressure applied or after the set time has elapsed and after the third on-off valve is closed. On-off valve control means for closing the first on-off valve when the pressure becomes lower than the pressure obtained by adding a second set pressure smaller than the first set pressure to
Equipped with a steam turbine system.
JP2002368236A 2002-12-19 2002-12-19 Steam turbine system Expired - Fee Related JP3871642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368236A JP3871642B2 (en) 2002-12-19 2002-12-19 Steam turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368236A JP3871642B2 (en) 2002-12-19 2002-12-19 Steam turbine system

Publications (2)

Publication Number Publication Date
JP2004197672A JP2004197672A (en) 2004-07-15
JP3871642B2 true JP3871642B2 (en) 2007-01-24

Family

ID=32764866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368236A Expired - Fee Related JP3871642B2 (en) 2002-12-19 2002-12-19 Steam turbine system

Country Status (1)

Country Link
JP (1) JP3871642B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697730B2 (en) * 2005-05-10 2011-06-08 大阪瓦斯株式会社 Turbine equipment
KR101103549B1 (en) 2009-08-18 2012-01-09 삼성에버랜드 주식회사 Steam turbine system and method for increasing the efficiency of steam turbine system
ITCO20110013A1 (en) * 2011-03-29 2012-09-30 Nuovo Pignone Spa LOCKING SYSTEMS FOR TURBO-EXTRACTORS TO BE USED IN ORGANIC RANKINE CYCLES
JP6026941B2 (en) * 2013-03-29 2016-11-16 メタウォーター株式会社 Rotating shaft sealing method for turbine
KR101984654B1 (en) * 2016-12-23 2019-05-31 주식회사 포스코 Apparatus for recycling steam of boiler silencer

Also Published As

Publication number Publication date
JP2004197672A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
KR101708108B1 (en) Waste heat recovery system and waste heat recovery method
EP0083109B1 (en) Combined plant having steam turbine and gas turbine connected by single shaft
US20110088394A1 (en) Waste heat regeneration system
JP3949014B2 (en) Gas turbine equipment
JPH1193694A (en) Gas turbine plant
JP3977909B2 (en) Recoverable steam cooled gas turbine
JP5173776B2 (en) Exhaust energy recovery device
JPH0678724B2 (en) Cooling method and cooling device for steam turbine in single-shaft combined plant
US6145317A (en) Steam turbine, steam turbine plant and method for cooling a steam turbine
JP2010174848A (en) Waste heat regeneration system
JP2014231738A (en) Waste heat regeneration system
JP2009287409A (en) Exhaust temperature detection device of engine with turbocharger and its deterioration diagnostic system
JP3871642B2 (en) Steam turbine system
JPWO2019220786A1 (en) Steam turbine plant and its cooling method
WO2014091786A1 (en) Exhaust heat recovery system and exhaust heat recovery method
JPH11229898A (en) Start-up control device of gas turbine
WO2016002425A1 (en) Waste heat regeneration system
JP2007270731A (en) Turbocharger control unit
JPH1162619A (en) Steam cooling type gas turbine composite plant and its operation control method
JP6511297B2 (en) Power generator
US11066961B2 (en) Exhaust heat recovery system
JP2007162610A (en) Abnormality diagnosis device of evaporated-fuel treatment device
CN218971278U (en) System for assisting steam turbine
JP2003020911A (en) Operating method of combined plant
JP2011012567A (en) Method and device for controlling valve for warming steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151027

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees