JP3870832B2 - Aliphatic polyester composite material - Google Patents

Aliphatic polyester composite material Download PDF

Info

Publication number
JP3870832B2
JP3870832B2 JP2002123049A JP2002123049A JP3870832B2 JP 3870832 B2 JP3870832 B2 JP 3870832B2 JP 2002123049 A JP2002123049 A JP 2002123049A JP 2002123049 A JP2002123049 A JP 2002123049A JP 3870832 B2 JP3870832 B2 JP 3870832B2
Authority
JP
Japan
Prior art keywords
aliphatic polyester
polylactic acid
composite material
cotton
absorbent cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002123049A
Other languages
Japanese (ja)
Other versions
JP2003313417A (en
Inventor
誠 大内
充 中野
裕史 影山
隆嗣 稲生
泰充 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002123049A priority Critical patent/JP3870832B2/en
Publication of JP2003313417A publication Critical patent/JP2003313417A/en
Application granted granted Critical
Publication of JP3870832B2 publication Critical patent/JP3870832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は脂肪族ポリエステルをベースとする生分解性複合材料に関する。
【0002】
【従来の技術】
脂肪族ポリエステル等の生分解性樹脂は微生物や酵素の働きにより分解される廃棄物問題の少ない樹脂であるが、その剛性は必ずしも十分ではないため、特開平9−302235号公報においては生分解性樹脂に繊維径が0.5〜5mm程度の木綿繊維や木材繊維等の有機繊維を配合することが提案されている。
【0003】
また、特開2000−160034号公報においては、特開平9−302235号公報に記載のものより更に剛性を向上させる方法として、生分解性樹脂に竹繊維又はその繊維束を配合することが提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、生分解性樹脂として特にポリ乳酸等の脂肪族ポリエステルを用いる場合においては、上記公報に記載のように有機繊維や竹繊維を配合しても得られる剛性は未だ十分なものではなく、特に自動車用内装材等の用途のためには更に耐熱性及び表面外観の点においても十分なものではないという問題があることを本発明者らは見出した。
【0005】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、剛性が十分に高く且つ耐熱性にも優れており、更に表面外観も良好な脂肪族ポリエステル複合材料を提供することを目的とする。
【0006】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、平均繊維径が100μm以下である綿繊維を脂肪族ポリエステル中に分散させることにより、脂肪族ポリエステル複合材料の剛性を十分に高くすることができると同時に耐熱性を向上させることができ、しかも得られる表面外観が良好となることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、脂肪族ポリエステルと、該脂肪族ポリエステル中に分散されている平均繊維径が100μm以下である綿繊維とを含むことを特徴とする脂肪族ポリエステル複合材料である。
【0008】
上記本発明の脂肪族ポリエステル複合材料においては、前記脂肪族ポリエステルがポリ乳酸又はポリ乳酸系樹脂であることが好ましい。また、前記綿繊維が脱脂綿繊維であることが好ましく、脱脂綿繊維にアシル化処理及び/又はシランカップリング剤処理を施したものであることがより好ましい。
【0009】
【発明の実施の形態】
以下、本発明の脂肪族ポリエステル複合材料の好適な実施形態についてさらに詳細に説明する。
【0010】
本発明の脂肪族ポリエステル複合材料は、脂肪族ポリエステルと、その脂肪族ポリエステル中に分散されている平均繊維径が100μm以下である綿繊維とを含むことを特徴とするものである。
【0011】
本発明において用いられる脂肪族ポリエステルは、微生物や酵素等によって分解若しくは低分子量化されるものであり、ポリ乳酸、ポリグリコール酸、ポリ(3−ヒドロキシ酪酸)、ポリ(4−ヒドロキシ酪酸)、ポリ(4−ヒドロキシ吉草酸)、ポリカプロラクトン等の開環重付加系脂肪族ポリエステル、並びに、ポリエステルカーボネート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリヘキサメチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリエチレンオキサレート、ポリブチレンオキサレート、ポリヘキサメチレンオキサレート、ポリエチレンセバケート、ポリブチレンセバケート等の重縮合反応系脂肪族ポリエステルが挙げられ、中でもポリ乳酸、ポリグリコール酸等のポリ(α−ヒドロキシ酸)が好ましく、ポリ乳酸が特に好ましい。
【0012】
一般的なポリ乳酸は、一般式 H-[O-CH(CH3)-C(O)]n-OH により表わされ、融点が160〜170℃程度、ガラス転移点が58℃程度の生分解性に優れた結晶性ポリマーであるが、このようなポリ乳酸は本発明により特に剛性及び耐熱性が向上することから本発明において用いる脂肪族ポリエステルとして好適である。
【0013】
本発明において用いられる脂肪族ポリエステルの分子量(数平均分子量)は、30000〜200000程度であることが好ましい。分子量が上記下限未満では得られる複合材料の強度が不十分となる傾向にあり、他方、上記上限を超えると得られる複合材料の加工性が低下する傾向にある。
【0014】
本発明において用いられる脂肪族ポリエステルは、前記脂肪族ポリエステルを単独で用いてもよいが、それらの2種以上のブレンド物若しくは共重合物であってもよい。このような脂肪族ポリエステルの共重合物としては、乳酸と乳酸以外のヒドロキシ酸とのコポリマーや、ポリブチレンサクシネートアジペート等が挙げられる。
【0015】
また、脂肪族ポリエステルのブレンド物としては、例えばポリ乳酸をベースとするポリ乳酸系樹脂が好ましく、ポリ乳酸にブレンドされる他の樹脂としては、ポリ乳酸以外の前記脂肪族ポリエステル;ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ポリエステル;ナイロン6、ナイロン6,6、ナイロン6,9、ナイロン6,10、ナイロン6,12、ナイロン11、ナイロン12等のポリアミド;天然ゴム等が挙げられる。このようなポリ乳酸系樹脂におけるポリ乳酸以外の樹脂の比率は、60重量%以下であることが好ましく、30重量%以下であることがより好ましい。他の樹脂の比率が上記上限を超えると、後述する綿繊維の添加による剛性及び耐熱性の向上が得られにくくなる傾向にある。
【0016】
本発明において用いられる綿繊維は、平均繊維径が100μm以下のものであり、特に好ましくは50μm以下のものである。綿繊維の平均繊維径が100μmを超えていると、脂肪族ポリエステルマトリックス中における綿繊維の分散性が低下し、綿繊維の添加による剛性及び耐熱性の向上が不十分となり、更に繊維が複合材料の表面に露出し易くなる。また、綿繊維の平均繊維径の下限は特に制限されないが、通常10μm以上のものが一般的である。
【0017】
また、本発明において用いられる綿繊維は、いわゆる脱脂処理により脂肪分が取り除かれた脱脂綿の繊維であることが好ましい。綿繊維から脂肪分が取り除かれることにより、単繊維状態で脂肪族ポリエステルマトリックス中に均一に微分散し易くなり、剛性及び耐熱性がより向上すると共に、綿繊維による着色が抑制されて複合材料の表面外観がより良好となる傾向にある。
【0018】
更に、本発明において用いられる綿繊維は、脱脂綿繊維にアシル化処理を施したものであることが好ましい。アシル化処理とは、有機化合物にアシル基を導入する処理であり、典型的なアシル化としてはアセチル化、ベンゾイル化等がある。アシル化処理により綿繊維の水酸基(親水性基)がアシル基(疎水性基)に置換され、綿繊維と脂肪族ポリエステルとの馴染みがより良好となり、それらの界面剥離による強度の低下がより確実に防止される傾向にある。アシル化処理の方法は特に制限されず、無水酢酸等のカルボン酸無水物、塩化アセチル等のハリゲン化アシル、イミダゾリド、ケテン類のようなアシル化剤(無水酢酸、塩化アセチル等はアセチル化剤)を用いて常法により脱脂綿繊維にアシル化処理を施すことが可能である。
【0019】
また、本発明において用いられる綿繊維は、脱脂綿繊維に前記アシル化処理に代えて、或いは前記アシル化処理と共にシランカップリング剤処理を施したものであることが好ましい。シランカップリング剤は加水分解性基(親水性基)と有機官能基(疎水性基)とを一分子中に併せ持っており、シランカップリング剤処理によりシランカップリング剤を介して綿繊維と脂肪族ポリエステルとの表面密着性がより向上し、それらの界面剥離による強度の低下がより確実に防止される傾向にある。シランカップリング剤処理の方法は特に制限されず、γ−グリシドキシプロピルトリメトキシシラン等の各種シランカップリング剤を用いて常法により脱脂綿繊維にシランカップリング剤処理を施すことが可能である。
【0020】
本発明の脂肪族ポリエステル複合材料における脂肪族ポリエステルと綿繊維との比率(重量比)は、脂肪族ポリエステル/綿繊維=95/5〜50/50であることが好ましく、90/10〜60/40であることがより好ましい。綿繊維の含有量が5重量%未満の場合は、綿繊維の添加による剛性及び耐熱性の向上が不十分となる傾向にあり、他方、綿繊維の含有量が50重量%を超える場合は、綿繊維の添加効果の更なる向上が得られず、却って成形性が低下する傾向にある。
