JP3869217B2 - Post-processing method of synthetic resin molded product and apparatus therefor - Google Patents

Post-processing method of synthetic resin molded product and apparatus therefor Download PDF

Info

Publication number
JP3869217B2
JP3869217B2 JP2001025284A JP2001025284A JP3869217B2 JP 3869217 B2 JP3869217 B2 JP 3869217B2 JP 2001025284 A JP2001025284 A JP 2001025284A JP 2001025284 A JP2001025284 A JP 2001025284A JP 3869217 B2 JP3869217 B2 JP 3869217B2
Authority
JP
Japan
Prior art keywords
synthetic resin
molded product
hole
post
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001025284A
Other languages
Japanese (ja)
Other versions
JP2002225143A (en
Inventor
享 斉藤
隆行 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Co Ltd
Original Assignee
Nikki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Co Ltd filed Critical Nikki Co Ltd
Priority to JP2001025284A priority Critical patent/JP3869217B2/en
Publication of JP2002225143A publication Critical patent/JP2002225143A/en
Application granted granted Critical
Publication of JP3869217B2 publication Critical patent/JP3869217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/567Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using a tamping or a swaging operation, i.e. at least partially deforming the edge or the rim of a first part to be joined to clamp a second part to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/60Riveting or staking
    • B29C65/606Riveting or staking the rivets being integral with one of the parts to be joined, i.e. staking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/348Avoiding melting or weakening of the zone directly next to the joint area, e.g. by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は合成樹脂、特に熱可塑性合成樹脂成形品の後加工方法、詳しくは成形品を製品として完成させるためにその一部分を加熱溶融して溶封や溶接を行なう方法およびその装置に関するものである。
【0002】
【従来の技術】
例えばガソリンエンジンに燃料を供給する気化器の胴体を合成樹脂で作る場合、その内部に設けられる燃料通路やそこへ空気を導入する空気通路の多くは金型に設けた棒部材によって胴体鋳造と同時に形成され、従って胴体表面に開口した穴が作られる。この穴を燃料や空気の通路として機能させるため胴体表面への開口端部を封止する必要がある個所に対して、金属製のボールプラグを圧入するか或いは合成樹脂性のプラグを超音波溶着する、という手段で封止している。
【0003】
また、穴が小径、一般には1mm以下であってプラグを使用しにくい場合においては、穴の開口端周囲に環状突起を設けてこれを熱風で溶融し開口端部に流入させることによって封止することが一部で行なわれている。
【0004】
一方、二つの成形品を重ね合わせて熱風、高周波、超音波振動などによる溶接を行なうことによりこれらを接合する技術は周知であり、熱風溶接は一般にホットジェットガンを用いて溶接個所に熱ガスを吹付けることによって行なわれている。
【0005】
【発明が解決しようとする課題】
前記の穴の開口端部をプラグで封止する方法は、きわめて小形の別部品を準備してこれを穴に嵌込むという手順を要し製品の製造価格を割高にする原因となるばかりか、殊に金属製のボールプラグは硬質の異種材料を圧入するためにクリープを発生したり、熱膨張係数の差異によって耐圧性、気密性に対する高い信頼性を得にくい、という問題がある。
【0006】
そこで、プラグに代えて熱風で溶融封止することが考えられる。しかし、前記の1mm程度以下の穴に対しては、封止に要する合成樹脂はごく少量であるので、熱風を単に吹付けるだけで周囲に熱的悪影響を殆んど与えることなくきわめて短時間で環状突起を溶融し封止することができるが、大径の穴に対しては封止に用いられる環状突起の容積が大きいために溶融して封止に至らせる迄に前記に比べてかなり長い時間を要し、熱風の温度や流量を調整しても周囲に熱変形、物性変化更には溶融などの悪影響を与えることを避けられない。
【0007】
また、二つの成形品を熱風溶接する場合、高い接合強度が要求されるものについては重ね合わせ部分の合成樹脂を大量に溶融する必要があり、そのために溶接個所の周囲に前記同様の熱的悪影響を与えることを避けられない。
【0008】
本発明は合成樹脂成形品の一部分を熱風により加熱溶融して溶封や溶接を行なう場合、殊に溶融すべき合成樹脂量が多いと周囲に熱的悪影響を与えることを避けられず、従って反対に熱的悪影響を与える前に熱風吹付けを停止すると溶封や溶接が不完全なものになる、という前記課題を解決するためになされたものであって、成形品表面の溶封や溶接に必要な部分のみを正確に加熱溶融してその周囲に熱的悪影響を与えることなく信頼性ある溶封、溶接個所が作られるようにすることを目的とする。
【0009】
【課題を解決するための手段】
成形品の表面の一部分を加熱溶融して後加工する従来の技術がもっている前記課題を解決するために、本発明は後加工に要する溶融合成樹脂の生成部分を成形品の表面に設けておくこと、および加熱空気を吹出させるノズルの前方に通孔付き遮蔽部材を配置すること;そして生成部分を通孔を挟んでノズルと向かい合わせ、圧力が0.01〜0.5気圧、流量が1×10〜2×10 5 (cc/min)の低圧・小流量である加熱空気を前記ノズルから吹出させてその一部を前記通孔を通過させることにより生成部分に吹付けて溶融させ、それ以外の加熱空気は遮蔽部材で遮断して生成部分以外の成形品表面に吹付けさせない;という手段を採った。
【0010】
より具体的には、生成部分が成形品に形成されて表面に開口した穴の開口端周囲に設けた突起であり、通孔を通過した加熱空気によって突起が溶融して穴に流入することによって穴を封止させるか、または生成部分が重ね合わせた二つの成形品の重ね合わせ端縁に沿って設けた突起と開先とからなり、通孔を通過した加熱空気によって突起が溶融して開先に流入し二つの成形品を溶接により接合させるものである。
【0011】
更に、前記課題を解決するために、本発明は空気流の発生手段と、発生手段で発生した空気流を所要の圧力・流量に調整する制御手段と、調整された空気流を合成樹脂の溶融温度よりも高温に加熱する加熱手段と、加熱された空気を絞って吹出させる吹出手段と、吹出された加熱空気の一部を通過させ残りを遮断する遮蔽手段とを具え、遮蔽手段を通過した加熱空気を成形品の溶融合成樹脂生成部分に吹付けるようにする、という手段を採った。
【0012】
加熱空気を遮蔽部材によって溶融合成樹脂生成部分以外の成形品表面に吹付けさせないことにより、直接吹付けによる熱変形、物性変化更に溶融などの熱的悪影響を周囲に与える心配がなくなる。また、低圧・小流量の加熱空気を溶融合成樹脂生成部分にのみ吹付けることによって集中的に加熱できるとともに、その周囲に熱的悪影響を殆んど与えないばかりか、穴封止の場合は穴の開口端を塞ごうとしている溶融合成樹脂の層を破壊することなく確実な封止を行なわせ、また溶接の場合は溶融合成樹脂を開先にこれより流出させることなく充満させて良好な溶接を行なわせ、従って信頼性ある溶封、溶接個所を作るという目的を達成させることができるものである。
【0013】
尚、前記の後者手段において、成形品の溶融合成樹脂生成部分と吹出し手段、遮蔽部材との各間隔の少なくともいずれかを可変とすることは、生成部分の大きさに応じて加熱空気を適確に吹付けさせるうえで好適である。また、ソニックノズルを制御手段に用いると、簡単な構造で空気を安定した小流量に調整することができ、更にノズルを吹出手段に用いて加熱手段の先端に設けると、構成を簡略化することができる。
【0014】
尚また、溶融合成樹脂生成部分に吹付ける加熱空気は低圧・小流量、従ってまた低速度としたうえで合成樹脂を分解しない程度でなるべく高温度のものを吹付け、短時間で所要の溶融を終わらせることが良好な加工部分を得るために好ましい。そのために、ノズルから吹出す加熱空気は合成樹脂の溶融温度よりも約10〜350(℃)、好ましくは約100〜300(℃)高い温度であって、圧力は0.01〜0.5気圧程度、流量は1×10〜2×105(cc/min)程度とするのが好適である。
【0015】
更に、実際の後加工作業にあたって、穴を封止するため開口端周囲に設けた突起の最大径または二つの成形品を溶接するためそれらの重ね合わせ端縁に設けた突起および開先の最大合計幅よりも遮蔽部材の通孔が大きくないようにすること、ノズル先端と通孔との間隔および突起頂端と通孔との間隔をそれぞれ充分小さくすること、が加熱空気を少ない無駄で効率よく溶融合成樹脂生成部分に吹付けさせるうえで好ましい。
【0016】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明すると、図1は熱可塑性合成樹脂の成形品21に形成されて表面に開口した穴22の開口端部を封止する場合を示しており、穴22の開口端を囲んだ環状の突起23が成形品21の成形の際に作られている。尚、この突起23は穴22を必要な強度を有する厚さで塞ぐことができる壁を形成する容積をもつものとされている。
【0017】
空気流の発生手段Aはファン1であり、その吐出管路2は途中に制御手段Bであるソニックノズル3を有して加熱手段Cである加熱器4に接続されている。加熱器4は円筒形の本体5に電気抵抗熱を発生するニクロム線を螺旋巻きしてなる発熱体6を内蔵させたものであり、本体5は吐出管路2の接続端と反対側の端部に吹出手段Dであるノズル7を突出させて有している。また、ノズル7の前方には遮蔽手段Eである平板状の遮蔽部材8が配置され、遮蔽部材8は通孔9を有している。尚、加熱手段Cは電気抵抗熱に限らず、電磁誘導加熱など適宜の電気的方式で空気を加熱するものを適用することができる。
【0018】
通孔8は成形品21の突起23の最大径と等しいかまたはこれよりも小さい径とされている。また、ノズル7の先端と通孔9との間隔は充分に小さいものとされ、ノズル7から吹出した加熱空気が大きく拡がる前に通孔9を通過させて遮蔽部材8により遮断される空気量をなるべく少量にとどめ、効率よく利用するようにしている。また、通孔9と突起23の頂端との間隔も充分に小さいものとされ、通孔9を通過した空気が大きく拡がって突起23の外側方領域に直接吹付けられて成形品21が熱的悪影響を受ける、という不都合を生じないようにしている。具体的にはノズル7の先端口径と通孔9との寸法関係にもよるが、これらの間隔を0.5〜10(mm)とするのが標準的な目安である。また、通孔9と突起23の最大径との寸法関係にもよるが、通孔9を穴22の径と突起23の最大径との中間の径とした場合、これらの間隔を0.1〜5(mm)とするのが標準的な目安である。
【0019】
そして、ノズル7,通孔9,穴22を同一中心軸線上に置いてファン1を運転し、その吐出空気をソニックノズル3によって所定の圧力、流量に調整して加熱器4に送入し、所定温度に加熱して先端のノズル7で絞って吹出させると、加熱空気は次第に拡がりながら流れてその中心部分が通孔9を通過し外周部分が遮蔽部材8に衝突して外側方へそらされる。通孔9を通過した加熱空気は拡がりながら流れて突起23に衝突し加熱する。突起23を加熱する空気流の輪郭は二点鎖線Lで示されている。
【0020】
加熱空気の中心部分は穴22に流入して突起23を内側から加熱する。また、加熱空気は突起23の頂端面に衝突し外側周面に殆んど衝らないように調整しておくことにより、加熱空気は突起23を集中的に加熱し且つ突起23に衝突した後は外側方へ逃げるのでその周囲の成形品21表面に直接吹付けられるということがない。
【0021】
ソニックノズル3によって低圧・小流量に調整した空気を加熱器4で合成樹脂の溶融温度よりもかなり高い温度に加熱してノズル7から吹出させることにより、突起23は短時間で加熱されて溶融し、生成した溶融合成樹脂は穴22の開口端に流入してこれを塞ぐ壁を形成するようになる。その際に、低圧・小流量の加熱空気は粘性と表面張力とによって形成される壁である溶融合成樹脂の層を突き破り破壊する流速をもたず、従って突起23の溶融に伴う壁の生長と完成を阻害しない。突起23のほぼ全部が溶融したとき、穴22の開口端部は所定厚さの壁24で塞がれ完全に封止される。
【0022】
図2は熱可塑性合成樹脂の二つの成形品31,33の端縁を重ね合わせて溶接により接合する場合を示しており、一方の成形品31の表面には端縁に沿って延びる帯状の突起32が成形品31の成形の際に作られている。また、もう一方の成形品33には端縁に沿って延び表面に開放したレ形の開先34が成形品33の成形の際に作られている。尚、突起32と開先34とは互いにほぼ等しい容積をもつものとされている。
【0023】
空気流の発生手段Aは空気圧縮機11および蓄圧器12であり、蓄圧器12から延びる吐出管路13は途中に制御手段Bである手動の流量調節弁14を有して加熱手段Cである加熱器4に接続されている。この加熱器4は図1に示した実施の形態のものと同じであって、発熱体6を内蔵させた円筒形の本体5の先端に吹出手段Dであるノズル7を突出させて有している。また、遮蔽手段Eである平板状であって通孔9を有する遮蔽部材8がノズル7の前方に配置されていることも図1に示した実施の形態と同じである。
【0024】
通孔8は突起32と開先34との最大合計幅と等しいかまたはこれよりも小さい径とされ、またノズル7の先端と通孔9との間隔および通孔9と突起32との間隔はそれぞれ充分に小さい間隔とされるものであり、ノズル7から吹出した加熱空気が効率よく利用されるとともに、成形品31,33の溶接個所の周囲が熱的悪影響を受けることのないように考慮している。
【0025】
そして、ノズル7,通孔9,成形品31,33の重ね合わせ面を同一中心軸線上に置いて蓄圧器12から送出される空気を流量調節弁14によって所定の圧力・流量に調整して加熱器4に送入し、所定温度に加熱して先端のノズル7から吹出させると、加熱空気は次第に拡がりながら流れてその中心部分が通孔9を通過し外周部分が遮蔽部材8に衝突して外側方へそらされる。通孔9を通過した加熱空気は拡がりながら流れて突起32と開先34とに衝突しこれらを加熱する。この空気流の輪郭は二点鎖線Lで示されている。
【0026】
突起32に衝突した加熱空気は外側方へ逃げ、開先34に衝突した加熱空気は傾斜面に沿って外側上方へ逃げるので、周囲の成形品31,33表面に直接吹付けられるということがない。そして、加熱空気は前記実施の形態と同様に合成樹脂の溶融温度よりもかなり高い温度とすることにより、突起32および開先34を短時間で溶融させるようになり、突起32が生成した溶融合成樹脂は開先34に流入しその溶融部分と一体化して開先34を次第に埋めるようになる。また、加熱空気は低圧・小流量であるために開先34に流入した溶融合成樹脂を成形品33の表面へ押し出す流速をもたず、溶接肉の成長と完成を阻害しないとともに、流入した溶融合成樹脂の溶融状態を維持する。突起32のほぼ全部が溶融したとき、開先34は溶融合成樹脂が充填され、これが溶接肉35となって二つの成形品31,33が溶接されることとなる。
【0027】
一個所で溶接を終わったとき、成形品31,33を移動するか、または加熱器4,遮蔽部材8を移動して隣接個所を溶接することを順次繰り返して全体の溶接を完了する。尚、開先34はV形またはU形として二つの成形品31,33のそれぞれに開先34に沿う突起32を設けたものであってもよく、この場合はそれぞれの突起32を小さくして更に短時間で溶融し溶接を行なうことができる。
【0028】
前記図1,図2に示した二つの実施の形態において、成形品21,31,33の溶融合成樹脂生成部分、殊に突起23,32の頂端とノズル7の先端と遮蔽部材8との各間隔を一定に固定して同一寸法の特定成形品の後加工を行なわせることができる。しかし、ノズル7,遮蔽部材8,成形品21,31,33の少なくとも一つの位置を可変とし、これにより突起23,33の頂端とノズル7の先端との間隔、突起23,33の頂端と遮蔽部材8との間隔の少なくともいずれか、従ってまたノズル7の先端と遮蔽部材8との間隔を可変とした場合は、溶融合成樹脂生成部分の大きさが異なるものに対して加熱空気を適確に吹付けることができ、更にノズル7から吹出した加熱空気の拡がりが圧力や流量によって異なるものとなっても適確な吹付けができるように対応させることが可能である。
【0029】
【発明の効果】
以上のように、本発明によると、合成樹脂成形品の特定個所にのみ加熱空気を吹付けてその周囲に熱的悪影響を与える心配なく溶融し、所要の後加工を適確に行なって信頼性ある溶封、溶接個所を作ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す配置図
【図2】本発明の異なる実施の形態を示す配置図。
【符号の説明】
3 ソニックノズル, 7 ノズル, 8 遮蔽部材, 9 通孔, 21,31,33 成形品, 22 穴, 23,32 突起, 34 開先, A 発生手段, B 制御手段, C 加熱手段, D 吹出手段, E 遮蔽手段,
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a post-processing method for a synthetic resin, in particular, a thermoplastic synthetic resin molded product, and more particularly to a method and an apparatus for performing fusion sealing and welding by heating a part of the molded product to complete the product as a product. .
[0002]
[Prior art]
For example, when the body of a carburetor that supplies fuel to a gasoline engine is made of synthetic resin, many of the fuel passages provided in the interior and the air passages for introducing air into the interior of the carburetor are simultaneously formed by the rod member provided in the mold. A hole is formed, thus opening in the fuselage surface. In order to make this hole function as a fuel or air passage, it is necessary to seal the opening end to the fuselage surface with a metal ball plug or ultrasonically weld a synthetic resin plug. It is sealed by means of.
[0003]
When the hole has a small diameter, generally 1 mm or less and it is difficult to use the plug, an annular protrusion is provided around the opening end of the hole, and this is sealed by melting it with hot air and flowing it into the opening end. Some are done.
[0004]
On the other hand, the technique of joining two molded products by superimposing them together and welding them with hot air, high frequency, ultrasonic vibration, etc. is well known. Hot air welding generally uses hot jet guns to apply hot gas to the welding site. It is done by spraying.
[0005]
[Problems to be solved by the invention]
The method of sealing the opening end of the hole with a plug requires not only a procedure for preparing a very small separate part and fitting it into the hole, which causes the product to be expensive to manufacture, In particular, a metal ball plug has a problem that creep is generated in order to press-fit a hard dissimilar material, and it is difficult to obtain high reliability with respect to pressure resistance and airtightness due to a difference in thermal expansion coefficient.
[0006]
Therefore, it is conceivable to melt and seal with hot air instead of the plug. However, since the synthetic resin required for sealing is very small for the holes of about 1 mm or less, the hot air is simply blown in a very short time without causing any adverse thermal effects on the surroundings. The annular protrusion can be melted and sealed, but for large diameter holes, the annular protrusion used for sealing has a large volume, so it is considerably longer than before to melt and reach sealing. It takes time, and even if the temperature and flow rate of the hot air are adjusted, it is inevitable that the surroundings will be adversely affected such as thermal deformation, physical property changes and melting.
[0007]
In addition, when hot-air welding of two molded products, it is necessary to melt a large amount of the synthetic resin in the overlapping portion for those requiring high joint strength. Inevitable to give.
[0008]
In the present invention, when a part of a synthetic resin molded product is heated and melted with hot air for sealing or welding, especially when the amount of the synthetic resin to be melted is large, it is unavoidable to have a thermal adverse effect on the surroundings. In order to solve the above-mentioned problem that sealing and welding become incomplete when hot air blowing is stopped before adversely affecting the heat, the sealing and welding of the surface of the molded product are performed. The objective is to accurately heat and melt only the necessary parts so that a reliable sealing and welding point can be made without adversely affecting the surroundings.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems of the conventional technique in which a part of the surface of a molded product is heated and melted to perform post-processing, the present invention provides a surface of the molded product where a molten synthetic resin is required for post-processing. And arranging a shielding member with a through hole in front of the nozzle for blowing heated air; and facing the nozzle across the through hole of the generation part, the pressure is 0.01 to 0.5 atm, and the flow rate is 1 Heating air having a low pressure and a small flow rate of × 10 to 2 × 10 5 (cc / min) is blown from the nozzle, and a part thereof is blown through the through-hole to be melted. Heated air other than the above was blocked by a shielding member so as not to be sprayed on the surface of the molded product other than the generated part.
[0010]
More specifically, the generated portion is a protrusion provided around the opening end of the hole formed in the molded product and opened on the surface, and the protrusion is melted by the heated air passing through the through hole and flows into the hole. It consists of a protrusion and a groove provided along the overlapping edge of two molded products with sealed holes or overlapped product parts, and the protrusion is melted and opened by heated air that has passed through the through-hole. It flows in first and joins two molded products by welding.
[0011]
Furthermore, in order to solve the above-mentioned problems, the present invention provides an air flow generating means, a control means for adjusting the air flow generated by the generating means to a required pressure and flow rate, and the adjusted air flow by melting synthetic resin. The heating means for heating to a temperature higher than the temperature, the blowing means for squeezing and blowing the heated air, and the shielding means for passing a part of the blown heated air and blocking the rest, passed through the shielding means. A measure was taken such that heated air was blown onto the molten synthetic resin production part of the molded product.
[0012]
By preventing the heated air from being sprayed on the surface of the molded product other than the melted synthetic resin generating portion by the shielding member, there is no fear of causing thermal adverse effects such as thermal deformation, physical property change, and melting due to direct spraying to the surroundings. In addition, it can be heated intensively by blowing low-pressure, low-flow-rate heated air only on the molten synthetic resin production part, and it has little thermal adverse effect on its surroundings. Good welding without causing destruction of the layer of molten synthetic resin that is trying to block the opening end of the metal, and in the case of welding, filling the molten synthetic resin into the groove without causing it to flow out. Therefore, the purpose of making a reliable sealing and welding point can be achieved.
[0013]
In the latter means, at least one of the intervals between the molten synthetic resin production part of the molded product, the blowing means, and the shielding member is made variable so that the heated air is appropriately adjusted according to the size of the production part. It is suitable for spraying. In addition, if the sonic nozzle is used as the control means, the air can be adjusted to a stable small flow rate with a simple structure, and if the nozzle is provided at the tip of the heating means using the blowing means, the configuration can be simplified. Can do.
[0014]
In addition, the heated air blown to the molten synthetic resin production part is blown at a low pressure, a low flow rate, and therefore at a low speed and at a high temperature as much as possible without decomposing the synthetic resin, so that the required melting can be achieved in a short time. Finishing is preferred to obtain a good processed part. Therefore, the heated air blown out from the nozzle is at a temperature about 10 to 350 (° C.), preferably about 100 to 300 (° C.) higher than the melting temperature of the synthetic resin, and the pressure is 0.01 to 0.5 atm. The flow rate is preferably about 1 × 10 to 2 × 10 5 (cc / min).
[0015]
Furthermore, in the actual post-processing operation, the maximum diameter of the protrusion provided around the opening end to seal the hole or the maximum total of the protrusion and groove provided on the overlapping edge of the two molded products to be welded Preventing the through-hole of the shielding member from being larger than the width, and sufficiently reducing the distance between the nozzle tip and the through-hole and the distance between the top of the projection and the through-hole, respectively, makes it possible to efficiently melt the heated air with less waste. It is preferable when spraying on the synthetic resin production part.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a case where an opening end portion of a hole 22 formed in a molded article 21 of a thermoplastic synthetic resin and opened on the surface is sealed. An annular projection 23 surrounding the open end of the hole 22 is formed when the molded product 21 is molded. The protrusion 23 has a volume that forms a wall capable of closing the hole 22 with a thickness having a required strength.
[0017]
The air flow generating means A is a fan 1, and its discharge line 2 has a sonic nozzle 3 as a control means B on the way and is connected to a heater 4 as a heating means C. The heater 4 includes a cylindrical body 5 and a heating element 6 formed by spirally winding a nichrome wire that generates electric resistance heat. The body 5 is an end opposite to the connection end of the discharge pipe 2. The nozzle 7 which is the blowing means D protrudes from the part. In addition, a flat shield member 8 serving as a shield means E is disposed in front of the nozzle 7, and the shield member 8 has a through hole 9. Note that the heating means C is not limited to electrical resistance heat, and any means for heating air by an appropriate electrical method such as electromagnetic induction heating can be applied.
[0018]
The through hole 8 has a diameter equal to or smaller than the maximum diameter of the protrusion 23 of the molded product 21. Further, the distance between the tip of the nozzle 7 and the through hole 9 is sufficiently small, and the amount of air that is blocked by the shielding member 8 through the through hole 9 before the heated air blown from the nozzle 7 is greatly expanded. We try to use it efficiently as much as possible. In addition, the distance between the through hole 9 and the top end of the protrusion 23 is sufficiently small, and the air that has passed through the through hole 9 spreads greatly and is directly blown to the outer region of the protrusion 23, so that the molded product 21 is thermally expanded. The inconvenience of being adversely affected is avoided. Specifically, although it depends on the dimensional relationship between the tip diameter of the nozzle 7 and the through-hole 9, it is a standard guideline that the interval is 0.5 to 10 (mm). Further, although depending on the dimensional relationship between the through-hole 9 and the maximum diameter of the protrusion 23, when the through-hole 9 is an intermediate diameter between the diameter of the hole 22 and the maximum diameter of the protrusion 23, the distance between them is 0.1. A standard guideline is ˜5 (mm).
[0019]
Then, the nozzle 7, the through hole 9, and the hole 22 are placed on the same central axis, the fan 1 is operated, the discharge air is adjusted to a predetermined pressure and flow rate by the sonic nozzle 3, and sent to the heater 4. When heated to a predetermined temperature and squeezed and blown off by the nozzle 7 at the tip, the heated air flows while gradually spreading, its central portion passes through the through-hole 9 and its outer peripheral portion collides with the shielding member 8 and is deflected outward. . The heated air that has passed through the through-hole 9 flows while spreading, collides with the protrusions 23, and is heated. Contour of the air flow for heating the protrusion 23 is shown by a two-dot chain line L A.
[0020]
The central portion of the heated air flows into the hole 22 and heats the protrusion 23 from the inside. In addition, by adjusting the heating air so that it collides with the top end surface of the projection 23 and does not substantially collide with the outer peripheral surface, the heating air heats the projection 23 intensively and collides with the projection 23. Since it escapes outward, it is not sprayed directly on the surface of the surrounding molded product 21.
[0021]
The air adjusted to a low pressure and a small flow rate by the sonic nozzle 3 is heated to a temperature considerably higher than the melting temperature of the synthetic resin by the heater 4 and blown out from the nozzle 7, whereby the protrusion 23 is heated and melted in a short time. The generated synthetic resin flows into the opening end of the hole 22 and forms a wall that closes the hole. At that time, the low pressure and small flow rate of heated air does not have a flow velocity that breaks through and breaks the molten synthetic resin layer, which is a wall formed by viscosity and surface tension. Does not impede completion. When almost all of the protrusions 23 are melted, the opening end of the hole 22 is closed with a wall 24 having a predetermined thickness and is completely sealed.
[0022]
FIG. 2 shows a case in which the edges of two molded products 31 and 33 of thermoplastic synthetic resin are overlapped and joined by welding, and a strip-like protrusion extending along the edge is formed on the surface of one molded product 31. 32 is made when the molded product 31 is molded. Further, the other molded product 33 is formed with a ledge shaped groove 34 extending along the edge and opened to the surface when the molded product 33 is molded. The protrusion 32 and the groove 34 have substantially the same volume.
[0023]
The air flow generating means A is an air compressor 11 and a pressure accumulator 12, and a discharge line 13 extending from the pressure accumulator 12 is a heating means C having a manual flow rate adjusting valve 14 which is a control means B on the way. Connected to the heater 4. This heater 4 is the same as that of the embodiment shown in FIG. 1, and has a nozzle 7 as a blowing means D protruding from the tip of a cylindrical main body 5 in which a heating element 6 is built. Yes. Moreover, it is the same as that of embodiment shown in FIG. 1 that the shielding member 8 which is the flat form which is the shielding means E, and has the through-hole 9 is arrange | positioned ahead of the nozzle 7. FIG.
[0024]
The through hole 8 has a diameter equal to or smaller than the maximum total width of the protrusion 32 and the groove 34, and the distance between the tip of the nozzle 7 and the through hole 9 and the distance between the through hole 9 and the protrusion 32 are as follows. The intervals are sufficiently small, so that the heated air blown from the nozzle 7 can be used efficiently and the surroundings of the welded portions of the molded products 31 and 33 are not adversely affected by heat. ing.
[0025]
The superposed surfaces of the nozzle 7, the through-hole 9 and the molded products 31 and 33 are placed on the same central axis, and the air sent from the pressure accumulator 12 is adjusted to a predetermined pressure and flow rate by the flow rate control valve 14 and heated. When it is fed into the vessel 4 and heated to a predetermined temperature and blown out from the nozzle 7 at the tip, the heated air flows while gradually spreading, its central portion passes through the through-hole 9 and its outer peripheral portion collides with the shielding member 8. Is deflected outward. The heated air that has passed through the through-hole 9 flows while spreading, collides with the protrusion 32 and the groove 34, and heats them. The contour of the air flow is indicated by two-dot chain line L B.
[0026]
The heated air that collides with the protrusion 32 escapes outward, and the heated air that collides with the groove 34 escapes outward and upward along the inclined surface, so that it is not directly blown onto the surfaces of the surrounding molded products 31 and 33. . Then, the heating air is set to a temperature considerably higher than the melting temperature of the synthetic resin as in the above embodiment, so that the protrusion 32 and the groove 34 are melted in a short time, and the melt synthesis in which the protrusion 32 is generated. The resin flows into the groove 34 and is integrated with the melted portion so as to gradually fill the groove 34. Further, since the heated air has a low pressure and a small flow rate, it does not have a flow rate for extruding the molten synthetic resin flowing into the groove 34 to the surface of the molded product 33, does not hinder the growth and completion of the welded meat, and flows in the molten Maintain the molten state of the synthetic resin. When almost all of the protrusions 32 are melted, the groove 34 is filled with a molten synthetic resin, which becomes a welded meat 35 and the two molded products 31 and 33 are welded.
[0027]
When the welding is finished at one place, the molded products 31 and 33 are moved, or the heater 4 and the shielding member 8 are moved and the adjacent places are welded sequentially to complete the entire welding. The groove 34 may be V-shaped or U-shaped, and each of the two molded products 31, 33 may be provided with a protrusion 32 along the groove 34. In this case, each protrusion 32 is made smaller. Further, it can be melted and welded in a short time.
[0028]
In the two embodiments shown in FIGS. 1 and 2, the melted synthetic resin producing portions of the molded products 21, 31, 33, particularly the top ends of the projections 23, 32, the tip of the nozzle 7, and the shielding member 8, It is possible to carry out post-processing of a specific molded product having the same dimensions with the interval fixed. However, the position of at least one of the nozzle 7, the shielding member 8, and the molded products 21, 31, and 33 can be made variable so that the distance between the top ends of the projections 23 and 33 and the tip of the nozzle 7 and the top ends of the projections 23 and 33 are shielded. When at least one of the intervals with the member 8 and, therefore, the interval between the tip of the nozzle 7 and the shielding member 8 is made variable, the heated air is appropriately applied to those having different sizes of the melted synthetic resin generating portion. Further, even if the spread of the heated air blown out from the nozzle 7 varies depending on the pressure and flow rate, it is possible to make it possible to respond appropriately.
[0029]
【The invention's effect】
As described above, according to the present invention, heated air is blown only to a specific portion of a synthetic resin molded product to melt without fear of adversely affecting the surroundings, and the required post-processing is performed accurately to ensure reliability. A certain sealing and welding point can be made.
[Brief description of the drawings]
FIG. 1 is a layout diagram showing an embodiment of the present invention. FIG. 2 is a layout diagram showing a different embodiment of the present invention.
[Explanation of symbols]
3 Sonic nozzle, 7 nozzle, 8 shielding member, 9 through hole, 21, 31, 33 molded product, 22 holes, 23, 32 protrusion, 34 groove, A generating means, B control means, C heating means, D blowing means , E shielding means,

Claims (7)

成形品の表面の一部分を加熱溶融して後加工する方法であって、
後加工に要する溶融合成樹脂の生成部分を前記成形品の表面に設けておくこと、および加熱空気を吹出させるノズルの前方に通孔付き遮蔽部材を配置すること、
そして、前記生成部分を前記通孔を挟んで前記ノズルと向かい合わせ、圧力が0.01〜0.5気圧、流量が1×10〜2×10 5 (cc/min)の低圧・小流量である加熱空気を前記ノズルから吹出させてその一部を前記通孔を通過させることにより前記生成部分に吹付けて溶融させ、それ以外の加熱空気は前記遮蔽部材で遮断して前記生成部分以外の成形品表面に吹付けさせない、
ことを特徴とする合成樹脂成形品の後加工方法。
A method in which a part of the surface of the molded product is heated and melted to be post-processed,
Providing a production part of a melted synthetic resin required for post-processing on the surface of the molded product, and disposing a shielding member with a through hole in front of a nozzle for blowing heated air;
Then, the generated part is opposed to the nozzle across the through hole, and the pressure is 0.01 to 0.5 atm, and the flow rate is 1 × 10 to 2 × 10 5 (cc / min) at low pressure and small flow rate. A heated air is blown out from the nozzle and a part of the heated air is blown to the generation part by passing through the through hole, and the other heating air is blocked by the shielding member and is not the generation part. Do not spray on the surface of the molded product,
A post-processing method for a synthetic resin molded product.
前記生成部分が前記成形品に形成されて表面に開口した穴の開口端周囲に設けた突起であり、前記通孔を通過した加熱空気によって前記突起が溶融して前記穴に流入し封止させる請求項1に記載した合成樹脂成形品の後加工方法。  The generation part is a protrusion provided around the opening end of the hole formed in the molded product and opened on the surface, and the protrusion is melted by the heated air passing through the through hole and flows into the hole to be sealed. The post-processing method of the synthetic resin molded product described in Claim 1. 前記生成部分が重ね合わせた二つの成形品の重ね合わせ端縁に沿って設けた突起と開先とからなり、前記通孔を通過した加熱空気によって前記突起が溶融して前記開先に流入し前記二つの成形品を溶接により接合させる請求項1に記載した合成樹脂成形品の後加工方法。  It consists of a protrusion and a groove provided along the overlapping edge of the two molded products on which the generation part overlaps, and the protrusion is melted by the heated air passing through the through hole and flows into the groove. The post-processing method of the synthetic resin molded product according to claim 1, wherein the two molded products are joined by welding. 空気流の発生手段と、前記発生手段で発生した空気流を所要の圧力・流量に調整する制御手段と、調整された空気流を合成樹脂溶融温度よりも高温に加熱する加熱手段と、加熱された空気を絞って吹出させる吹出手段と、吹出された加熱空気の一部を通過させ残りを遮断する遮蔽手段とを具え、前記遮蔽手段を通過した加熱空気を成形品の溶融合成樹脂生成部分に吹付けるようにしたことを特徴とする合成樹脂成形品の後加工装置。  Air flow generating means, control means for adjusting the air flow generated by the generating means to a required pressure and flow rate, heating means for heating the adjusted air flow to a temperature higher than the synthetic resin melting temperature, A blowing means for narrowing the blown air and a shielding means for passing a part of the blown heated air and blocking the remainder, and the heated air that has passed through the shielding means is used as a molten synthetic resin production part of the molded product A post-processing apparatus for a synthetic resin molded product, characterized by being sprayed. 前記溶融合成樹脂生成部分と前記吹出手段、前記遮蔽手段との各間隔の少なくともいずれかが可変である請求項4に記載した合成樹脂成形品の後加工装置。  5. The post-processing apparatus for a synthetic resin molded product according to claim 4, wherein at least one of the intervals between the molten synthetic resin generation portion, the blowing means, and the shielding means is variable. 前記制御手段がソニックノズルである請求項4に記載した合成樹脂成形品の後加工装置。  The post-processing apparatus for a synthetic resin molded product according to claim 4, wherein the control means is a sonic nozzle. 前記吹出手段が前記加熱手段の先端に設けたノズルである請求項4または5に記載した合成樹脂成形品の後加工装置。  The synthetic resin molded product post-processing apparatus according to claim 4 or 5, wherein the blowing means is a nozzle provided at a tip of the heating means.
JP2001025284A 2001-02-01 2001-02-01 Post-processing method of synthetic resin molded product and apparatus therefor Expired - Fee Related JP3869217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025284A JP3869217B2 (en) 2001-02-01 2001-02-01 Post-processing method of synthetic resin molded product and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025284A JP3869217B2 (en) 2001-02-01 2001-02-01 Post-processing method of synthetic resin molded product and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2002225143A JP2002225143A (en) 2002-08-14
JP3869217B2 true JP3869217B2 (en) 2007-01-17

Family

ID=18890306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025284A Expired - Fee Related JP3869217B2 (en) 2001-02-01 2001-02-01 Post-processing method of synthetic resin molded product and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3869217B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611130B1 (en) * 2015-03-23 2016-04-08 이명주 The burr removing device in which I raise the removal strength of the matter emitted.
KR101728979B1 (en) * 2016-02-24 2017-05-02 이명주 Deburring device for removing a member of Injection

Also Published As

Publication number Publication date
JP2002225143A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
WO1996025341A1 (en) A collapsible tube package and method of construction
JP3869217B2 (en) Post-processing method of synthetic resin molded product and apparatus therefor
SE425227B (en) SET AND DEVICE FOR CONNECTING PLASTROR MEDIUM CLOSING
CN106273412A (en) A kind of hot-air welding machine with coordinated type heating cooling structure and operational approach
JPH07205193A (en) Production of pipe fitted with receiving port
JP2008502541A (en) Method for manufacturing container body and container body
JP2008502541A5 (en)
US6054679A (en) Deposition method of product molded with thermoplastic resin, and a depositing electrode to be used for this deposition method
CN106564181A (en) Method and device for plastic packaging of end face of steel-plastic composite pipeline
JPH07178783A (en) Injection molding apparatus and method
JPH0419016B2 (en)
AU2000277025A1 (en) Improved container and method and apparatus for forming the container
WO2001070474A1 (en) Improved container and method and apparatus for forming the container
JPH0911335A (en) Joining method for polyethylene pipe, joining structure thereof, and joint for said pipe
JPH07171896A (en) Joining method between synthetic resin pipe for bending work having high frequency dielectric heating element and another synthetic resin molded article and device therefor
JPS6157329A (en) Part for connecting parts made of synthetic resin with each other and manufacture thereof
JP2000142604A (en) Sealer for tube container
JPH08132476A (en) Molding of receiving mouth of thermoplastic resin pipe
JPH0356356B2 (en)
JPS5882742A (en) Manufacture of plastic receptacle
JPH079571A (en) Method and apparatus for bonding synthetic resin pipe for bending processing having high-frequency inductor and other synthetic resin molded product
JP2023013122A (en) Bonding method and bonding device
JPH08200581A (en) Welding method for plastic pipe
JPH0516214A (en) Production of plastic bottle fitted with grip
JPH0452125A (en) Manufacture of bottle fitted with handle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3869217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees