JP3869170B2 - Process for producing 1,1,1,3,3-pentachloropropane - Google Patents

Process for producing 1,1,1,3,3-pentachloropropane Download PDF

Info

Publication number
JP3869170B2
JP3869170B2 JP33197899A JP33197899A JP3869170B2 JP 3869170 B2 JP3869170 B2 JP 3869170B2 JP 33197899 A JP33197899 A JP 33197899A JP 33197899 A JP33197899 A JP 33197899A JP 3869170 B2 JP3869170 B2 JP 3869170B2
Authority
JP
Japan
Prior art keywords
reaction
iron
mol
carbon tetrachloride
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33197899A
Other languages
Japanese (ja)
Other versions
JP2001151708A (en
Inventor
泰雄 日比野
章 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP33197899A priority Critical patent/JP3869170B2/en
Publication of JP2001151708A publication Critical patent/JP2001151708A/en
Application granted granted Critical
Publication of JP3869170B2 publication Critical patent/JP3869170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons

Description

【0001】
【産業上の利用分野】
本発明は、ポリオレフィン、ポリスチレン、ポリウレタンフォーム、ポリイソシアヌレート等の発泡剤またはターボ冷凍機用冷媒として期待される1,1,1,3,3−ペンタフルオロプロパン製造の前駆体として有用な1,1,1,3,3−ペンタクロロプロパンの製造方法に関する。
【0002】
【従来技術とその課題】
オゾン層の破壊物質としてクロロフルオロカ−ボン(CFC)の生産が禁止され、それらの代替物質としてハイドロクロロフルオロカ−ボン(HCFC)、またはハイドロフルオロカ−ボン(HFC)等が使用されているが、HCFCは分子中に塩素原子を有するため少ないながらもオゾン層破壊能があり、近々に生産全廃が予定されている。
【0003】
HFC類の製造原料として利用されるクロロプロパン類の合成方法としては、プロパンの塩素化反応、塩素化メタン類と炭素数2のオレフィン類とのラジカル付加反応、同様に塩素化メタン類と炭素数2のオレフィン類とのフリーデルクラフト反応またはプリンス反応等のイオン付加反応による方法が知られている。たとえば、オレフィン系炭化水素と四塩化炭素との反応によりテトラクロロアルカンを得る方法としては、反応助剤として有機過酸化物を用いる方法(USP 2,440,800号)、触媒として有機酸金属塩または無機酸金属塩にアミン類等を組合わせて反応させる方法(特公昭37−18389号、特公昭39−28306号、特公昭40−19740号、特公昭41−20692号)、金属銅およびアルカリ金属ハロゲン化物からなる触媒の存在下反応させる方法(特開昭47−31907号)、ポリアルコキシ化合物および塩化鉄からなる触媒の存在下に反応させる方法(特開昭52−59102号)ならびに亜リン酸アルキルエステル、塩化鉄およびニトリル化合物からなる触媒の存在下に反応させる方法(特開昭52−59103号)等が挙げられる。
【0004】
1,1,1,3,3−ペンタクロロプロパンの製造方法としては、塩化ビニリデンとクロロホルムとを銅アミン触媒存在下に反応させる方法(M.Kotoraら、React.Kinet.Catal.Lett.,44巻,2号,415頁,1991年)、四塩化炭素と塩化ビニルとを銅アミン触媒存在下に反応させる方法(M.Kotoraら、J.of Mol. Catal.77巻,51頁,1992年)、四塩化炭素と塩化ビニルをイソプロパノール溶媒中で塩化第1鉄触媒の存在下反応させる方法(E.N.Zil’bermanら,J.of Org.Chem.USSR,3巻、2101頁、1967年)等が報告されている。
【0005】
また、本出願人は、元素状の鉄とアセトニトリルなどの非プロトン性の極性有機溶媒存在下四塩化炭素と塩化ビニルを反応させて1,1,1,3,3−ペンタクロロプロパンを製造する方法を出願した(特開平8−239333号公報)。
【0006】
【課題を解決するための手段】
本発明者らは、前記特開平8−239333号公報に開示した方法をさらに改良することを目的として鋭意検討を加えたところ、該反応系に塩素を共存させることでさらに良好な収率でかつ選択的に目的とする1,1,1,3,3−ペンタクロロプロパンが生成することを見出し、本発明に到達したものである。
【0007】
すなわち、本発明は、四塩化炭素と塩化ビニルとを、ハロゲン(ハロゲンは塩素、臭素またはヨウ素をいう)と鉄触媒と非プロトン性の有機溶媒存在下で反応させることを特徴とする1,1,1,3,3−ペンタクロロプロパンの製造方法である。
【0008】
本発明においてはハロゲンを使用することを特徴とし、ハロゲンとしては塩素以外の臭素、沃素を用いこともできるが、経済上の理由で塩素を使用するのが好ましい。
【0009】
本発明の方法において触媒として使用する鉄は鉄化合物ではなく元素状の鉄であり、金属鉄、純鉄、軟鉄、還元鉄、炭素等が含まれる鉄鋼または成分として鉄を含む合金、例えば各種のステンレス鋼、フェロシリコン等が使用でき、粉、粒、塊、線、棒、球、板またはそれらを任意の形状に加工した金属片、例えば、ラシヒリング、ヘリックスなどの蒸留充填物、スチールウール、金網、コイル、その他不定形の金属片など、いずれの形態でも使用可能である。しかしながら、鉄以外に触媒活性を有さない成分が多量に含まれる合金では、それらの成分が反応系中に溶出しまたは不溶成分として存在するため、反応後にそれらの処理が複雑となるので避けるのが好ましい。
【0010】
また、鉄触媒とともに助触媒作用を有する金属化合物、金属錯体などを併用することができ、そのような金属として好ましい金属には周期律表のVIII族またはIB族の金属元素が挙げられる。具体的には、例えば、ニッケル、鉄、コバルト、パラジウム、ルテニウム、銅、銀等のハロゲン化物、酸化物、硝酸塩、酢酸塩またはアセチルアセトン錯体などが挙げられ、ニッケル、鉄、コバルトおよび銅から選ばれる金属のハロゲン化物が特に優れている。その様なハロゲン化物としては、フッ化物、塩化物、臭化物、ヨウ化物が挙げられるが、塩化物が反応性、物質の汎用性、取り扱いやすさ等から優れている。具体的には、塩化第一鉄、塩化第二鉄、塩化ニッケル、塩化コバルト、塩化第一銅、塩化第二銅を好ましいものとして挙げることができる。
【0011】
本発明に使用される鉄触媒の量は、四塩化炭素1モルに対し、少なくとも0.001モルを必要とするが、反応系中で鉄触媒は固体として存在するので反応容器が大きくなる点を除けば過剰量であることには特に不都合はない。したがって、バッチ式反応または半バッチ式反応においては通常0.001〜1モルとし、0.005〜0.8モルが好ましく、0.01〜0.5モルの範囲がより好ましいが、後に述べる流通式においては鉄触媒の過剰は特に不都合はない。触媒の量が0.001モル未満では反応収率が低下するので好ましくない。一方、助触媒の量は、四塩化炭素1モルに対し、通常0.001〜1モルであるが、0.05〜0.5モルが好ましく、0.01〜0.1モルの範囲がより好ましい。助触媒の量が0.001モル未満では反応速度が低下するので好ましくない。鉄触媒に対する助触媒の使用量比は、鉄触媒の量が先に述べたように限定されないので特に限定されないが、通常0.1以下とすることが好ましい。
【0012】
本発明に好ましく使用される非プロトン性の極性有機溶媒としては、ニトリル類、アミド類およびその他の溶媒が挙げられる。ニトリル類としては、例えば、アセトニトリル、プロピオニトリル、n−ブチロニトリル、イソブチロニトリル、バレロニトリル、フェニルアセトニトリル、ベンゾニトリル、イソフタロニトリル、2−ペンテンニトリル、3−ペンテンニトリル等が挙げられ、アミド類としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホリックトリアミド等が挙げられ、その他の溶媒としてはジメチルスルホキシド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イメダゾリジノン、γ−ブチロラクトンなどが挙げられ、アセトニトリル、ジメチルホルムアミド、ヘキサメチルホスホリックトリアミドが金属化合物の溶解性に優れるので好ましく、アセトニトリルが特に好ましい。
【0013】
また、本発明においては、反応性、選択性の向上のために適宜反応系に不活性な溶媒を加えることも可能である。一般的に、この様な溶媒を加えると塩化ビニルの高次重合物の生成を低減させることに効果がある。その添加割合は限定されず適宜選択することができる。この様な溶媒としては、反応系において不活性でありラジカル捕捉剤として働かない物質であれば限定されない。
【0014】
反応系中での非プロトン性の極性有機溶媒/四塩化炭素のモル組成比は、10/1〜1/10であり、2/1〜1/2が好ましく、1/1付近が特に好ましい。この比が10/1よりも大きいことは特に不都合はないが反応器が大型化するので好ましくなく、1/10より小さいと四塩化炭素または塩化ビニルの反応率が低下して好ましくない。
【0015】
ハロゲンの必要量は四塩化炭素に対して0.1〜5モル%、好ましくは0.5〜2モル%であり、5モル%より多すぎる場合には鉄のハロゲン化が進みすぎハロゲン第二鉄が生成するため好ましくなく、0.1モル%より少ない場合には反応の誘導時間が長くなり、反応のスループットが減少するので好ましくない。本発明にかかる反応においてハロゲンが存在しない場合、触媒となる鉄はハロゲン化第二鉄からハロゲンを引き抜きハロゲン化第一鉄となると共に四塩化炭素から塩素を引き抜くことがあると推定される。従って触媒である鉄の量に見合う四塩化炭素が消費すると考えられるので、ハロゲンを存在させることで原料四塩化炭素の無駄な消費は避けられる。
【0016】
塩化ビニルの量は、四塩化炭素に対して等モル量またはそれ以下とすることが好ましいが必ずしも限定されない。塩化ビニル量を等モル量以上とすると塩化ビニルの高次重合物の生成量が増加し、また過剰量の塩化ビニルは未反応のまま反応器を通り抜けることとなり好ましくない。また、等モル量以下の場合、四塩化炭素は一部が未反応のまま反応器に残留することになるが、これは反応液から蒸留などの公知の方法で回収しリサイクルすることができるので特に問題はない。
【0017】
本発明の方法においては、塩化ビニルは不活性なガスで希釈して使用することができる。希釈する程度は任意でよいが、塩化ビニルに対する希釈ガスの割合が増えると塩化ビニルの高次重合物の生成量が減少するので好ましい。しかし、その場合、装置の効率の低下を伴うので通常塩化ビニル/希釈ガスの容量比は0.1〜10程度とするのが好ましい。希釈ガスとしては、反応系において不活性でありラジカル捕捉剤として働かない物質であれば限定されないが、例えば、チッ素、水素、アルゴン、ヘリウムなどを使用できる。
【0018】
反応温度は触媒および助触媒の添加量、非プロトン性の極性有機溶媒の添加量に依存し、塩化ビニルの転化率、1,1,1,3,3−ペンタクロロプロパン選択率、触媒および助触媒の寿命に影響を与えるが、80〜150℃、より好ましくは100〜120℃の範囲が推奨される。80℃より低い場合には転化率が低く、150℃を越えると反応器の圧力が高くする必要がありそれぞれ好ましくない。反応器の圧力は、各温度における四塩化炭素と非プロトン性の極性有機溶媒の分圧の和となるが、通常0.1〜5.0MPa(1〜50kg/cm2)であり、0.3〜1.5MPa(3〜15kg/cm2)が好ましい。
【0019】
本発明の方法の実施態様としては、バッチ式反応、半流通式反応、流通式反応のいずれでもよい。例えば、四塩化炭素、非プロトン性の極性有機溶媒からなる混合反応液に鉄触媒と任意に金属化合物および/または金属錯体を存在させ、その中に塩化ビニルとハロゲンをガス状で連続的あるいは断続的に導入し、反応させることが望ましい。この際ハロゲンは反応器に予め仕込んでおいてもよく、その場合は塩化ビニルのみを導入すればよい。連続的に塩化ビニルを導入する際、導入量が一時的に過剰になる場合には副生する高分子量生成物(炭素数5)が増加して好ましくないので、可能な限り供給量の変動は避けることが好ましい。バッチ式で反応初期に四塩化炭素、ハロゲン、塩化ビニル、鉄触媒、助触媒、溶媒等の反応試剤を予め装入しておいてもよい。塩化ビニルを液体で逐次添加方式で送入する方法は塩化ビニルの高次重合物の生成量が増える傾向となるので本発明の方法としては避けることが好ましい。本発明の方法でハロゲンを反応系に存在させる方法は特に限定されない。例えば、ハロゲンは気体または液体として単独で直接反応器へ導入してもよく、四塩化炭素または非プロトン性の極性有機溶媒若しくはその他の溶媒に溶解して導入してもよく、また、塩化ビニルと混合して導入してもよい。これらのうち、塩化ビニルを連続的に反応器へ導入する方法を採用する場合は、ハロゲンを塩化ビニルと共に供給するのが好ましい。
【0020】
鉄触媒は比較的小さい形状の場合には反応液とともに攪拌により系内を浮遊または流動する様にしてもよいが、鉄触媒は固定して他の反応試剤のみを流動させる様にすることも好ましい。何れの反応形式をとる場合においても、本反応は気体と液体の接触が重要な過程となるので反応系にそれらの接触を図るための公知の機器または装置を備えることは好ましい。そのような装置としては、例えば、攪拌機、スパージャーなどを挙げることができるが各種の公知装置を適用すればよい。
【0021】
本反応において攪拌する場合には、鉄ならびに導入された塩化ビニルが反応液中に速やかに拡散されるように、10〜1000rpmの範囲が好ましい。
【0022】
本発明を実施する密閉容器である反応器の材質は、ガラス、樹脂からなるかまたはガラスもしくは樹脂でライニングされた材料を採用する。これらに使用される樹脂としては、フッ素樹脂であることが好ましく、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリパーフルオロアルキルビニルエーテル、ポリヘキサフルオロプロピレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−エチレン共重合体、ヘキサフルオロエチレン−テトラフルオロエチレン共重合体などを挙げることができるが、本発明の反応系において不活性な樹脂であれば当然使用することができる。
【0023】
本発明の方法で製造される1,1,1,3,3−ペンタクロロプロパンは、反応器から取り出した後、触媒、金属化合物などを除去する操作、溶媒および未反応原料を除く操作に付し、さらに精留することで高純度の1,1,1,3,3−ペンタクロロプロパンを得ることができる。
【0024】
【実施例】
以下、実施例により本発明をさらに詳細に説明する。実施例において、圧力はゲージ圧で表す。
【0025】
〔比較例1〕
攪拌機を備えた1000mlの硝子製オートクレーブに、四塩化炭素3.0モル、アセトニトリル3.0モル、塩化第二鉄0.025モルを仕込み、反応器内の空気を窒素ガスで置換した後密封して250rpmで攪拌を行ないながら120℃に加熱した。このとき粉末状の還元鉄0.075モルを仕込み、さらに塩化ビニル2.1モルを圧入して圧力をほぼ0.4MPa(4kg/cm2)とし反応を開始し、反応を30分間継続させた。
【0026】
反応終了後反応器を放冷し、内容物を取りだして金属塩を除去した後、これをガスクロマトグラフで分析した。
【0027】
仕込みの四塩化炭素に対する目的物である1,1,1,3,3−ヘキサクロロプロパンへの収率は、28.5%であった。また残った四塩化炭素は1.84モル(仕込み量に対し61.3%)であった。
【0028】
〔比較例2、3〕
反応温度をそれぞれ100℃〔比較例2〕、110℃〔比較例3〕とした以外は比較例1と同様にして、実施した。反応終了後反応器を放冷し、内容物を取りだして金属塩を除去した後、これをガスクロマトグラフで分析した。
【0029】
仕込みの四塩化炭素に対する目的物である1,1,1,3,3−ヘキサクロロプロパンへの収率は、それぞれ17.0%および21.0%であった。また残った四塩化炭素はそれぞれ2.27モル(仕込み量に対し75.7%)および2.13モル(仕込み量に対し70.8%)であった。
【0030】
〔実施例1〕
攪拌機を備えた1000mlの硝子製オートクレーブに、塩素1モル%を溶解した四塩化炭素3.0モル、アセトニトリル3.0モル、塩化第二鉄0.025モルを仕込み、反応器内の空気を窒素ガスで置換した後密封して250rpmで攪拌を行ないながら120℃に加熱した。このとき粉末状の還元鉄0.075モルを仕込み、さらに塩化ビニル2.1モルを圧入して圧力をほぼ0.4MPa(4kg/cm2)とし反応を開始し、反応を30分間継続させた。
【0031】
反応終了後反応器を放冷し、内容物を取りだして金属塩を除去した後、これをガスクロマトグラフで分析した。
【0032】
仕込みの四塩化炭素に対する目的物である1,1,1,3,3−ヘキサクロロプロパンへの収率は、33.0%であった。また残った四塩化炭素は1.85モル(仕込み量に対し61.7%)であった。
【0033】
〔実施例2、3〕
反応温度をそれぞれ100℃〔実施例2〕、110℃〔実施例3〕とした以外は実施例1と同様にして、実施した。反応終了後反応器を放冷し、内容物を取りだして金属塩を除去した後、これをガスクロマトグラフで分析した。
【0034】
仕込みの四塩化炭素に対する目的物である1,1,1,3,3−ヘキサクロロプロパンへの収率は、それぞれ19.7%および27.5%であった。また残った四塩化炭素はそれぞれ2.30モル(仕込み量に対し76.5%)および2.15モル(仕込み量に対し71.7%)であった。
【0035】
【発明の効果】
本発明の方法は、実施例の結果から明らかなように、塩化ビニルと四塩化炭素から1,1,1,3,3−ヘキサクロロプロパンを製造する場合において、反応系にハロゲンを導入することで反応性を高めることができ、副生成物の生成量を低減することができるため、工業的に有利な製造方法である。
[0001]
[Industrial application fields]
The present invention is useful as a precursor for producing 1,1,1,3,3-pentafluoropropane, which is expected as a foaming agent such as polyolefin, polystyrene, polyurethane foam, polyisocyanurate, or a refrigerant for a turbo refrigerator. The present invention relates to a method for producing 1,1,3,3-pentachloropropane.
[0002]
[Prior art and its problems]
Production of chlorofluorocarbon (CFC) is prohibited as a depleting substance of the ozone layer, and hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) is used as an alternative to these substances However, since HCFC has a chlorine atom in the molecule, it has a small amount of ozone depletion ability, and production will be abolished soon.
[0003]
As a method for synthesizing chloropropanes used as a raw material for producing HFCs, propane chlorination reaction, radical addition reaction between chlorinated methanes and olefins having 2 carbon atoms, and similarly chlorinated methanes and 2 carbon atoms. There are known methods based on ion addition reactions such as Friedel-Craft reaction or Prince reaction with olefins. For example, as a method for obtaining a tetrachloroalkane by reaction of an olefinic hydrocarbon and carbon tetrachloride, a method using an organic peroxide as a reaction aid (USP 2,440,800), an organic acid metal salt as a catalyst Alternatively, a method of reacting an inorganic acid metal salt with an amine or the like (Japanese Patent Publication No. 37-18389, Japanese Examined Publication No. 39-28306, Japanese Examined Publication No. 40-19740, Japanese Patent Publication No. 41-20692), copper metal and alkali A method of reacting in the presence of a catalyst comprising a metal halide (Japanese Patent Laid-Open No. 47-31907), a method of reacting in the presence of a catalyst comprising a polyalkoxy compound and iron chloride (Japanese Patent Laid-Open No. 52-59102), and phosphorus A method of reacting in the presence of a catalyst comprising an acid alkyl ester, iron chloride and a nitrile compound (Japanese Patent Laid-Open No. 52-5910) 3)).
[0004]
As a method for producing 1,1,1,3,3-pentachloropropane, a method of reacting vinylidene chloride and chloroform in the presence of a copper amine catalyst (M. Kotora et al., React. Kinet. Catal. Lett., Vol. 44). , 2, 415, 1991), a method of reacting carbon tetrachloride with vinyl chloride in the presence of a copper amine catalyst (M. Kotora et al., J. of Mol. Catal. 77, 51, 1992). , A method of reacting carbon tetrachloride and vinyl chloride in an isopropanol solvent in the presence of a ferrous chloride catalyst (EN Zil'berman et al., J. of Org. Chem. USSR, Vol. 2, p. 2101, 1967). ) Etc. have been reported.
[0005]
Further, the applicant of the present invention is a method for producing 1,1,1,3,3-pentachloropropane by reacting carbon tetrachloride and vinyl chloride in the presence of elemental iron and an aprotic polar organic solvent such as acetonitrile. (JP-A-8-239333).
[0006]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied for the purpose of further improving the method disclosed in JP-A-8-239333. As a result, the reaction system can be further improved in yield by adding chlorine to the reaction system. The inventors have found that the desired 1,1,1,3,3-pentachloropropane is selectively produced, and arrived at the present invention.
[0007]
That is, the present invention is characterized in that carbon tetrachloride and vinyl chloride are reacted with halogen (halogen is chlorine, bromine or iodine), an iron catalyst and an aprotic organic solvent. , 1,3,3-pentachloropropane production method.
[0008]
In the present invention, halogen is used, and bromine and iodine other than chlorine can be used as the halogen. However, it is preferable to use chlorine for economic reasons.
[0009]
The iron used as a catalyst in the method of the present invention is not an iron compound but elemental iron, and steel containing metallic iron, pure iron, soft iron, reduced iron, carbon, or an alloy containing iron as a component, for example, various kinds Stainless steel, ferrosilicon, etc. can be used, powder, grains, lumps, wires, rods, spheres, plates or metal pieces processed into any shape such as distillation packing such as Raschig rings, helices, steel wool, wire mesh , Coils and other irregular metal pieces can be used. However, in alloys containing a large amount of components that do not have catalytic activity other than iron, these components elute in the reaction system or exist as insoluble components. Is preferred.
[0010]
In addition, a metal compound having a co-catalytic action, a metal complex, or the like can be used in combination with the iron catalyst, and examples of a preferable metal as such a metal include group VIII or IB group metal elements of the periodic table. Specific examples include halides such as nickel, iron, cobalt, palladium, ruthenium, copper and silver, oxides, nitrates, acetates and acetylacetone complexes, and are selected from nickel, iron, cobalt and copper. Metal halides are particularly excellent. Examples of such halides include fluorides, chlorides, bromides, and iodides, and chlorides are excellent in terms of reactivity, versatility of materials, and ease of handling. Specifically, ferrous chloride, ferric chloride, nickel chloride, cobalt chloride, cuprous chloride, and cupric chloride can be mentioned as preferable examples.
[0011]
The amount of the iron catalyst used in the present invention is required to be at least 0.001 mol per 1 mol of carbon tetrachloride. However, since the iron catalyst exists as a solid in the reaction system, the reaction vessel becomes large. Except for this, there is no particular inconvenience for the excess amount. Therefore, in batch type reaction or semi-batch type reaction, it is usually 0.001 to 1 mol, preferably 0.005 to 0.8 mol, and more preferably 0.01 to 0.5 mol. In the formula, the excess of iron catalyst is not particularly inconvenient. If the amount of the catalyst is less than 0.001 mol, the reaction yield decreases, which is not preferable. On the other hand, the amount of the co-catalyst is usually 0.001 to 1 mol, preferably 0.05 to 0.5 mol, more preferably 0.01 to 0.1 mol, per 1 mol of carbon tetrachloride. preferable. If the amount of the cocatalyst is less than 0.001 mol, the reaction rate decreases, which is not preferable. The ratio of the promoter used relative to the iron catalyst is not particularly limited because the amount of the iron catalyst is not limited as described above, but it is usually preferably 0.1 or less.
[0012]
Examples of the aprotic polar organic solvent preferably used in the present invention include nitriles, amides and other solvents. Examples of nitriles include acetonitrile, propionitrile, n-butyronitrile, isobutyronitrile, valeronitrile, phenylacetonitrile, benzonitrile, isophthalonitrile, 2-pentenenitrile, and 3-pentenenitrile. Examples of such solvents include dimethylformamide, dimethylacetamide, hexamethylphosphoric triamide and the like, and other solvents include dimethyl sulfoxide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, γ -Butyrolactone and the like, and acetonitrile, dimethylformamide, and hexamethylphosphoric triamide are preferable because of excellent solubility of the metal compound, and acetonitrile is particularly preferable.
[0013]
In the present invention, it is also possible to add an inert solvent to the reaction system as appropriate in order to improve the reactivity and selectivity. In general, the addition of such a solvent is effective in reducing the formation of higher-order vinyl chloride polymer. The addition ratio is not limited and can be appropriately selected. Such a solvent is not limited as long as it is a substance that is inert in the reaction system and does not function as a radical scavenger.
[0014]
The molar composition ratio of aprotic polar organic solvent / carbon tetrachloride in the reaction system is 10/1 to 1/10, preferably 2/1 to 1/2, and particularly preferably around 1/1. Although it is not particularly inconvenient that this ratio is larger than 10/1, it is not preferable because the reactor becomes large, and if it is smaller than 1/10, the reaction rate of carbon tetrachloride or vinyl chloride is not preferable.
[0015]
The required amount of halogen is from 0.1 to 5 mol%, preferably from 0.5 to 2 mol%, based on carbon tetrachloride. Since iron is produced, it is not preferable. When the amount is less than 0.1 mol%, the induction time of the reaction becomes long and the reaction throughput decreases, which is not preferable. When halogen is not present in the reaction according to the present invention, it is presumed that iron as a catalyst may extract iron from ferric halide to form ferrous halide and may extract chlorine from carbon tetrachloride. Therefore, it is considered that carbon tetrachloride commensurate with the amount of iron serving as a catalyst is consumed. Therefore, wasteful consumption of raw material carbon tetrachloride can be avoided by the presence of halogen.
[0016]
The amount of vinyl chloride is preferably equimolar or less than carbon tetrachloride, but is not necessarily limited. If the amount of vinyl chloride is equal to or greater than the equimolar amount, the amount of higher-order polymerization product of vinyl chloride increases, and an excessive amount of vinyl chloride passes through the reactor without being reacted. When the amount is less than the equimolar amount, carbon tetrachloride partially remains unreacted in the reactor, but this can be recovered and recycled from the reaction solution by a known method such as distillation. There is no particular problem.
[0017]
In the method of the present invention, vinyl chloride can be used after diluted with an inert gas. The degree of dilution may be arbitrary, but an increase in the ratio of the dilution gas to vinyl chloride is preferable because the amount of higher-order polymerized vinyl chloride decreases. However, in this case, since the efficiency of the apparatus is lowered, it is usually preferable that the volume ratio of vinyl chloride / dilution gas is about 0.1 to 10. The diluting gas is not limited as long as it is inert in the reaction system and does not function as a radical scavenger. For example, nitrogen, hydrogen, argon, helium, or the like can be used.
[0018]
The reaction temperature depends on the amount of catalyst and promoter added, the amount of aprotic polar organic solvent added, conversion of vinyl chloride, 1,1,1,3,3-pentachloropropane selectivity, catalyst and promoter However, a range of 80 to 150 ° C., more preferably 100 to 120 ° C. is recommended. When the temperature is lower than 80 ° C., the conversion rate is low, and when it exceeds 150 ° C., the pressure in the reactor needs to be increased, which is not preferable. The pressure in the reactor is the sum of the partial pressures of carbon tetrachloride and aprotic polar organic solvent at each temperature, but is usually 0.1 to 5.0 MPa (1 to 50 kg / cm 2 ). 3 to 1.5 MPa (3 to 15 kg / cm 2 ) is preferable.
[0019]
As an embodiment of the method of the present invention, any of batch reaction, semi-flow reaction, and flow reaction may be used. For example, an iron catalyst and optionally a metal compound and / or metal complex are present in a mixed reaction solution composed of carbon tetrachloride and an aprotic polar organic solvent, and vinyl chloride and halogen are gaseous in it continuously or intermittently. It is desirable to introduce and react. In this case, the halogen may be charged in the reactor in advance, and in that case, only vinyl chloride may be introduced. When continuously introducing vinyl chloride, if the amount introduced is temporarily excessive, the high-molecular-weight product (carbon number 5) produced as a by-product is unfavorably increased. It is preferable to avoid it. In a batch system, reaction reagents such as carbon tetrachloride, halogen, vinyl chloride, iron catalyst, cocatalyst, and solvent may be charged in the initial stage of the reaction. It is preferable to avoid the method in which the vinyl chloride is fed in liquid by the sequential addition method because the production amount of higher-order vinyl chloride polymer tends to increase. The method for allowing halogen to be present in the reaction system in the method of the present invention is not particularly limited. For example, the halogen may be introduced directly into the reactor alone as a gas or liquid, may be introduced dissolved in carbon tetrachloride or an aprotic polar organic solvent or other solvent, A mixture may be introduced. Among these, when adopting a method of continuously introducing vinyl chloride into the reactor, it is preferable to supply halogen together with vinyl chloride.
[0020]
If the iron catalyst has a relatively small shape, it may be floated or flown in the system by stirring together with the reaction solution, but it is also preferable to fix the iron catalyst and flow only other reaction reagents. . Regardless of which reaction mode is used, since the contact between gas and liquid is an important process in this reaction, it is preferable that the reaction system is equipped with a known device or apparatus for achieving such contact. Examples of such an apparatus include a stirrer and a sparger, but various known apparatuses may be applied.
[0021]
In the case of stirring in this reaction, the range of 10 to 1000 rpm is preferable so that iron and introduced vinyl chloride are quickly diffused into the reaction solution.
[0022]
The material of the reactor which is a sealed container for carrying out the present invention is a material made of glass or resin, or a material lined with glass or resin. The resin used in these is preferably a fluororesin, for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyperfluoroalkyl vinyl ether, polyhexafluoropropylene, tetrafluoroethylene-perfluoroethylene. A fluoroalkyl vinyl ether copolymer, a tetrafluoroethylene-ethylene copolymer, a hexafluoroethylene-tetrafluoroethylene copolymer, and the like can be mentioned. Of course, any resin that is inert in the reaction system of the present invention is used. be able to.
[0023]
The 1,1,1,3,3-pentachloropropane produced by the method of the present invention is taken out of the reactor and then subjected to an operation for removing the catalyst, metal compound, etc., and an operation for removing the solvent and unreacted raw materials. Further, by rectification, 1,1,1,3,3-pentachloropropane with high purity can be obtained.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In the examples, the pressure is expressed as a gauge pressure.
[0025]
[Comparative Example 1]
A 1000 ml glass autoclave equipped with a stirrer was charged with 3.0 mol of carbon tetrachloride, 3.0 mol of acetonitrile, and 0.025 mol of ferric chloride, and the air in the reactor was replaced with nitrogen gas and sealed. And heated to 120 ° C. with stirring at 250 rpm. At this time, 0.075 mol of powdered reduced iron was charged, and 2.1 mol of vinyl chloride was further injected to make the pressure almost 0.4 MPa (4 kg / cm 2 ), and the reaction was started, and the reaction was continued for 30 minutes. .
[0026]
After the completion of the reaction, the reactor was allowed to cool, the contents were taken out and the metal salt was removed, and this was analyzed by gas chromatography.
[0027]
The yield to 1,1,1,3,3-hexachloropropane, which was the target product, for the charged carbon tetrachloride was 28.5%. The remaining carbon tetrachloride was 1.84 mol (61.3% based on the charged amount).
[0028]
[Comparative Examples 2 and 3]
The reaction was carried out in the same manner as in Comparative Example 1 except that the reaction temperature was 100 ° C. [Comparative Example 2] and 110 ° C. [Comparative Example 3], respectively. After the completion of the reaction, the reactor was allowed to cool, the contents were taken out and the metal salt was removed, and this was analyzed by gas chromatography.
[0029]
The yields to 1,1,1,3,3-hexachloropropane, which was the target product, for the charged carbon tetrachloride were 17.0% and 21.0%, respectively. The remaining carbon tetrachloride was 2.27 mol (75.7% with respect to the charged amount) and 2.13 mol (70.8% with respect to the charged amount), respectively.
[0030]
[Example 1]
A 1000 ml glass autoclave equipped with a stirrer was charged with 3.0 mol of carbon tetrachloride dissolved with 1 mol% of chlorine, 3.0 mol of acetonitrile, and 0.025 mol of ferric chloride, and the air in the reactor was charged with nitrogen. After replacing with gas, it was sealed and heated to 120 ° C. while stirring at 250 rpm. At this time, 0.075 mol of powdered reduced iron was charged, and 2.1 mol of vinyl chloride was further injected to make the pressure almost 0.4 MPa (4 kg / cm 2 ), and the reaction was started, and the reaction was continued for 30 minutes. .
[0031]
After the completion of the reaction, the reactor was allowed to cool, the contents were taken out and the metal salt was removed, and this was analyzed by gas chromatography.
[0032]
The yield to 1,1,1,3,3-hexachloropropane, which was the target product, for the charged carbon tetrachloride was 33.0%. The remaining carbon tetrachloride was 1.85 mol (61.7% with respect to the charged amount).
[0033]
[Examples 2 and 3]
The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 100 ° C. [Example 2] and 110 ° C. [Example 3], respectively. After the completion of the reaction, the reactor was allowed to cool, the contents were taken out and the metal salt was removed, and this was analyzed by gas chromatography.
[0034]
The yields to 1,1,1,3,3-hexachloropropane, which was the target product, for the charged carbon tetrachloride were 19.7% and 27.5%, respectively. The remaining carbon tetrachloride was 2.30 mol (76.5% with respect to the charged amount) and 2.15 mol (71.7% with respect to the charged amount), respectively.
[0035]
【The invention's effect】
As is clear from the results of the examples, the method of the present invention is a method in which halogen is introduced into a reaction system when 1,1,1,3,3-hexachloropropane is produced from vinyl chloride and carbon tetrachloride. Since the reactivity can be increased and the amount of by-products generated can be reduced, this is an industrially advantageous production method.

Claims (5)

四塩化炭素と塩化ビニルとを、ハロゲン(ハロゲンは塩素、臭素またはヨウ素をいう)と鉄触媒と非プロトン性の有機溶媒存在下で反応させることを特徴とする1,1,1,3,3−ペンタクロロプロパンの製造方法。1,1,1,3,3 characterized by reacting carbon tetrachloride and vinyl chloride with halogen (halogen means chlorine, bromine or iodine), an iron catalyst and an aprotic organic solvent. -Process for producing pentachloropropane. ハロゲンが塩素であることを特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein the halogen is chlorine. 鉄触媒に助触媒として、元素の周期律表のVIIIまたはIB族の金属のハロゲン化物から選ばれる1種以上の化合物を添加することを特徴とする請求項1乃至2の何れかに記載の製造方法。3. The production according to claim 1, wherein at least one compound selected from the group VIII or IB metal halides of the periodic table of elements is added as a promoter to the iron catalyst. Method. 非プロトン性の有機溶媒が、ニトリル類またはアミド類から選ばれる1種以上の化合物であることを特徴とする請求項1乃至3の何れかに記載の製造方法。The production method according to any one of claims 1 to 3, wherein the aprotic organic solvent is at least one compound selected from nitriles or amides. 鉄触媒が元素状の鉄であることを特徴とする請求項1乃至4の何れかに記載の製造方法。The method according to any one of claims 1 to 4, wherein the iron catalyst is elemental iron.
JP33197899A 1999-11-22 1999-11-22 Process for producing 1,1,1,3,3-pentachloropropane Expired - Fee Related JP3869170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33197899A JP3869170B2 (en) 1999-11-22 1999-11-22 Process for producing 1,1,1,3,3-pentachloropropane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33197899A JP3869170B2 (en) 1999-11-22 1999-11-22 Process for producing 1,1,1,3,3-pentachloropropane

Publications (2)

Publication Number Publication Date
JP2001151708A JP2001151708A (en) 2001-06-05
JP3869170B2 true JP3869170B2 (en) 2007-01-17

Family

ID=18249784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33197899A Expired - Fee Related JP3869170B2 (en) 1999-11-22 1999-11-22 Process for producing 1,1,1,3,3-pentachloropropane

Country Status (1)

Country Link
JP (1) JP3869170B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259808B2 (en) * 2002-03-27 2009-04-30 セントラル硝子株式会社 Process for producing 1,1,1,3,3-pentachloropropane
KR20110086037A (en) 2008-10-13 2011-07-27 다우 글로벌 테크놀로지스 엘엘씨 Process for the production of chlorinated and/or fluorinated propens
JP5706432B2 (en) 2009-10-09 2015-04-22 ダウ グローバル テクノロジーズ エルエルシー Method for producing chlorinated and / or fluorinated propene
EP2485832B1 (en) 2009-10-09 2016-11-23 Blue Cube IP LLC Process for producing a chlorinated and/or fluorinated propene in an isothermal multitube reactors and
US8581012B2 (en) 2009-10-09 2013-11-12 Dow Global Technologies, Llc Processes for the production of chlorinated and/or fluorinated propenes and higher alkenes
CA2836493A1 (en) 2011-05-31 2012-12-06 Max Markus Tirtowidjojo Process for the production of chlorinated propenes
US9056808B2 (en) 2011-05-31 2015-06-16 Dow Global Technologies, Llc Process for the production of chlorinated propenes
BR112013031230A2 (en) 2011-06-08 2017-01-31 Dow Agrosciences Llc process for the production of chlorinated and / or fluorinated propenses
EP2739595B1 (en) 2011-08-07 2018-12-12 Blue Cube IP LLC Process for the production of chlorinated propenes
US8907148B2 (en) 2011-08-07 2014-12-09 Dow Global Technologies Llc Process for the production of chlorinated propenes
CA2856271A1 (en) 2011-11-21 2013-05-30 Dow Global Technologies Llc Process for the production of chlorinated alkanes
WO2013082410A1 (en) 2011-12-02 2013-06-06 Dow Global Technologies, Llc Process for the production of chlorinated alkanes
CN104024186B (en) 2011-12-02 2016-10-12 蓝立方知识产权有限责任公司 The method producing chloralkane
US9334205B2 (en) 2011-12-13 2016-05-10 Blue Cube Ip Llc Process for the production of chlorinated propanes and propenes
JP2015503523A (en) 2011-12-22 2015-02-02 ダウ グローバル テクノロジーズ エルエルシー Method for producing tetrachloromethane
EP2794521B1 (en) 2011-12-23 2016-09-21 Dow Global Technologies LLC Process for the production of alkenes and/or aromatic compounds
US9321707B2 (en) 2012-09-20 2016-04-26 Blue Cube Ip Llc Process for the production of chlorinated propenes
JP2015529247A (en) 2012-09-20 2015-10-05 ダウ グローバル テクノロジーズ エルエルシー Process for the production of chlorinated propene
WO2014052945A2 (en) 2012-09-30 2014-04-03 Dow Global Technologies, Llc Weir quench and processes incorporating the same
WO2014066083A1 (en) 2012-10-26 2014-05-01 Dow Global Technologies, Llc Mixer and reactor and process incorporating the same
CN104870411B (en) 2012-12-18 2018-10-02 蓝立方知识产权有限责任公司 Method for producing propylene dichloride
CN104918904B (en) 2012-12-19 2017-10-31 蓝立方知识产权有限责任公司 Method for producing propylene dichloride
EP2961722A2 (en) 2013-02-27 2016-01-06 Blue Cube IP LLC Process for the production of chlorinated propenes
CA2903760C (en) 2013-03-09 2018-02-20 Blue Cube Ip Llc Process for the production of chlorinated alkanes
CN116217336B (en) * 2023-05-08 2023-07-25 北京宇极科技发展有限公司 Method for producing initiator and continuous production of polychloroalkane and initiator

Also Published As

Publication number Publication date
JP2001151708A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP3869170B2 (en) Process for producing 1,1,1,3,3-pentachloropropane
JP2001213820A (en) Method of producing 1,1,1,3,3-pentachloro-propane
US10676414B2 (en) Process for the manufacture of 1,1,1,3,3-pentachloropropane
US10464869B2 (en) Processes for selective dehydrohalogenation of halogenated alkanes
JP6059246B2 (en) Method for producing chlorinated alkane
US5532419A (en) Processes for the preparation of fluorinated olefins and hydrofluorocarbons using fluorinated olefin
JP5337002B2 (en) Process for producing 1,1,1,3,3-pentafluoropropane
EP0729932A1 (en) Method of producing halopropane
JPH09508138A (en) Method for producing 1,1,1,3,3-pentafluoropropane
JP4111548B2 (en) Process for the preparation of 1,1,1,3,3-pentachlorobutane
JPH07106998B2 (en) Method for producing 1,1,1-trifluoro-2,2-dichloroethane
US20140058141A1 (en) Catalytical synthesis of hydrohalocarbons
CN101558031A (en) Process for the manufacture of 1,1,1,3,3-pentachloropropane
JP5397483B2 (en) Method for producing fluorine-containing propane
US6500995B1 (en) Water-enhanced production of 1,1,1,3,3,-pentachloropropane
JP3456605B2 (en) Method for producing 1,1,1,3,3-pentachloropropane
AU4330000A (en) Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane
JP2001335517A (en) Method for producing 1,1,1,3,3-pentachloropropane
JP4259808B2 (en) Process for producing 1,1,1,3,3-pentachloropropane
JP2004500339A (en) Method for producing halogenated hydrocarbon
US7109386B2 (en) Method for preparing a halogenated olefin
EP0714874A1 (en) Process for the production of 1,1,1-trifluoroethane
JP2001508462A (en) Production method of halocarbon
CA2192843C (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
WO2008040804A1 (en) Process for the preparation of halogenated hydrocarbons with at least 3 carbon atoms by reacting cfcl3 with an olefin

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Ref document number: 3869170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees