JP3869582B2 - Nickel electrode active material for alkaline storage battery, method for producing the same, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode. - Google Patents

Nickel electrode active material for alkaline storage battery, method for producing the same, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode. Download PDF

Info

Publication number
JP3869582B2
JP3869582B2 JP11396599A JP11396599A JP3869582B2 JP 3869582 B2 JP3869582 B2 JP 3869582B2 JP 11396599 A JP11396599 A JP 11396599A JP 11396599 A JP11396599 A JP 11396599A JP 3869582 B2 JP3869582 B2 JP 3869582B2
Authority
JP
Japan
Prior art keywords
hydroxide
nickel
active material
cobalt
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11396599A
Other languages
Japanese (ja)
Other versions
JP2000306578A (en
Inventor
勝 木原
良貴 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11396599A priority Critical patent/JP3869582B2/en
Publication of JP2000306578A publication Critical patent/JP2000306578A/en
Application granted granted Critical
Publication of JP3869582B2 publication Critical patent/JP3869582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル水素蓄電池、ニッケルカドミウム蓄電池、ニッケル亜鉛蓄電池などのアルカリ蓄電池に関わり、特に、この種のアルカリ蓄電池に用いるニッケル電極活物質、およびこのニッケル電極活物質を用いた非焼結式ニッケル電極ならびにこの非焼結式ニッケル電極を用いたアルカリ蓄電池に関する。
【0002】
【従来の技術】
近年、携帯機器の急速な普及により従来に増して高性能な蓄電池が要請されるようになった。このような背景にあって、ニッケル水素蓄電池、ニッケルカドミウム蓄電池などのアルカリ蓄電池に用いられるニッケル電極活物質として、活物質利用率、過放電後の容量回復率などを向上させるために、水酸化ニッケル活物質粒子の表面にナトリウムイオン等のカチオンを含有した結晶性が乱れた高次コバルト化合物層を有する水酸化ニッケル複合粒子が、例えば、特開平8−148145号公報にて提案されている。
【0003】
この特開平8−148145号公報にて提案された、ナトリウムイオン等のカチオンを含有した結晶性が乱れた高次コバルト化合物層を有する水酸化ニッケル複合粒子は次のようにして作製されるものである。即ち、水酸化ニッケルが析出した溶液中に硫酸コバルト水溶液と水酸化ナトリウム水溶液を適下して水酸化ナトリウム液含浸ニッケル活物質粒子とし、アルカリ共存下で空気中で加熱して、高次化処理を行う。このようにして、水酸化ニッケル活物質粒子の表面に結晶性が乱れた高次コバルト化合物を有する水酸化ニッケル複合粒子が得られる。
【0004】
このような水酸化ニッケル複合粒子は、高次コバルト化合物の高導電性効果が発揮されることで活物質利用率が向上した非焼結式ニッケル電極が得られるようになる。また、水酸化ニッケル粒子の表面に存在するコバルト化合物は、水酸化ニッケル粒子の内部との境界において水酸化ニッケルを取り込んだ状態で結晶化するため、コバルト化合物は電解液に対する溶解性が抑制され、過放電後の容量低下が抑制されるようになる。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平8−148145号公報にて提案された水酸化ニッケル複合粒子にあっては、作製の過程で水洗、乾燥する必要があり、その際にコバルト化合物の一部が脱落し、コバルト化合物層の被覆が不完全になるという問題があった。また、この水酸化ニッケル複合粒子を用いた電池が長期的に短絡状態に曝された場合、この水酸化ニッケル複合粒子が電解液と接触しているため、高次コバルト化合物が還元されて電解液に溶出し、コバルトの導電性ネットワークが崩壊される。このため、コバルト化合物の高導電性効果が失われ、電池性能が低下するという問題があった。
【0006】
そこで、本発明は上記問題点に鑑みてなされたものであり、水酸化ニッケルを被覆するコバルト化合物の脱落、電解液への溶出を防止し、単位活物質あたりの容量が高く、特に放電深度の深い充放電サイクルが進行しても電池容量の低下が抑制されたサイクル特性に優れたアルカリ蓄電池を提供しようとすることを本発明の課題とする。
【0007】
【課題を解決するための手段】
本発明のアルカリ蓄電池用ニッケル電極活物質は、水酸化ニッケルの表面を水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層で被覆したアルカリ蓄電池用ニッケル電極活物質であって、前記層の内部にフッ素樹脂を含有させたことを特徴とするものである。
【0008】
【発明の実施の形態】
[実施例1]
以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
【0009】
(ニッケル電極活物質の作製)
金属ニッケルに対して、亜鉛1重量%、コバルト3重量%となるように、硫酸ニッケル、硫酸亜鉛、硫酸コバルトの混合水溶液を攪拌しながら、水酸化ナトリウム水溶液を徐々に添加し、反応中のpHを13〜14に安定させて球状の水酸化ニッケルを析出させる。
【0010】
この水酸化ニッケルが析出した水溶液を攪拌し、この水溶液中に、反応中のpHを9〜10に維持するようにして、50重量%のポリテトラフルオロエチレン(以下PTFEと云う)を分散させた硫酸コバルト水溶液のディスパージョンを添加して、水酸化ニッケルを主成分とする球状の水酸化ニッケル粒子を結晶核とし、この核の周囲に、主として内部にPTFEを含有させた水酸化コバルトを、前記水酸化ニッケルに対して10重量%析出させた。
【0011】
尚、水酸化コバルト層の表面にも若干PTFEの存在を確認した。
【0012】
この複合粒子粉末に対して、10倍の重量の純水で3回洗浄した後、脱水、乾燥することにより、内部にPTFEを含有した水酸化コバルト層を有する本発明のニッケル電極活物質aを作製した。
【0013】
(非焼結式ニッケル電極の作製)
上述のように作製したニッケル電極活物質aに0.2重量%のポリエチレンオキサイド(以下PEOと云う)水溶液を混合して活物質スラリーを作製した。この活物質スラリーを多孔度96%の3次元的に網目構造を有した発泡ニッケルに充填し、乾燥後、圧延して本発明の非焼結式ニッケル正極Aを作製した。
【0014】
(ニッケル水素蓄電池の作製)
前記のように作製した本発明の非焼結式正極と、負極として公知の水素吸蔵合金電極を、セパレータとして耐アルカリ性の不織布を、また、電解液として30重量%の水酸化カリウム水溶液をそれぞれ使用して、公称容量1200mAhのAAサイズのニッケル水素蓄電池(A)を作製した。
【0015】
図1は前記の様に作製した本発明のニッケル水素電池を示す断面図であり、水酸化ニッケル活物質を有する正極4と、水素吸蔵合金粉末を有する負極5と、これら正負両極板4、5間に介装されたセパレータ6とからなる電極群7は渦巻状に巻回されており、電池外装缶1内に配置した後、30重量%の水酸化カリウム水溶液からなる電解液を注入している。そして、上記負極5は負極集電体(図示せず)により電池外装缶1の底面部に接続されている。
【0016】
他方、電池外装缶1の上部には、ガスケット8を介在させて、中央部が開口された封口板2が配設され、この封口板2に正極端子9が装着されている。また、正極端子9と正極板4は正極集電体3及び前記封口板2を介して接続されている。
【0017】
[実施例2]
前記実施例1と同様にして、主成分が水酸化ニッケルである球状水酸化ニッケル粒子を結晶核として、この核の周囲に、主として内部にPTFEを含有させた水酸化コバルトを、前記水酸化ニッケルに対して、10重量%析出させた。この析出物を採取して水洗、乾燥して、球状水酸化ニッケル粒子の表面にPTFEを主として内部に含有した水酸化コバルトの被覆層を有した複合粒子粉末を得た。尚、水酸化コバルト層の表面にも若干PTFEの存在を確認した。
【0018】
その後、この複合粒子を100℃の加熱空気の雰囲気中で、この複合粒子粉末に対して25重量%の水酸化カリウムを0.5時間噴霧することによって、前記水酸化コバルトを結晶性の乱れた、カリウムカチオンを含有した高次コバルト化合物層に変化させた。その後、純水で3回洗浄した後、脱水、乾燥することにより、PTFEを含有した高導電性の高次コバルト被覆層を有した本発明のニッケル電極活物質b作製した。
【0019】
その後、前記実施例1と同様にして本発明の非焼結式ニッケル電極B及び本発明の公称容量1200mAh、AAサイズのニッケル水素蓄電池(B)を作製した。
【0020】
[実施例3]
前記実施例1の活物質スラリーを作製する際に、0.2重量%のPEO水溶液の代わりに、30重量%のPTFE水溶液を混合して活物質スラリーを作製する以外は、前記実施例1と同様にして本発明の非焼結式ニッケル電極C及び本発明の公称容量1200mAh、AAサイズのニッケル水素蓄電池(C)を作製した。
【0021】
尚、この本発明の非焼結式ニッケル正極は、結着剤としてPTFEを使用しているため、水酸化ニッケル粒子を被覆した水酸化コバルト層の内部及び表面にもPTFEが含有している。
【0022】
[実施例4]
前記実施例1と同様に、金属ニッケルに対して、亜鉛1重量%、コバルト3重量%となるように、硫酸ニッケル、硫酸亜鉛、硫酸コバルトの混合水溶液を攪拌しながら、水酸化ナトリウム水溶液を徐々に添加し、反応中のpHを13〜14に維持させて、水酸化ニッケルを析出させる。この水酸化ニッケルが析出した水溶液を攪拌し、この水溶液中に、反応中のpHを9〜10に維持するようにして、この水溶液に対して30重量%のPTFEと、硫酸コバルト水溶液を添加して、主成分が水酸化ニッケルである球状水酸化物に対して、主として内部にPTFEを含有させた水酸化コバルトを、前記水酸化ニッケルに対して、10重量%析出させて、本発明の活物質d、非焼結式電極D及びニッケル水素蓄電池(D)を作製した。
【0023】
尚、本発明の活物質dの水酸化コバルト層の表面にも若干PTFEの存在を確認した。
【0024】
[比較例1]
前記実施例1のニッケル電極活物質の作製において、硫酸コバルト水溶液にPTFEを添加せずに、水酸化ニッケルを主成分とする粒子の表面に水酸化コバルト層を形成した以外は、比較例のニッケル電極活物質xを作製した。
【0025】
また、前記実施例1の非焼結式電極の作製において、前記ニッケル電極活物質に0.2重量%のPEO水溶液を混合した活物質スラリーに60重量%のPTFE水溶液を混合する以外は、前記実施例1と同様にして比較例の非焼結式正極X及びこの非焼結式正極Xを備えた公称容量1200mAhのAAサイズのニッケル水素蓄電池(X)を作製した。
【0026】
<実験1>
前記のように作製した実施例1〜4のニッケル水素蓄電池(A)〜(D)及び比較例1のニッケル水素蓄電池(X)を用いて以下の条件で充放電サイクル試験を行い、その結果を図2に示す。
【0027】
充電:120mA×16時間
放電:1200mA(放電終止電圧0.5V)
尚、図2には比較例1の初期放電容量を100とした時の割合を示している。
【0028】
上記図2の結果から、本発明のニッケル電極活物質を備えたニッケル水素蓄電池(A)〜(D)は比較例のニッケル電極活物質を備えたニッケル水素蓄電池(X)よりも放電深度の深い充放電サイクル特性が優れていることがわかる。
【0029】
これは、本発明のニッケル水素蓄電池(A)〜(D)は、正極に水酸化ニッケルの表面に水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層を被覆した複合粒子であって、前記層の内部には結着力が大きく、撥水性のPTFEを含有させたことにより、層の水酸化ニッケル粒子表面からの脱落及び、放電深度の深い充放電サイクルを繰り返し行っても、電解液中への溶出が最小限に抑制されたものと考えられる。
【0030】
<実験2>
前記のように作製した実施例1〜4及び比較例1のニッケル水素蓄電池を用いて以下の条件で試験を行い、単位活物質当たりの容量を求め、その結果を下記表1に示す。
【0031】
充電:120mA×16時間
放電:600mA(放電終止電圧1.0V)
このときの放電時間から水酸化ニッケル活物質1g当たりの放電容量を求めた。
【0032】
尚、比較例1のニッケル電極活物質xの単位活物質当たりの容量を100とした時の指数表示で示す。
【0033】
【表1】

Figure 0003869582
上記表1の結果から、本発明のニッケル電極活物質a〜dを備えたニッケル水素蓄電池は比較例のニッケル電極活物質xを備えたニッケル水素蓄電池よりも単位活物質当たりの容量が優れていることがわかる。
【0034】
これは、本発明のニッケル水素蓄電池は、正極に水酸化ニッケルの表面に水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層を被覆した複合粒子であって、前記層の内部には結着力が大きく、撥水性のPTFEを含有させたことにより、電極作製時の層の水酸化ニッケル粒子表面からの脱落及び電解液中への溶出が最小限に抑制されたので、コバルトの導電性マットリクスが崩壊されなかったためであると考えられる。
【0035】
一方、比較例1の正極活物質xには、水酸化ニッケル粒子の表面を被覆した水酸化コバルト層の内部にフッ素樹脂が含有していないため、活物質の水洗、乾燥時に水酸化コバルト層が水酸化ニッケル粒子から脱落及び電池作製後に水酸化コバルト層が電解液中へ溶出し、コバルトの導電性マトリックスが崩壊し、単位活物質当たりの容量が本発明の活物質a〜dよりも低下したものと考えられる。
【0036】
尚、本実施例では、アルカリ蓄電池としてニッケル水素蓄電池を例に挙げたが、これに限らず、ニッケルカドミウム蓄電池、ニッケル亜鉛蓄電池に使用しても同様の効果が得られる。
【0037】
また、本実施例では、フッ素樹脂として、PTFEを挙げたが、これに限らず、撥水性合成樹脂、例えば、クロロトリフロルエチレン、テトラフロルエチレン−ヘキサフロルフロピレン共重合体等を使用することもできる。
【0038】
【発明の効果】
本発明に係るニッケル電極活物質、その活物質を備えた非焼結式電極及びその電極を備えたニッケル水素蓄電池は、単位活物質当たりの容量が優れているので、高容量化が計れる。更に、放電深度を深くした時であっても、充放電サイクルの進行に伴う電池容量の低下が抑制され、その工業的価値は極めて高い。
【図面の簡単な説明】
【図1】本発明のニッケル水素畜電池の一例を示す断面図である。
【図2】本発明のニッケル水素蓄電池及び比較例のニッケル水素蓄電池のサイクル特性を示す図である。
【符号の説明】
4 正極板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline storage battery such as a nickel metal hydride storage battery, a nickel cadmium storage battery, and a nickel zinc storage battery. The present invention relates to an electrode and an alkaline storage battery using the non-sintered nickel electrode.
[0002]
[Prior art]
In recent years, due to the rapid spread of portable devices, higher performance storage batteries have been required. Against this background, as a nickel electrode active material used in alkaline storage batteries such as nickel metal hydride storage batteries and nickel cadmium storage batteries, in order to improve the active material utilization rate, capacity recovery rate after overdischarge, etc., nickel hydroxide A nickel hydroxide composite particle having a disordered crystallinity containing a cation such as sodium ion on the surface of the active material particle is proposed in, for example, Japanese Patent Laid-Open No. 8-148145.
[0003]
The nickel hydroxide composite particles proposed in Japanese Patent Application Laid-Open No. 8-148145 and having a high-order cobalt compound layer containing a cation such as sodium ion and having disordered crystallinity are prepared as follows. is there. In other words, a cobalt sulfate aqueous solution and a sodium hydroxide aqueous solution are appropriately dropped into a solution in which nickel hydroxide is precipitated to form nickel hydroxide liquid-impregnated nickel active material particles, and heated in air in the presence of an alkali to increase the degree of treatment. I do. In this way, nickel hydroxide composite particles having a higher-order cobalt compound with disordered crystallinity on the surface of the nickel hydroxide active material particles are obtained.
[0004]
Such nickel hydroxide composite particles are capable of obtaining a non-sintered nickel electrode with improved active material utilization by exhibiting the high conductivity effect of the higher cobalt compound. In addition, since the cobalt compound present on the surface of the nickel hydroxide particles is crystallized in a state in which nickel hydroxide is taken in at the boundary with the inside of the nickel hydroxide particles, the solubility of the cobalt compound in the electrolytic solution is suppressed, Capacity reduction after overdischarge is suppressed.
[0005]
[Problems to be solved by the invention]
However, in the nickel hydroxide composite particles proposed in Japanese Patent Laid-Open No. 8-148145, it is necessary to wash and dry in the process of production, and in that case, a part of the cobalt compound is dropped, and the cobalt compound There was a problem that the coating of the layer was incomplete. Further, when a battery using the nickel hydroxide composite particles is exposed to a short-circuit state for a long time, since the nickel hydroxide composite particles are in contact with the electrolyte, the higher cobalt compound is reduced and the electrolyte And the cobalt conductive network is destroyed. For this reason, there existed a problem that the high electroconductivity effect of a cobalt compound was lost and battery performance fell.
[0006]
Therefore, the present invention has been made in view of the above problems, and prevents the cobalt compound covering nickel hydroxide from falling off and elution into the electrolytic solution, and has a high capacity per unit active material, in particular, the depth of discharge. An object of the present invention is to provide an alkaline storage battery excellent in cycle characteristics in which a decrease in battery capacity is suppressed even when a deep charge / discharge cycle progresses.
[0007]
[Means for Solving the Problems]
Nickel electrode active material for an alkaline storage battery of the present invention is a surface of nickel electrode active material for an alkaline storage batteries covered with a layer of cobalt compound is heated oxidizing cobalt hydroxide or cobalt hydroxide nickel hydroxide, prior SL layer This is characterized in that a fluororesin is contained in the inside.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the invention.
[0009]
(Production of nickel electrode active material)
While stirring a mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate so that the amount of zinc is 1% by weight of zinc and 3% by weight of cobalt with respect to metallic nickel, an aqueous solution of sodium hydroxide is gradually added to adjust the pH during the reaction. Is stabilized to 13 to 14 to deposit spherical nickel hydroxide.
[0010]
The aqueous solution in which the nickel hydroxide was precipitated was stirred, and 50% by weight of polytetrafluoroethylene (hereinafter referred to as PTFE) was dispersed in the aqueous solution so as to maintain the pH during the reaction at 9 to 10. A dispersion of an aqueous cobalt sulfate solution is added, and spherical nickel hydroxide particles mainly composed of nickel hydroxide are used as crystal nuclei. Cobalt hydroxide containing mainly PTFE inside the nuclei is 10% by weight was deposited with respect to nickel hydroxide.
[0011]
The presence of PTFE was also confirmed on the surface of the cobalt hydroxide layer.
[0012]
The composite particle powder is washed three times with 10 times the weight of pure water, and then dehydrated and dried to obtain the nickel electrode active material a of the present invention having a cobalt hydroxide layer containing PTFE inside. Produced.
[0013]
(Preparation of non-sintered nickel electrode)
The nickel electrode active material a prepared as described above was mixed with a 0.2 wt% aqueous polyethylene oxide (hereinafter referred to as PEO) aqueous solution to prepare an active material slurry. This active material slurry was filled in foamed nickel having a three-dimensional network structure with a porosity of 96%, dried and rolled to produce the non-sintered nickel positive electrode A of the present invention.
[0014]
(Production of nickel metal hydride storage battery)
Using the non-sintered positive electrode of the present invention produced as described above, a known hydrogen storage alloy electrode as the negative electrode, an alkali-resistant non-woven fabric as the separator, and a 30% by weight potassium hydroxide aqueous solution as the electrolyte Thus, an AA size nickel metal hydride storage battery (A) having a nominal capacity of 1200 mAh was produced.
[0015]
FIG. 1 is a cross-sectional view showing the nickel-metal hydride battery of the present invention produced as described above. The positive electrode 4 having a nickel hydroxide active material, the negative electrode 5 having a hydrogen storage alloy powder, and these positive and negative bipolar plates 4, 5 The electrode group 7 including the separator 6 interposed therebetween is wound in a spiral shape, and after being placed in the battery outer can 1, an electrolytic solution composed of a 30 wt% potassium hydroxide aqueous solution is injected. Yes. The negative electrode 5 is connected to the bottom surface of the battery outer can 1 by a negative electrode current collector (not shown).
[0016]
On the other hand, on the upper part of the battery outer can 1, a sealing plate 2 having a central portion opened with a gasket 8 interposed is disposed, and a positive electrode terminal 9 is mounted on the sealing plate 2. The positive electrode terminal 9 and the positive electrode plate 4 are connected via the positive electrode current collector 3 and the sealing plate 2.
[0017]
[Example 2]
In the same manner as in Example 1, spherical nickel hydroxide particles whose main component is nickel hydroxide are used as crystal nuclei, and cobalt hydroxide containing PTFE mainly inside the nuclei is added to the nickel hydroxide. 10% by weight was precipitated. The precipitate was collected, washed with water, and dried to obtain a composite particle powder having a cobalt hydroxide coating layer mainly containing PTFE inside the spherical nickel hydroxide particles. The presence of PTFE was also confirmed on the surface of the cobalt hydroxide layer.
[0018]
Thereafter, the composite particles were sprayed with 25 wt% potassium hydroxide for 0.5 hours in an atmosphere of heated air at 100 ° C. for 0.5 hours, whereby the cobalt hydroxide was disturbed in crystallinity. The higher cobalt compound layer containing potassium cations was changed. Then, after washing | cleaning 3 times with a pure water, the nickel electrode active material b of this invention which had the highly conductive high-order cobalt coating layer containing PTFE was produced by dehydrating and drying.
[0019]
Thereafter, in the same manner as in Example 1, a non-sintered nickel electrode B of the present invention and a nickel-metal hydride storage battery (B) having a nominal capacity of 1200 mAh and AA size of the present invention were produced.
[0020]
[Example 3]
When preparing the active material slurry of Example 1, the same procedure as in Example 1 was performed except that an active material slurry was prepared by mixing 30% by weight of PTFE aqueous solution instead of 0.2% by weight of PEO aqueous solution. Thus, the non-sintered nickel electrode C of the present invention and the nickel-metal hydride storage battery (C) having the nominal capacity of 1200 mAh and AA size of the present invention were prepared.
[0021]
Since the non-sintered nickel positive electrode of the present invention uses PTFE as a binder, PTFE is also contained inside and on the surface of the cobalt hydroxide layer coated with nickel hydroxide particles.
[0022]
[Example 4]
As in Example 1, the sodium hydroxide aqueous solution was gradually added while stirring the mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate so that the metal nickel would be 1 wt% zinc and 3 wt% cobalt. To maintain the pH during the reaction at 13-14 to precipitate nickel hydroxide. The aqueous solution in which the nickel hydroxide was precipitated was stirred, and 30 wt% PTFE and an aqueous cobalt sulfate solution were added to the aqueous solution so that the pH during the reaction was maintained at 9-10. Then, 10 wt% of cobalt hydroxide containing mainly PTFE inside the spherical hydroxide whose main component is nickel hydroxide is precipitated with respect to the nickel hydroxide. Material d, non-sintered electrode D and nickel metal hydride storage battery (D) were produced.
[0023]
The presence of PTFE was also confirmed on the surface of the cobalt hydroxide layer of the active material d of the present invention.
[0024]
[Comparative Example 1]
In the preparation of the nickel electrode active material of Example 1, the nickel hydroxide of the comparative example was formed except that the PTFE was not added to the cobalt sulfate aqueous solution, and the cobalt hydroxide layer was formed on the surface of the particles mainly composed of nickel hydroxide. An electrode active material x was produced.
[0025]
Further, in the production of the non-sintered electrode of Example 1, except that a 60 wt% aqueous PTFE solution was mixed with an active material slurry obtained by mixing a 0.2 wt% PEO aqueous solution with the nickel electrode active material. In the same manner as in Example 1, a non-sintered positive electrode X of Comparative Example and a nickel-metal hydride storage battery (X) having a nominal capacity of 1200 mAh and equipped with this non-sintered positive electrode X were produced.
[0026]
<Experiment 1>
Using the nickel hydride storage batteries (A) to (D) of Examples 1 to 4 and the nickel hydride storage battery (X) of Comparative Example 1 produced as described above, a charge / discharge cycle test was performed under the following conditions, and the results were obtained. As shown in FIG.
[0027]
Charging: 120mA x 16 hours Discharging: 1200mA (end-of-discharge voltage 0.5V)
FIG. 2 shows the ratio when the initial discharge capacity of Comparative Example 1 is 100.
[0028]
From the result of FIG. 2, the nickel hydride storage batteries (A) to (D) provided with the nickel electrode active material of the present invention have a deeper discharge depth than the nickel hydride storage battery (X) provided with the nickel electrode active material of the comparative example. It can be seen that the charge / discharge cycle characteristics are excellent.
[0029]
The nickel-metal hydride storage batteries (A) to (D) of the present invention are composite particles in which the surface of nickel hydroxide is coated on the positive electrode with a cobalt compound layer obtained by heating and oxidizing cobalt hydroxide or cobalt hydroxide . before SL layer inside a large binding force of, by which is contained PTFE water-repellent, falling and from nickel hydroxide particles the surface of the layer, be repeated deep discharge cycle of the depth of discharge, the electrolyte It is thought that elution into the inside was suppressed to a minimum.
[0030]
<Experiment 2>
Using the nickel hydride storage batteries of Examples 1 to 4 and Comparative Example 1 produced as described above, tests were performed under the following conditions to determine the capacity per unit active material, and the results are shown in Table 1 below.
[0031]
Charge: 120mA x 16 hours Discharge: 600mA (end-of-discharge voltage 1.0V)
The discharge capacity per 1 g of nickel hydroxide active material was determined from the discharge time at this time.
[0032]
In addition, the nickel electrode active material x of Comparative Example 1 is indicated by an index when the capacity per unit active material is 100.
[0033]
[Table 1]
Figure 0003869582
From the results of Table 1 above, the nickel hydride storage battery provided with the nickel electrode active materials a to d of the present invention is superior in capacity per unit active material than the nickel hydride storage battery provided with the nickel electrode active material x of the comparative example. I understand that.
[0034]
This nickel hydrogen storage battery of the present invention is a composite particle coated with a layer of the positive electrode to the cobalt compound is heated oxidizing cobalt hydroxide or cobalt hydroxide on the surface of nickel hydroxide, inside the previous SL layer By including PTFE, which has a high binding force and water repellency, the dropping of the layer from the nickel hydroxide particle surface and the elution into the electrolyte during the electrode preparation were suppressed to a minimum. This is probably because the matrix was not destroyed.
[0035]
On the other hand, the positive electrode active material x of Comparative Example 1, since the inner fluororesin cobalt hydroxide layer whose surface is coated nickel hydroxide particles are not contained, washing of the active material, cobalt hydroxide layer during drying After dropping from the nickel hydroxide particles and preparing the battery, the cobalt hydroxide layer was eluted into the electrolyte solution, the cobalt conductive matrix collapsed, and the capacity per unit active material was lower than that of the active materials a to d of the present invention. It is considered a thing.
[0036]
In the present embodiment, a nickel metal hydride storage battery is used as an example of the alkaline storage battery.
[0037]
In this example, PTFE was used as the fluororesin, but not limited thereto, a water-repellent synthetic resin such as chlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, or the like is used. You can also.
[0038]
【The invention's effect】
Since the nickel electrode active material according to the present invention, the non-sintered electrode provided with the active material, and the nickel metal hydride storage battery provided with the electrode are excellent in capacity per unit active material, the capacity can be increased. Furthermore, even when the depth of discharge is increased, the decrease in battery capacity accompanying the progress of the charge / discharge cycle is suppressed, and its industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a nickel metal hydride battery of the present invention.
FIG. 2 is a diagram showing cycle characteristics of a nickel-metal hydride storage battery of the present invention and a nickel-metal hydride storage battery of a comparative example.
[Explanation of symbols]
4 Positive electrode plate

Claims (12)

水酸化ニッケルの表面を水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層で被覆したアルカリ蓄電池用ニッケル電極活物質であって、前記層の内部にフッ素樹脂を含有させたことを特徴とするアルカリ蓄電池用ニッケル電極活物質。A surface of nickel electrode active material for an alkaline storage batteries covered with a layer of cobalt compound is heated oxidizing cobalt hydroxide or cobalt hydroxide nickel hydroxide, characterized in that it contained fluororesin inside the prior SL layer Nickel electrode active material for alkaline storage batteries. 水酸化ニッケルの表面を水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層で被覆したアルカリ蓄電池用ニッケル電極活物質であって、前記層の内部及びその表面にフッ素樹脂を含有させたことを特徴とするアルカリ蓄電池用ニッケル電極活物質。A surface of nickel electrode active material for an alkaline storage batteries covered with a layer of cobalt compound is heated oxidizing cobalt hydroxide or cobalt hydroxide nickel hydroxide, a fluorine resin is contained in and its surface before the SL layer A nickel electrode active material for alkaline storage batteries. 前記フッ素樹脂はポリテトラフルオロエチレンであることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池用ニッケル電極活物質。  The nickel electrode active material for an alkaline storage battery according to claim 1 or 2, wherein the fluororesin is polytetrafluoroethylene. 水酸化ニッケルの表面を水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層で被覆したアルカリ蓄電池用ニッケル電極活物質をスラリーとし、このスラリーを三次元的に網目構造を持った活物質保持体に充填した非焼結式ニッケル電極であって、前記ニッケル電極活物質の表面に形成した層の内部にフッ素樹脂を含有させたことを特徴とする非焼結式ニッケル電極。A nickel electrode active material for alkaline storage batteries, in which the surface of nickel hydroxide is coated with a layer of cobalt hydroxide or a cobalt compound obtained by heating and oxidizing cobalt hydroxide, is used as a slurry, and this slurry is retained as an active material having a three-dimensional network structure. A non-sintered nickel electrode filled in a body, wherein a fluorine resin is contained in a layer formed on the surface of the nickel electrode active material. 水酸化ニッケルの表面を水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層で被覆したアルカリ蓄電池用ニッケル電極活物質をスラリーとし、このスラリーを三次元的に網目構造を持った活物質保持体に充填した非焼結式ニッケル電極であって、前記ニッケル電極活物質の表面に形成した層の内部及びその表面にフッ素樹脂を含有させたことを特徴とする非焼結式ニッケル電極。A nickel electrode active material for alkaline storage batteries, in which the surface of nickel hydroxide is coated with a layer of cobalt hydroxide or a cobalt compound obtained by heating and oxidizing cobalt hydroxide, is used as a slurry, and this slurry is retained as an active material having a three-dimensional network structure. A non-sintered nickel electrode filled in a body, wherein a fluororesin is contained inside and on the surface of the layer formed on the surface of the nickel electrode active material. 前記フッ素樹脂は、ポリテトラフルオロエチレンであることを特徴とする請求項4または請求項5に記載の非焼結式ニッケル電極。  The non-sintered nickel electrode according to claim 4 or 5, wherein the fluororesin is polytetrafluoroethylene. 水酸化ニッケルの表面を水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層で被覆したアルカリ蓄電池用ニッケル電極活物質をスラリーとし、このスラリーを三次元的に網目構造を持った活物質保持体に充填した非焼結式ニッケル電極と水素吸蔵合金負極とをセパレータを介して渦巻状に巻回あるいは積層した電極体をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、 前記層の内部にはフッ素樹脂が含有することを特徴とするアルカリ蓄電池。A nickel electrode active material for alkaline storage batteries, in which the surface of nickel hydroxide is coated with a layer of cobalt hydroxide or a cobalt compound obtained by heating and oxidizing cobalt hydroxide, is used as a slurry, and this slurry is retained as an active material having a three-dimensional network structure. wound or stacked electrode body in a spiral shape and a non-sintered nickel electrodes was charged to the body, the hydrogen storage alloy negative electrode through the separator together with an alkaline electrolyte in an alkaline storage battery comprising in an outer can, before Symbol An alkaline storage battery characterized in that a fluorine resin is contained inside the layer . 水酸化ニッケルの表面を水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層で被覆したアルカリ蓄電池用ニッケル電極活物質をスラリーとし、このスラリーを三次元的に網目構造を持った活物質保持体に充填した非焼結式ニッケル電極と水素吸蔵合金負極とをセパレータを介して渦巻状に巻回あるいは積層した電極体をアルカリ電解液とともに外装缶内に備えたアルカリ蓄電池であって、前記層の内部及びその表面にはフッ素樹脂が含有することを特徴とするアルカリ蓄電池。A nickel electrode active material for alkaline storage batteries, in which the surface of nickel hydroxide is coated with a layer of cobalt hydroxide or a cobalt compound obtained by heating and oxidizing cobalt hydroxide, is used as a slurry, and this slurry is retained as an active material having a three-dimensional network structure. wound or stacked electrode body in a spiral shape and a non-sintered nickel electrodes was charged to the body, the hydrogen storage alloy negative electrode through the separator together with an alkaline electrolyte in an alkaline storage battery comprising in an outer can, before Symbol An alkaline storage battery characterized in that a fluororesin is contained inside and on the surface of the layer . 前記フッ素樹脂はポリテトラフルオロエチレンであることを特徴とする請求項7または請求項8に記載のアルカリ蓄電池。  The alkaline storage battery according to claim 7 or 8, wherein the fluororesin is polytetrafluoroethylene. 水酸化ニッケルを主成分とする球状の水酸化物をアルカリ溶液中で攪拌する工程と、前記アルカリ水溶液中にフッ素樹脂を添加したコバルト含有酸性水溶液を添加して、前記水酸化ニッケルを主成分とする球状の水酸化物の表面にフッ素樹脂を含有した水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層を形成する工程を備えたことを特徴とするアルカリ蓄電池用ニッケル電極活物質の製造方法。A step of stirring a spherical hydroxide containing nickel hydroxide as a main component in an alkaline solution; and adding a cobalt-containing acidic aqueous solution in which a fluororesin is added to the alkaline aqueous solution; A nickel electrode active material for an alkaline storage battery, comprising a step of forming a layer of cobalt hydroxide containing a fluororesin or a cobalt compound obtained by heating and oxidizing cobalt hydroxide on the surface of a spherical hydroxide Method. 水酸化ニッケルを主成分とする球状の水酸化物をアルカリ溶液中で攪拌する工程と、前記アルカリ水溶液中にフッ素樹脂を添加する工程と、前記フッ素樹脂を添加したアルカリ水溶液中にコバルトを含有した酸性水溶液を添加して、前記水酸化ニッケルを主成分とする球状の水酸化物の表面にフッ素樹脂を含有した水酸化コバルト又は水酸化コバルトを加熱酸化したコバルト化合物の層を形成する工程を備えたことを特徴とするアルカリ蓄電池用ニッケル電極活物質の製造方法。A step of stirring a spherical hydroxide containing nickel hydroxide as a main component in an alkaline solution, a step of adding a fluororesin to the alkaline aqueous solution, and cobalt in the alkaline aqueous solution to which the fluororesin was added. A step of adding an acidic aqueous solution and forming a layer of cobalt hydroxide containing heat-oxidized cobalt hydroxide containing fluororesin or cobalt hydroxide on the surface of the spherical hydroxide mainly composed of nickel hydroxide. The manufacturing method of the nickel electrode active material for alkaline storage batteries characterized by the above-mentioned. 前記フッ素樹脂はポリテトラフルオロエチレンであることを特徴とする請求項10または請求項11記載のアルカリ蓄電池用ニッケル電極
活物質の製造方法。
The method for producing a nickel electrode active material for an alkaline storage battery according to claim 10 or 11, wherein the fluororesin is polytetrafluoroethylene.
JP11396599A 1999-04-21 1999-04-21 Nickel electrode active material for alkaline storage battery, method for producing the same, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode. Expired - Lifetime JP3869582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11396599A JP3869582B2 (en) 1999-04-21 1999-04-21 Nickel electrode active material for alkaline storage battery, method for producing the same, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11396599A JP3869582B2 (en) 1999-04-21 1999-04-21 Nickel electrode active material for alkaline storage battery, method for producing the same, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode.

Publications (2)

Publication Number Publication Date
JP2000306578A JP2000306578A (en) 2000-11-02
JP3869582B2 true JP3869582B2 (en) 2007-01-17

Family

ID=14625657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11396599A Expired - Lifetime JP3869582B2 (en) 1999-04-21 1999-04-21 Nickel electrode active material for alkaline storage battery, method for producing the same, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode.

Country Status (1)

Country Link
JP (1) JP3869582B2 (en)

Also Published As

Publication number Publication date
JP2000306578A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
RU2208270C2 (en) Positive-plate composite material and its manufacturing process
US20150303461A1 (en) Composite materials for rechargeable zinc electrodes
JPH11149921A (en) Alkali storage battery and surface treatment method of its positive electrode substance
JP2000021401A (en) Nickel hydroxide powder for alkaline battery and nickel hydroxide electrode using the same
CN115602814A (en) Positive electrode material, sodium ion battery and electric equipment
JPH10149821A (en) Positive electrode for alkaline storage battery
JP2000003707A (en) Alkaline storage battery
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP6771471B2 (en) Nickel hydroxide positive electrode for alkaline batteries
JP7290229B2 (en) Primary or secondary battery electrode with controlled local cell reaction and primary or secondary battery using the electrode
KR100231525B1 (en) Cathode active material of nickel-type battery and its manufacturing method
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP3869582B2 (en) Nickel electrode active material for alkaline storage battery, method for producing the same, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode.
KR100205136B1 (en) Active material for anode of nickel series cell and method manufacturing it
JP4956863B2 (en) Cathode active material for alkaline storage battery and alkaline storage battery using the same
JPH09115543A (en) Alkaline storage battery
JP3543601B2 (en) Alkaline storage battery
JP4186291B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JP3543607B2 (en) Alkaline storage battery
JP5309479B2 (en) Alkaline storage battery
JP3942253B2 (en) Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode
JP3643673B2 (en) Nickel electrode active material for alkaline storage battery, method for producing the same, and alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term