【0021】
なお、本発明においては、脂肪族ポリエステル複合材料の特性を大きく損なわない限りにおいて、滑剤、可塑剤、熱安定剤、フィラー、着色剤、酸化防止剤、紫外線吸収剤等の添加物を加えることができる。このような添加物を加える場合、脂肪族ポリエステル複合材料中の添加物の含有量は、0.1〜30重量%が好ましく、1〜10重量%がより好ましい。添加物の含有量が0.1重量%未満では添加物の添加効果が得られない傾向にあり、他方、添加物の含有量が30重量%を超えると得られる複合材料の物性が不安定(軟化や脆化)になる傾向にある。
【0022】
本発明の脂肪族ポリエステル複合材料の製造方法は特に制限されず、前記脂肪族ポリエステル中に前記綿繊維を微分散せしめることが可能な方法であればよく、例えば以下の方法で得ることが可能である。すなわち、必要に応じて脱脂処理、更にはアシル化処理及び/又はシランカップリング剤処理を施した綿繊維を、脂肪族ポリエステルと共に混練(溶融混練)する。次いで、得られた混合物を粉砕した後、溶融押出しによって所望形状に成形し、本発明の脂肪族ポリエステル複合材料を得ることができる。
【0023】
【実施例】
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0024】
比較例3
ポリ乳酸(三井化学社製、レイシアH-PL100)と脱脂綿(長谷川綿行社製、日本薬局方脱脂綿、平均繊維径12〜38μm、長さ10〜60mm)とを、ポリ乳酸と脱脂綿との重量比がポリ乳酸/脱脂綿=70/30となるように配合し、ラボプラストミルを用いて溶融混練した(条件:180℃、50rpm、30分)。次いで、得られた混合物を粉砕機で粉砕し、90℃の熱風下で24時間乾燥せしめた。そして、乾燥した粉砕物を二軸押出機に入れ、溶融押出し(条件:160〜180℃)により板状体に成形した後に急冷し、ポリ乳酸複合板を得た。
【0025】
得られたポリ乳酸複合板中に脱脂綿繊維は均一に微分散しており、そのポリ乳酸複合板の色及び外観を肉眼により観察した結果を表1に示した。
【0026】
また、得られたポリ乳酸複合板から粘弾性試験片(長さ30mm、幅5mm、厚さ2.8mm)と曲げ試験片(長さ60mm、幅10mm、厚さ2.8mm)を切り出し、以下の方法によって曲げ試験(曲げ弾性率及び曲げ強度)及び粘弾性試験を行なった。
【0027】
(曲げ試験)
JIS K 6911 5.17に規定される曲げ強さ及び曲げ弾性率の測定方法に準じて前記曲げ試験片の曲げ強度及び曲げ弾性率を測定した。得られた結果を表1に示した。
【0028】
(粘弾性試験)
JIS K 7244−4に規定される動的粘弾性測定方法に準じて約30℃〜約140℃における前記粘弾性試験片の貯蔵弾性率を測定した。得られた結果を図1に示した。
【0029】
実施例1
以下の方法によりアセチル化処理を施した脱脂綿を用いた以外は比較例3と同様にしてポリ乳酸複合板を得た。すなわち、比較例3と同様の脱脂綿33.3gに対して無水酢酸66.7gを加え、ジムロート付セパラブルフラスコ内にて130℃に加熱した。5時間後に脱脂綿を取り出し、24時間ドラフト内にて風乾せしめた後、水洗し、再度風乾せしめた。更に、その脱脂綿を100℃の乾燥機内にて24時間乾燥せしめてアセチル化処理が施された脱脂綿を得た。
【0030】
得られたポリ乳酸複合板中に脱脂綿繊維は均一に微分散しており、そのポリ乳酸複合板の色及び外観を肉眼により観察した結果を表1に示した。また、比較例3と同様にして曲げ試験及び粘弾性試験を行ない、得られた結果を表1及び図1に示した。
【0031】
比較例4
以下の方法によりシランカップリング剤処理を施した脱脂綿を用いた以外は実施例1と同様にしてポリ乳酸複合板を得た。すなわち、γ−グリシドキシプロピルトリメトキシシラン(信越化学社製、ShinEtsu KBM403)の2%水溶液200mlに実施例1と同様の脱脂綿50gを10秒浸漬した後、脱脂綿を取り出し、24時間ドラフト内にて風乾せしめた。更に、その脱脂綿を100℃の乾燥機内にて24時間乾燥せしめてシランカップリング剤処理が施された脱脂綿を得た。
【0032】
得られたポリ乳酸複合板中に脱脂綿繊維は均一に微分散しており、そのポリ乳酸複合板の色及び外観を肉眼により観察した結果を表1に示した。また、実施例1と同様にして曲げ試験及び粘弾性試験を行ない、得られた結果を表1及び図1に示した。
【0033】
比較例1
脱脂綿を添加せずにポリ乳酸のみを用いた以外は実施例1と同様にしてポリ乳酸板を得た。
【0034】
得られたポリ乳酸板の色及び外観を肉眼により観察した結果を表1に示した。また、実施例1と同様にして曲げ試験及び粘弾性試験を行ない、得られた結果を表1及び図1に示した。
【0035】
比較例2
脱脂綿の代わりに竹繊維(平均繊維径130〜250μm、長さ10mm〜100mm)を用いた以外は実施例1と同様にしてポリ乳酸複合板を得た。
【0036】
得られたポリ乳酸複合板中に竹繊維は分散していたが、その均一性は比較例3で得られたポリ乳酸複合板より劣っていた。比較例2で得られたポリ乳酸複合板の色及び外観を肉眼により観察した結果を表1に示した。また、実施例1と同様にして曲げ試験及び粘弾性試験を行ない、得られた結果を表1及び図1に示した。
【0037】
【表1】

Figure 0003870832
【0038】
表1に示した結果から明らかなように、実施例で得られた本発明のポリ乳酸と脱脂綿繊維との複合材料は、比較例1で得られたポリ乳酸のみからなる材料に比べて、曲げ強度をさほど損なうことなく曲げ弾性率が飛躍的に向上していることが確認された。また、図1に示した結果から明らかなように、実施例で得られた本発明のポリ乳酸と脱脂綿繊維との複合材料は、比較例1で得られたポリ乳酸のみからなる材料に比べて、ガラス転移点付近(60〜70℃)における貯蔵弾性率の低下が抑制されており、耐熱性が飛躍的に向上していることが確認された。
【0039】
更に、表1及び図1に示した結果から明らかなように、実施例で得られた本発明のポリ乳酸と脱脂綿繊維との複合材料は、比較例2で得られたポリ乳酸と竹繊維との複合材料に比べて、曲げ弾性率、曲げ強度、耐熱性及び表面外観のいずれの点においても優れていることが確認された。
【0040】
【発明の効果】
以上説明したように、本発明によれば、剛性が十分に高く且つ耐熱性にも優れており、更に表面外観も良好な脂肪族ポリエステル複合材料を提供することが可能となる。従って、本発明の脂肪族ポリエステル複合材料は、高い剛性と共に高い耐熱性及び良好な表面外観が要求される自動車用内装材等として非常に有用である。
【図面の簡単な説明】
【図1】 実施例及び比較例で得られた粘弾性試験片における温度に対する貯蔵弾性率の変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to biodegradable composite materials based on aliphatic polyesters.
[0002]
[Prior art]
A biodegradable resin such as aliphatic polyester is a resin with less waste problem that is decomposed by the action of microorganisms and enzymes, but its rigidity is not sufficient. Therefore, in JP-A-9-302235, biodegradable resin is used. It has been proposed to blend organic fibers such as cotton fibers and wood fibers with a fiber diameter of about 0.5 to 5 mm into the resin.
[0003]
Japanese Patent Laid-Open No. 2000-160034 proposes blending bamboo fiber or a fiber bundle thereof with a biodegradable resin as a method for further improving the rigidity as described in Japanese Patent Laid-Open No. 9-302235. ing.
[0004]
[Problems to be solved by the invention]
However, when using an aliphatic polyester such as polylactic acid as a biodegradable resin, the rigidity obtained by blending organic fibers and bamboo fibers as described in the above publication is still not sufficient, especially The present inventors have found that there is a problem that heat resistance and surface appearance are not sufficient for applications such as automotive interior materials.
[0005]
The present invention has been made in view of such problems of the prior art, and provides an aliphatic polyester composite material having sufficiently high rigidity, excellent heat resistance, and excellent surface appearance. With the goal.
[0006]
As a result of intensive studies to achieve the above object, the inventors of the present invention have sufficiently dispersed the aliphatic polyester composite material by dispersing cotton fibers having an average fiber diameter of 100 μm or less in the aliphatic polyester. At the same time, it was found that the heat resistance can be improved and the surface appearance obtained is good, and the present invention has been completed.
[0007]
That is, the present invention is an aliphatic polyester composite material comprising an aliphatic polyester and cotton fibers having an average fiber diameter of 100 μm or less dispersed in the aliphatic polyester.
[0008]
In the aliphatic polyester composite material of the present invention, the aliphatic polyester is preferably polylactic acid or a polylactic acid-based resin. Moreover, it is preferable that the said cotton fiber is absorbent cotton fiber, and it is more preferable that the absorbent cotton fiber is subjected to acylation treatment and / or silane coupling agent treatment.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the aliphatic polyester composite material of the present invention will be described in more detail.
[0010]
The aliphatic polyester composite material of the present invention includes an aliphatic polyester and cotton fibers having an average fiber diameter of 100 μm or less dispersed in the aliphatic polyester.
[0011]
The aliphatic polyester used in the present invention is decomposed or reduced in molecular weight by microorganisms or enzymes, etc., and is polylactic acid, polyglycolic acid, poly (3-hydroxybutyric acid), poly (4-hydroxybutyric acid), poly (polylactic acid). (4-hydroxyvaleric acid), ring-opening polyaddition aliphatic polyesters such as polycaprolactone, and polyester carbonate, polyethylene succinate, polybutylene succinate, polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexa Examples include polycondensation reaction aliphatic polyesters such as methylene adipate, polyethylene oxalate, polybutylene oxalate, polyhexamethylene oxalate, polyethylene sebacate, polybutylene sebacate. Poly (alpha-hydroxy acid) are preferred such as glycolic acid, polylactic acid are particularly preferred.
[0012]
General polylactic acid is represented by the general formula H— [O—CH (CH 3 ) —C (O)] n —OH, and has a melting point of about 160 to 170 ° C. and a glass transition point of about 58 ° C. Although it is a crystalline polymer excellent in decomposability, such polylactic acid is suitable as the aliphatic polyester used in the present invention because the rigidity and heat resistance are particularly improved by the present invention.
[0013]
The molecular weight (number average molecular weight) of the aliphatic polyester used in the present invention is preferably about 30,000 to 200,000. When the molecular weight is less than the above lower limit, the strength of the obtained composite material tends to be insufficient, and when the molecular weight exceeds the above upper limit, the workability of the obtained composite material tends to decrease.
[0014]
As the aliphatic polyester used in the present invention, the aliphatic polyester may be used alone, but may be a blend or copolymer of two or more thereof. Examples of such an aliphatic polyester copolymer include a copolymer of lactic acid and a hydroxy acid other than lactic acid, polybutylene succinate adipate, and the like.
[0015]
In addition, the aliphatic polyester blend is preferably, for example, a polylactic acid-based resin based on polylactic acid, and other resins blended with polylactic acid include the aliphatic polyesters other than polylactic acid; polyethylene terephthalate, Examples include aromatic polyesters such as butylene terephthalate; polyamides such as nylon 6, nylon 6,6, nylon 6,9, nylon 6,10, nylon 6,12, nylon 11, nylon 12, and the like; natural rubber. The ratio of the resin other than polylactic acid in such a polylactic acid resin is preferably 60% by weight or less, and more preferably 30% by weight or less. If the ratio of the other resin exceeds the above upper limit, it tends to be difficult to obtain an improvement in rigidity and heat resistance due to the addition of cotton fibers described later.
[0016]
The cotton fiber used in the present invention has an average fiber diameter of 100 μm or less, particularly preferably 50 μm or less. When the average fiber diameter of the cotton fibers exceeds 100 μm, the dispersibility of the cotton fibers in the aliphatic polyester matrix is lowered, and the improvement of rigidity and heat resistance due to the addition of the cotton fibers becomes insufficient, and the fibers are a composite material. It will be easy to be exposed on the surface of. Further, the lower limit of the average fiber diameter of the cotton fibers is not particularly limited, but usually 10 μm or more is common.
[0017]
Moreover, it is preferable that the cotton fiber used in this invention is the fiber of the cotton wool from which fat content was removed by what is called a fat removal process. By removing the fat content from the cotton fibers, it becomes easier to uniformly disperse in the aliphatic polyester matrix in a single fiber state, the rigidity and heat resistance are further improved, and coloring by the cotton fibers is suppressed, and the composite material is reduced. The surface appearance tends to be better.
[0018]
Furthermore, the cotton fibers used in the present invention are preferably those obtained by subjecting absorbent cotton fibers to acylation treatment. The acylation treatment is treatment for introducing an acyl group into an organic compound, and typical acylation includes acetylation, benzoylation, and the like. The acylation treatment replaces the hydroxyl group (hydrophilic group) of the cotton fiber with an acyl group (hydrophobic group), making the cotton fiber and the aliphatic polyester more compatible and more reliably reducing the strength due to interfacial peeling between them. Tend to be prevented. The method for the acylation treatment is not particularly limited, and acylating agents such as carboxylic acid anhydrides such as acetic anhydride, halogenated acyls such as acetyl chloride, imidazolides, and ketenes (acetic anhydride, acetyl chloride, etc. are acetylating agents) It is possible to subject the absorbent cotton fiber to acylation treatment by using a conventional method.
[0019]
Moreover, it is preferable that the cotton fiber used in this invention performs the silane coupling agent process instead of the said acylation process to the absorbent cotton fiber, or with the said acylation process. A silane coupling agent has both a hydrolyzable group (hydrophilic group) and an organic functional group (hydrophobic group) in one molecule, and the silane coupling agent treatment causes the cotton fiber and fat to pass through the silane coupling agent. There is a tendency that the surface adhesion with the group polyester is further improved, and the decrease in strength due to the interfacial peeling is more reliably prevented. The method of the silane coupling agent treatment is not particularly limited, and it is possible to apply the silane coupling agent treatment to the absorbent cotton fiber by a conventional method using various silane coupling agents such as γ-glycidoxypropyltrimethoxysilane. .
[0020]
The ratio (weight ratio) between the aliphatic polyester and the cotton fiber in the aliphatic polyester composite material of the present invention is preferably aliphatic polyester / cotton fiber = 95 / 5-50 / 50, 90 / 10-60 / More preferably, it is 40. When the content of the cotton fiber is less than 5% by weight, the improvement in rigidity and heat resistance due to the addition of the cotton fiber tends to be insufficient. On the other hand, when the content of the cotton fiber exceeds 50% by weight, Further improvement of the effect of adding cotton fibers cannot be obtained, and the formability tends to decrease.
[0021]
In the present invention, additives such as a lubricant, a plasticizer, a heat stabilizer, a filler, a colorant, an antioxidant, and an ultraviolet absorber may be added as long as the characteristics of the aliphatic polyester composite material are not significantly impaired. it can. When such an additive is added, the content of the additive in the aliphatic polyester composite material is preferably 0.1 to 30% by weight, and more preferably 1 to 10% by weight. If the additive content is less than 0.1% by weight, the additive effect tends not to be obtained. On the other hand, if the additive content exceeds 30% by weight, the resulting composite material has unstable physical properties ( Tend to be soft or brittle).
[0022]
The method for producing the aliphatic polyester composite material of the present invention is not particularly limited as long as it is a method capable of finely dispersing the cotton fibers in the aliphatic polyester. For example, it can be obtained by the following method. is there. That is, cotton fibers subjected to degreasing treatment, further acylation treatment and / or silane coupling agent treatment as necessary are kneaded (melt kneaded) together with aliphatic polyester. Next, after the obtained mixture is pulverized, it can be formed into a desired shape by melt extrusion to obtain the aliphatic polyester composite material of the present invention.
[0023]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
[0024]
Comparative Example 3
Polylactic acid (Mitsui Chemicals, Lacia H-PL100) and absorbent cotton (Hasegawa Cotton Co., Japanese Pharmacopoeia absorbent cotton, average fiber diameter 12-38 μm, length 10-60 mm) weight of polylactic acid and absorbent cotton It mix | blended so that ratio might be polylactic acid / absorbent cotton = 70/30, and it melt-kneaded using the lab plast mill (conditions: 180 degreeC, 50 rpm, 30 minutes). Subsequently, the obtained mixture was pulverized by a pulverizer and dried under hot air at 90 ° C. for 24 hours. Then, the dried pulverized product was put into a twin screw extruder, formed into a plate-like body by melt extrusion (conditions: 160 to 180 ° C.), and then rapidly cooled to obtain a polylactic acid composite plate.
[0025]
Absorbent cotton fibers were uniformly finely dispersed in the obtained polylactic acid composite board, and the results of observation of the color and appearance of the polylactic acid composite board with the naked eye are shown in Table 1.
[0026]
In addition, a viscoelastic test piece (length 30 mm, width 5 mm, thickness 2.8 mm) and a bending test piece (length 60 mm, width 10 mm, thickness 2.8 mm) were cut out from the obtained polylactic acid composite plate. The bending test (bending elastic modulus and bending strength) and the viscoelasticity test were carried out by the above method.
[0027]
(Bending test)
The bending strength and bending elastic modulus of the bending test piece were measured according to the measuring method of bending strength and bending elastic modulus specified in JIS K 6911 5.17. The obtained results are shown in Table 1.
[0028]
(Viscoelasticity test)
The storage elastic modulus of the viscoelastic test piece at about 30 ° C. to about 140 ° C. was measured according to the dynamic viscoelasticity measurement method specified in JIS K 7244-4. The obtained results are shown in FIG.
[0029]
Example 1
A polylactic acid composite plate was obtained in the same manner as in Comparative Example 3 except that absorbent cotton subjected to acetylation treatment by the following method was used. That is, 66.7 g of acetic anhydride was added to 33.3 g of the same absorbent cotton as in Comparative Example 3, and heated to 130 ° C. in a separable flask with Dimroth. Absorbent cotton was taken out after 5 hours, air-dried in a draft for 24 hours, washed with water, and air-dried again. Further, the absorbent cotton was dried in a dryer at 100 ° C. for 24 hours to obtain absorbent cotton subjected to acetylation treatment.
[0030]
Absorbent cotton fibers were uniformly finely dispersed in the obtained polylactic acid composite board, and the results of observation of the color and appearance of the polylactic acid composite board with the naked eye are shown in Table 1. Moreover, the bending test and the viscoelasticity test were performed similarly to the comparative example 3, and the obtained result was shown in Table 1 and FIG.
[0031]
Comparative Example 4
A polylactic acid composite plate was obtained in the same manner as in Example 1 except that absorbent cotton treated with a silane coupling agent was used by the following method. That is, after dipping 50 g of absorbent cotton similar to Example 1 in 200 ml of a 2% aqueous solution of γ-glycidoxypropyltrimethoxysilane (ShinEtsu KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) for 10 seconds, the absorbent cotton was taken out and placed in a draft for 24 hours. And let it air dry. Further, the absorbent cotton was dried in a dryer at 100 ° C. for 24 hours to obtain absorbent cotton treated with a silane coupling agent.
[0032]
Absorbent cotton fibers were uniformly finely dispersed in the obtained polylactic acid composite board, and the results of observation of the color and appearance of the polylactic acid composite board with the naked eye are shown in Table 1. Moreover, the bending test and the viscoelasticity test were performed similarly to Example 1, and the obtained result was shown in Table 1 and FIG.
[0033]
Comparative Example 1
A polylactic acid plate was obtained in the same manner as in Example 1 except that only polylactic acid was used without adding absorbent cotton.
[0034]
The results of observation of the color and appearance of the obtained polylactic acid plate with the naked eye are shown in Table 1. Moreover, the bending test and the viscoelasticity test were performed similarly to Example 1, and the obtained result was shown in Table 1 and FIG.
[0035]
Comparative Example 2
A polylactic acid composite plate was obtained in the same manner as in Example 1 except that bamboo fibers (average fiber diameter 130 to 250 μm, length 10 mm to 100 mm) were used instead of absorbent cotton.
[0036]
Bamboo fibers were dispersed in the obtained polylactic acid composite plate, but the uniformity was inferior to that of the polylactic acid composite plate obtained in Comparative Example 3 . Table 1 shows the result of observation of the color and appearance of the polylactic acid composite plate obtained in Comparative Example 2 with the naked eye. Moreover, the bending test and the viscoelasticity test were performed similarly to Example 1, and the obtained result was shown in Table 1 and FIG.
[0037]
[Table 1]
Figure 0003870832
[0038]
As is clear from the results shown in Table 1, the composite material of the polylactic acid of the present invention obtained in Example 1 and the absorbent cotton fiber is compared with the material consisting only of polylactic acid obtained in Comparative Example 1, It was confirmed that the flexural modulus was dramatically improved without significantly reducing the bending strength. Further, as is clear from the results shown in FIG. 1, the composite material of the polylactic acid of the present invention obtained in Example 1 and the absorbent cotton fiber is compared with the material consisting only of polylactic acid obtained in Comparative Example 1. Thus, it was confirmed that the decrease in storage elastic modulus in the vicinity of the glass transition point (60 to 70 ° C.) was suppressed, and the heat resistance was dramatically improved.
[0039]
Further, as is clear from the results shown in Table 1 and FIG. 1, the composite material of the polylactic acid and absorbent cotton fiber of the present invention obtained in Example 1 is the polylactic acid and bamboo fiber obtained in Comparative Example 2. It was confirmed that the composite material was superior in all of the bending elastic modulus, bending strength, heat resistance and surface appearance.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an aliphatic polyester composite material that is sufficiently high in rigidity, excellent in heat resistance, and has a good surface appearance. Therefore, the aliphatic polyester composite material of the present invention is very useful as an automotive interior material or the like that requires high rigidity, high heat resistance and good surface appearance.
[Brief description of the drawings]
FIG. 1 is a graph showing a change in storage elastic modulus with respect to temperature in viscoelastic test pieces obtained in Examples and Comparative Examples.

Claims (3)

脂肪族ポリエステルと、該脂肪族ポリエステル中に分散されている平均繊維径が100μm以下である綿繊維とを含み、
前記綿繊維が、脱脂綿繊維にアシル化処理を施したものであることを特徴とする脂肪族ポリエステル複合材料。
Look-containing aliphatic polyester, an average fiber diameter which is dispersed in the aliphatic polyester is a cotton fiber is 100μm or less,
An aliphatic polyester composite material , wherein the cotton fibers are those obtained by acylating absorbent cotton fibers .
前記脂肪族ポリエステルがポリ乳酸、又はポリ乳酸以外の脂肪族ポリエステル、芳香族ポリエステル、ポリアミド及び天然ゴムから選択される1種以上とポリ乳酸とを含むポリ乳酸系樹脂であることを特徴とする請求項1記載の脂肪族ポリエステル複合材料。The aliphatic polyester is a polylactic acid-based resin containing polylactic acid or at least one selected from the group consisting of polylactic acid , aliphatic polyesters other than polylactic acid, aromatic polyester, polyamide and natural rubber. Item 5. The aliphatic polyester composite material according to Item 1. 前記ポリ乳酸系樹脂におけるポリ乳酸以外の樹脂の比率が60重量%以下であることを特徴とする請求項2記載の脂肪族ポリエステル複合材料。The aliphatic polyester composite material according to claim 2, wherein the ratio of the resin other than polylactic acid in the polylactic acid resin is 60% by weight or less.
JP2002123049A 2002-04-24 2002-04-24 Aliphatic polyester composite material Expired - Fee Related JP3870832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123049A JP3870832B2 (en) 2002-04-24 2002-04-24 Aliphatic polyester composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123049A JP3870832B2 (en) 2002-04-24 2002-04-24 Aliphatic polyester composite material

Publications (2)

Publication Number Publication Date
JP2003313417A JP2003313417A (en) 2003-11-06
JP3870832B2 true JP3870832B2 (en) 2007-01-24

Family

ID=29538487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123049A Expired - Fee Related JP3870832B2 (en) 2002-04-24 2002-04-24 Aliphatic polyester composite material

Country Status (1)

Country Link
JP (1) JP3870832B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036818A (en) * 2004-07-22 2006-02-09 Toyota Central Res & Dev Lab Inc Polylactic acid resin composition, molding obtained from the same and method for producing the molding
KR100816679B1 (en) * 2006-12-13 2008-03-27 제일모직주식회사 Natural fiber-reinforced polyactic acid-based resin composition
JP2008208194A (en) * 2007-02-26 2008-09-11 Matsushita Electric Works Ltd Resin composite material and molded article using the same
CN101280530B (en) * 2007-04-02 2010-12-08 东莞大朗后声电子厂 Method for preparing drum paper

Also Published As

Publication number Publication date
JP2003313417A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP6473417B2 (en) Aliphatic polyester resin composition and aliphatic polyester resin molding
EP3805611B1 (en) Cellulose-containing gear
EP0596734B1 (en) Thermoplastic elastomer composition
US8851084B2 (en) Cellulose acetate compositions
JP6390800B2 (en) Resin composition and molded product thereof
WO2011126038A1 (en) Polyamide resin composition and method for producing polyamide resin composition
EP2017306A1 (en) Thermoplastic resin composition, process for producing the same and molding
PT722980E (en) THERMOPLASTIC COMPOSITIONS THAT UNDERSTAND STARCH OR OTHER COMPONENTS OF NATURAL ORIGIN
WO2004063282A1 (en) Kenaf-fiber-reinforced resin composition
BR112021010502A2 (en) Composite wood composite material for thin-walled items
JP5300395B2 (en) Polyester resin composition, fiber obtained from the resin composition, and method for producing the fiber
CA2929129A1 (en) Durable high performance heat resistant polycarbonate (pc) and polylactide (pla) blends and compositions and methods of making those
JP2008523216A (en) Hydrolysis-resistant polyester composition and articles made from the composition
JP3870832B2 (en) Aliphatic polyester composite material
JP2003286400A (en) Resin composition and molded article made therefrom
JP3477440B2 (en) Biodegradable resin composition and molded article using the same
JP4643154B2 (en) A thermoplastic resin composition and a molded body formed by molding the same.
EP3725835A1 (en) Cellulose-based resin composition, molded body, and product obtained using same
JP2004359840A (en) Resin composition, its molded product and disperse aid
JP4402381B2 (en) Polylactic acid monofilament and method for producing the same
JP3918620B2 (en) Aliphatic polyester composition and automotive interior material
JP2004075727A (en) Polylactic acid resin composition having controlled biodegradation rate and its molded product
JP2004168895A (en) Biodegradable resin composition with improved biodegradability, and molded product
AU605596B2 (en) Glycidyl methacrylate grafted epdm modifiers in fiber reinforced polyester compositions
JP2007023215A (en) Biodegradable wire-like article

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees