JP3868751B2 - Adhesive applicator - Google Patents

Adhesive applicator Download PDF

Info

Publication number
JP3868751B2
JP3868751B2 JP2001078627A JP2001078627A JP3868751B2 JP 3868751 B2 JP3868751 B2 JP 3868751B2 JP 2001078627 A JP2001078627 A JP 2001078627A JP 2001078627 A JP2001078627 A JP 2001078627A JP 3868751 B2 JP3868751 B2 JP 3868751B2
Authority
JP
Japan
Prior art keywords
adhesive
amount
regression equation
sensor signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001078627A
Other languages
Japanese (ja)
Other versions
JP2002273283A (en
Inventor
貴文 河嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001078627A priority Critical patent/JP3868751B2/en
Publication of JP2002273283A publication Critical patent/JP2002273283A/en
Application granted granted Critical
Publication of JP3868751B2 publication Critical patent/JP3868751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spray Control Apparatus (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、2液を混合することによって硬化する接着剤を噴霧塗布する接着剤塗布装置に関するものである。
【0002】
【従来の技術】
図9は、例えば特開昭61−225608号公報に示された従来の塗布材の塗布むらを検出する装置を示す概略図である。図9において、1は乾燥炉、2は磁性体の粉末が塗布され乾燥炉1で乾燥された磁気テープ、3はローラ、4はローラ3を介して磁気テープ2を巻き取るドラム、5は磁気テープ2の走行路の途中の下方に、磁気テープ2の走行方向と直交するように配置された棒状の光源、6は光源5からの光を拡散する拡散板であり、この拡散板6は、光源5からの光を磁気テープ2の裏面に照射する。
【0003】
7は磁気テープ2の上方に光源5に対向して配置されたカメラであり、このカメラ7は、一次元のイメージセンサが組みこまれており、磁気テープ2の透過光によって得られる像をイメージセンサで撮像し、その出力信号を制御装置8に供給する。制御装置8は、カメラ7の出力信号をビット毎にデジタル信号に変換するA/D変換器と、A/D変換されたデジタル信号を順次記憶するメモリと、このメモリに記憶された各ビット毎のデジタル信号から任意のビット間隔における信号レベルの差を演算する演算手段が組みこまれている。
【0004】
次に、動作について説明する。光源5から輝度分布を有した光が照射されるが、拡散板6によって輝度がある程度平均化されて磁気テープ2に照射される。磁気テープ2において磁性体が有る部分は光が透過せず、磁性体が無い部分は光が透過する。磁気テープ2の平面方向に磁性体の集合度が高い部分は透過光量が少なく、集合度が低い部分は透過光量が多くなる。カメラ7で磁気テープ2の表面を撮像し、この透過光量の差を濃淡画像として得ることができる。カメラ7のイメージセンサを1次元とし、磁気テープ2の走行方向に直交する方向にセンサ素子を並べて磁気テープ2の走行速度と同期して撮像し、その信号レベルの差を任意のビット間隔で演算することによって磁気テープ2上の磁性体の密度の高低、すなわちむらを検出することができる。
【0005】
磁性体の有り無しでカメラ7が撮像する光の強度(信号レベル)に大きな差があるので、拡散板6から照射される光の輝度むらや変化の影響を誤差として扱える。また、照射光の方向が特定されていないので照射光量に対する磁気テープ2の透過光量の比率が正確に把握できないことや、透過光量に対する照射光と外乱光の寄与度の区別ができないことや、磁気テープ2の生地の光の透過度のばらつきによる影響も誤差として扱える。
【0006】
図10は、例えば特開平07−181018号公報に示された従来の接着剤の塗布厚みを検出する装置を示す概略図である。図10において、9は塗布対象物、10は接着剤、11は接着剤10が塗布された塗布対象物9の塗布面に近赤外線を照射する光源、12は塗布面における反射光の光路途中に接着剤10に含有される特定の成分の吸収波長帯の近赤外線のみを透過するフィルタである。
【0007】
13はフィルタ12を通過した光により接着剤塗布面の2次元画像を撮像素子14に結像させるレンズ、15は撮像素子14が組みこまれたテレビカメラ、16はテレビカメラ15から供給される画像信号をデジタル信号に変換するA/D変換器である。17はデジタル信号に変換された画像信号を画素毎に記憶、演算するコンピュータであって、あらかじめ求められた基準画像データに対する接着剤10の塗布厚みの関係をもとに測定対象の画像データについて接着剤10の塗布厚みを演算するものである。18は演算された画素毎の接着剤10の塗布厚みを表示する表示器である。
【0008】
次に、動作について説明する。光源11から照射された近赤外線は、塗布対象物9の接着剤塗布面で反射してフィルタ12に至る。フィルタ12は、接着剤10に含有される特定成分の吸収波長帯の近赤外線のみを透過させるが、フィルタ12を透過する近赤外線は、接着剤10の塗布厚みによって吸収される度合いが違うので、接着剤10の塗布厚みに応じて強度が変化する。
【0009】
この強度変化を画像データとしてテレビカメラ15、A/D変換器16を介してコンピュータ17に取りこむ。あらかじめ、接着剤10の塗布厚みを変化させたサンプルを製作して基準となる画像データを得て、接着剤10の密度を一定であるとして接着剤10の重量を塗布面積で除して塗布厚みを算出し、基準画像データと接着剤10の塗布厚みを対応付けておく。その後、測定対象の画像データと基準画像データの差から接着剤10の塗布厚みをコンピュータ17で演算し、表示器18でその演算結果を表示する。図示構成は、近赤外線を吸収する成分が接着剤10中に均一に分散されており、塗布面の近赤外線の照射強度が均一、一定で、接着剤10が流動しない場合に有効な手段である。
【0010】
【発明が解決しようとする課題】
ところで、2液を混合することによって重合反応が開始して硬化する接着剤(2液常温硬化型接着剤と称する)を用いた被着材の接着において十分な接着強度を得るためには、2液の重量比を管理し十分混合させる必要がある。2液を別々のノズルから同時に噴霧させて混合塗布させる方式は、混合という面では十分な混ざり具合を得る最も良い方式である。反面、噴霧される2液の重量を各々測定することができず、従来は、2液混合の重量比(混合否と称する)の管理は接着剤の噴霧塗布機構の精度に頼っていたため不確かなものであった。
【0011】
この混合否の不確かさを補うには、要求接着強度をはるかに超える過大な接着強度の設定が必要となる。接着強度は接着面積に比例するので接着面積を過大に設定することになる。また、接着面積を大きくすることは部分部分で混合否が所定値よりはずれて接着強度が減じても、全体として問題にならないようにする利点もある。
【0012】
一方、噴霧塗布によらず別々のシリンジに2液を各々入れて、1液ずつ接着剤を塗布する度に塗布重量を測定した後、撹拌部材で混合する方式もあるが、重量測定や混合のために長い時間が必要で生産性が悪い。また、不充分な混合度合いしか得られないので、結局、接着面積を大きくする必要が生じる。
【0013】
したがって、例えば電動機のロータと磁石の接着のように、磁石の貼り付け面積以上に接着面積を大きくできず、要求接着強度に対して過大な接着強度を得ることができない対象には、2液常温硬化型接着剤を使用することができず、加熱することによって硬化する1液の接着剤(1液加熱硬化型接着剤と称する)が使用されていた。
【0014】
1液加熱硬化型接着剤において、硬化重合反応を完了させるためには接着剤の温度を所定の温度に上昇させる必要がある。この為には、接着剤を間に挟む被着材の温度を上昇させる必要があり、例えば大型モータのロータなどでは加熱するのに多大な時間が必要であり、生産性が悪い。また、大型の加熱炉が必要で設備コストも多大である。これに比べて、2液常温硬化型接着剤は、被着材を加熱する必要がなく接着硬化時間を短くすることができるので、生産性が良く、加熱炉も必要ないので、接着コストを著しく低減できる。
【0015】
接着コストの低減を目的として2液常温硬化型接着剤を導入するには、スプレーガンと塗布対象物の間で噴霧中の接着剤の塗布量を計測し管理することが求められる。
【0016】
噴霧中の接着剤は、例えば円錐状の領域内に速度をもった接着剤の微粒子を有る状態である。これに光を照射して噴霧接着剤を間に挟んで反対側で受光することを考えると、接着剤の微粒子がない部分はそのまま透過し、微粒子がある部分は光の強度が減じられて透過したり、入射角度によって微粒子表面で反射して透過したり遮断されたりする光を受光することになる。
【0017】
接着剤の噴霧塗布量が変化すると、例えば円錐状の噴霧形状においては軸に垂直な切口である円の直径が変化し、円内で接着剤微粒子が占める割合が変化する。円内の接着剤微粒子の割合の変化は、微粒子の大きさや数の変化で起こる。円の直径や形状、円内の微粒子の大きさや数は噴霧中に逐次変動する。
【0018】
この円の直径や形状、円内の微粒子の大きさや数の変化を受光量の変化で捉えることになるが、まず噴霧接着剤に照射される光の方向は一方向でかつムラが無く一定の強度を持つことが求められる。様々な方向から光が照射されると円の直径や微粒子の大きさの変化により光が様々な方向に反射したり干渉しあったりして所定外の光を受光することになり、照射光と受光光を対応付けることができない。照射光にムラがあったり、強度の変化があっても同様でムラや強度変化をそのまま受光できず、照射光と受光光を対応付けることができないので、受光量と接着剤の塗布量を関係付けることができない。
【0019】
図9に示す構成を有する特開昭61−225608号公報に示された第1の従来例は、磁性体が光を透過しないことを前提とし、磁性体の有り無しで受光強度(信号レベル)に大きな差があることを利用することによって、受光量を不安定にする照明光の方向や輝度ムラ、外乱光の影響について特別な対策を施さない構成となっているので、噴霧接着剤の塗布量を安定して計測することはできない。
【0020】
また、図10に示す構成を有する特開平07−181018号公報に示された第2の従来例は、近赤外線を吸収する成分が接着剤中に均一に分散されていることが前提であるが、近赤外線を吸収する成分が噴霧接着剤の微粒子に均一に分散されることは期待できない。また、第1の従来例と同様に近赤外線の方向や強度ムラの影響について特別な対策を施さない構成となっているので噴霧接着剤の塗布量を安定して計測することはできない。
【0021】
この発明は、上記のような問題点を解決するためになされたものであり、2液常温硬化型接着剤の噴霧塗布における接着剤の塗布量の安定して計測することができる接着剤塗布装置を得ることを目的とするものである。
【0022】
【課題を解決するための手段】
この発明に係る接着剤塗布装置は、2液を混合することによって重合反応が開始して硬化する接着剤の2液を別々のノズルから同時に塗布対象物の被塗布領域に向けて噴霧するスプレーガンと、照射される平行なレーザ光が上記スプレーガンから噴霧される接着剤の円錐軸に直交して横切り受光するように配置された投光器および受光器と、センサ信号値と接着剤の塗布量との相関関係が1次の回帰式として与えられる換算式と塗布量の規格値とを記憶していて、上記換算式で近似できる範囲で、投受光器間の空間に接着剤が噴霧される直前の受光器のレーザ光量に対する接着剤噴霧中の受光器のレーザ光量の割合に応じた信号を積分して得られるセンサ信号値から上記換算式に基づいて接着剤の塗布量を求めるようにして塗布量の計測を行うと共に、接着剤噴霧中の塗布量が上記規格値を満たすか否かの合否判定を行う演算手段とを備えたことを特徴とするものである。
【0023】
また、上記演算手段は、接着剤の噴霧状態と塗布量を変化させるパラメータの設定値を変化させて収集した噴霧時間中のセンサ信号値と接着剤の塗布量を、センサ信号値を横軸に、塗布量を縦軸にとった2次元座標系にプロットし、最小二乗近似法で求めた3次の回帰式Hと1次の回帰式Iに基づいて、管理規格中央値の塗布量と当該管理規格中央値の塗布量を得るセンサ信号値における3次の回帰式Hの微分係数との相関を示す1次の回帰式J、及びこの微分係数と1次の回帰式Iの回帰係数の相関を示す1次の回帰式Kを求め、回帰式Jを回帰式Kに代入して求めた1次式を上記換算式の校正式Lとして、校正をする際に収集したセンサ信号値と接着剤の塗布量を校正式Lに代入してセンサ信号値と接着剤の塗布量の換算式を導出することを特徴とするものである。
【0024】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1に係る接着剤塗布装置を説明するもので、平行なレーザ光の照射方法を説明するための図である。図1において、19は接着剤を塗布対象物に噴霧塗布するスプレーガン、20はスプレーガン19から塗布対象物21に円錐状に噴霧されている接着剤、22は円錐軸に直交して噴霧中の接着剤を横切る平行なレーザ光で、投光器23から受光器24に照射されている。
【0025】
図2は、図1を上方から見た図であり、平行なレーザ光22が噴霧接着剤20で完全に遮断されずに破線25の部分で光量を減じて透過する様子を示す。
【0026】
また、図3は、2液常温硬化型接着剤の塗布量を計測する手段を説明する図である。図3において、2液常温硬化型接着剤を塗布するために、2つのスプレーガン19が用いられる。2つのスプレーガン19は、鉛直方向に対して振り分けて傾けられ、2つの液が塗布対象物21の塗布面上で合致するように配置されている。2組のレーザの投受光器23、24は平行なレーザ光22が噴霧接着剤の円錐軸に直交して横切るように配置されている。27は受光器24から信号ケーブル26aを通じて供給されるアナログ信号をデジタル信号に変換するA/D変換器、28はA/D変換器27から信号ケーブル26bを通じて供給されるデジタル信号を演算して接着剤の塗布量に換算し、塗布量の合否判定を出力する演算手段としての計算機である。
【0027】
以上の構成において、レーザは、単一波長で直進性に優れているため、噴霧接着剤に対してムラなく一方向に光を照射することができる。また、エネルギー密度が高いので外乱光と区別することも容易である。このレーザを平行光として噴霧接着剤20に照射することにより、円錐軸に垂直な切口での噴霧接着剤の円の直径や形状、円内の接着剤微粒子の大きさや数の変動を受光器24で得る受光量の変化として捉えられる。接着剤噴霧中の受光量は、例えば図4に示すような波形で示される。横軸が時間Tで縦軸がA/D変換器27を介してセンサの受光器24から供給されるデジタル信号値Eである。
【0028】
図5は、接着剤の塗布量と図4に示す信号波形の積分値の関係を説明する図である。図5において、横軸は図4の波形を積分して得られるセンサ信号値Xで、縦軸が接着剤の塗布量Yである。M0は接着剤の塗布量の規格中央値を示し、E0はこれに対応するセンサ信号値を示す。接着剤の塗布量を変化させてそのときのセンサ信号値を取ると、同一製造ロット内の接着剤においてはセンサ信号値Xと接着剤の塗布量Yに1次の回帰式Y=aX+b(a:回帰係数、b:定数)で近似できる相関が得られる範囲Rとそうでない範囲が得られる。範囲Rで得られる1次の回帰式をセンサ信号値Xから塗布量Yを算出する換算式として、塗布量の規格値とともに計算機28に記憶させておくことによって、接着剤噴霧中の塗布量を計測し規格値を満足したか否かの合否判定を行うことができ、結果を出力させることができる。
【0029】
実施の形態2.
接着剤の粘度は、製造ロットや製造日から使用日までの保存期間によって異なる。接着剤メーカにおいて粘度の調整が行われるが、製造ロットによって10〜20%は違う。これに保存期間の長短による変化が加わる。また、多くの接着剤は、その粘度は流速に対して一定の値にならない。接着剤メーカにおいては規定の低速で粘度計測が行われて粘度の調整が行われるが、製造ロットや保存期間が違うと規定の低速での粘度が同じでも高速での粘度が違う。任意の流速で粘度を調整することは接着剤メーカにおいて実現できないことであり、一般に多く使用される塗布機における接着剤の吐出速度程度の低速で管理されるので、噴霧塗布における高速での粘度は管理されていないに等しい。
【0030】
接着剤の粘度が変わると、平行なレーザ光による噴霧接着剤の円錐軸に垂直な切口の直径や形状、円内の接着剤微粒子の大きさや数が大きく変わり、図5における換算式の回帰係数aや定数bが変わる。したがって、保存期間での変動も考慮して接着剤の密封容器毎に換算式(回帰係数aや定数b)を導出して使用することが必要である。換算式を導出するには接着剤の塗布量Yを変化させて、それに対応するセンサ信号値Xを、図5に示すようにプロットして1次の回帰式を求める必要がある。
【0031】
しかしながら、この作業中は、製品の生産が停止するので作業時間を最小としたい。接着剤の密封容器毎にいつも塗布量計測の精度に問題になるほど粘度が変化するとは限らない。密封容器毎に塗布量が規格中央値MO近傍にあるか否かの確認し外れている場合は塗布量Yを調整する(塗布量チェック作業と称する)ので、この作業のみで換算式を設定できることが望ましい。
【0032】
図6は、この発明の実施の形態2に係る計算器28による換算式(1次の回帰式I)の校正において、塗布量チェック作業で換算式を導出する方法を説明するための図である。図6において、横軸はセンサ信号値X、縦軸は噴霧接着剤の塗布量Yであり、図6は、この2次元座標系において、ひとつの密封容器(同一粘度)の接着剤を使用して塗布量を変化させるパラメータ(スプレーガン19の突出圧力)の設定値を変えて収集した噴霧時間中のセンサ信号値Xと接着剤の塗布量Yをプロットし、最小二乗近似法で求めた3次の回帰式H(H=AX3+q、Aは回帰係数、qは定数)と1次の回帰式I(I=aX+b)、管理規格中央値の塗布量M0を得るセンサ信号値E0における3次の回帰式Hの微分係数3AE02を示したものである。
【0033】
1次の回帰式Iが接着剤の密封容器毎に求めたいセンサ信号値Xから接着剤の塗布量Yを換算する換算式である。回帰式Iは、回帰係数aと定数bを求めることにより決まる。図6で得られる回帰式と微分係数を多数の密封容器の接着剤について接着剤の粘度を変えて調べた結果、Rの範囲で図7と図8に示す相関関係が得られた。
【0034】
図7は、管理規格中央値の塗布量M0と微分係数3AE02の関係が1次の回帰式J(:3AE02=cM0+d、cは回帰係数、dは定数)で近似できることを示している。また、図8は、微分係数3AE02と回帰式Iの回帰係数aの関係が1次の回帰式K(a=e(3AE02)+f、eは回帰係数、fは定数)で近似できることを示している。回帰式Jを回帰式Kに代入すると、1次式L:a=e(cM0+d)+fが得られる。これからb=M0−aE0が求まる。すなわち、塗布チェック作業において、接着剤塗布量M0とセンサ信号値E0を求めれば、これから換算式の回帰係数aと定数bが求められる。
【0035】
製品生産中の噴霧接着剤の塗布量計測においては、換算式Iをもとに算出した塗布量に、前記の各回帰式や微分係数を導出する際の誤差による塗布量換算誤差の総計を加減算した値が、塗布量の規格上下限を満足するか否かを判定する。
【0036】
以上により、塗布チェック作業のみで換算式を導出することができ、換算式を校正する時間を削減すること(塗布チェック作業時間に含むこと)ができる。
【0037】
【発明の効果】
以上のように、この発明によれば、平行なレーザ光を用いて1次の回帰式で受光量と接着剤の塗布量を関係付けたので、2液常温硬化型接着剤の噴霧塗布における各液の塗布量の計測を行うことができ、2液常温硬化型接着剤を適用して接着コストを低減する効果がある。
【0038】
また、接着剤の密封容器毎に行う塗布量チェック作業で得られる受光量と接着剤の塗布量で、受光量と接着剤の塗布量の換算式を校正できるようにしたので、換算式校正時間を削減する効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る接着剤塗布装置を説明するもので、平行なレーザ光の照射方法を説明するための図である。
【図2】 図1を上方から見た図であり、平行なレーザ光22が噴霧接着剤20で完全に遮断されずに破線25の部分で光量を減じて透過する様子を示す図である。
【図3】 この発明の実施の形態1に係るもので、2液常温硬化型接着剤の塗布量を計測する手段を説明する図である。
【図4】 この発明の実施の形態1に係るもので、受光器から供給される信号波形を説明する図である。
【図5】 この発明の実施の形態1に係るもので、接着剤の塗布量とセンサ信号値の関係を説明する図である。
【図6】 この発明の実施の形態2に係るもので、塗布量チェック作業で換算式を導出する方法を説明する図である。
【図7】 この発明の実施の形態2に係るもので、管理規格中央値の塗布量M0と微分係数3AE02の関係を説明する図である。
【図8】 この発明の実施の形態2に係るもので、微分係数3AE02と回帰式Iの回帰係数aの関係を説明する図である。
【図9】 従来の塗布材の塗布むらを検出する装置を説明する図である。
【図10】 従来の接着剤の塗布厚みを検出する装置を説明する図である。
【符号の説明】
19 スプレーガン、20 接着剤、21 塗布対象物、22 平行なレーザ光、23 投光器、24 受光器、25 減衰したレーザ光、26a、26b 信号ケーブル、27 A/D変換器、28 計算機(演算手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adhesive coating apparatus that sprays an adhesive that cures by mixing two liquids.
[0002]
[Prior art]
FIG. 9 is a schematic diagram showing a conventional apparatus for detecting coating unevenness of a coating material disclosed in, for example, Japanese Patent Application Laid-Open No. 61-225608. In FIG. 9, 1 is a drying furnace, 2 is a magnetic tape coated with magnetic powder and dried in the drying furnace 1, 3 is a roller, 4 is a drum that winds the magnetic tape 2 through the roller 3, and 5 is magnetic. A rod-shaped light source 6 disposed below the middle of the traveling path of the tape 2 so as to be orthogonal to the traveling direction of the magnetic tape 2, 6 is a diffusion plate that diffuses light from the light source 5. The back surface of the magnetic tape 2 is irradiated with light from the light source 5.
[0003]
Reference numeral 7 denotes a camera disposed above the magnetic tape 2 so as to face the light source 5. The camera 7 incorporates a one-dimensional image sensor and images an image obtained by the transmitted light of the magnetic tape 2. The image is picked up by the sensor, and the output signal is supplied to the control device 8. The control device 8 includes an A / D converter that converts the output signal of the camera 7 into a digital signal bit by bit, a memory that sequentially stores the A / D converted digital signal, and each bit stored in the memory. An arithmetic means for calculating a signal level difference at an arbitrary bit interval from the digital signal is incorporated.
[0004]
Next, the operation will be described. Light having a luminance distribution is irradiated from the light source 5, but the luminance is averaged to some extent by the diffusion plate 6 and irradiated to the magnetic tape 2. In the magnetic tape 2, light does not pass through a portion with a magnetic material, and light passes through a portion without a magnetic material. A portion with a high degree of aggregation of magnetic materials in the planar direction of the magnetic tape 2 has a small amount of transmitted light, and a portion with a low degree of aggregation has a large amount of transmitted light. The surface of the magnetic tape 2 can be imaged with the camera 7 and the difference in the amount of transmitted light can be obtained as a grayscale image. The image sensor of the camera 7 is one-dimensional, and sensor elements are arranged in a direction perpendicular to the traveling direction of the magnetic tape 2 to capture images in synchronization with the traveling speed of the magnetic tape 2, and the difference in signal level is calculated at an arbitrary bit interval. By doing so, the density of the magnetic material on the magnetic tape 2, that is, unevenness can be detected.
[0005]
Since there is a large difference in the intensity (signal level) of the light imaged by the camera 7 with and without the magnetic material, it is possible to treat the luminance unevenness or the influence of the change of the light emitted from the diffusion plate 6 as an error. Further, since the direction of the irradiated light is not specified, the ratio of the transmitted light amount of the magnetic tape 2 to the irradiated light amount cannot be accurately grasped, the contribution of irradiated light and disturbance light to the transmitted light amount cannot be distinguished, The influence due to the variation in the light transmittance of the fabric of the tape 2 can also be treated as an error.
[0006]
FIG. 10 is a schematic view showing an apparatus for detecting the coating thickness of a conventional adhesive disclosed in, for example, Japanese Patent Application Laid-Open No. 07-181018. In FIG. 10, 9 is an object to be applied, 10 is an adhesive, 11 is a light source that irradiates the application surface of the application object 9 to which the adhesive 10 is applied, near infrared rays, and 12 is in the optical path of reflected light on the application surface. It is a filter that transmits only near-infrared rays in an absorption wavelength band of a specific component contained in the adhesive 10.
[0007]
Reference numeral 13 denotes a lens that forms a two-dimensional image of the adhesive-coated surface on the image sensor 14 with light that has passed through the filter 12, 15 denotes a TV camera in which the image sensor 14 is incorporated, and 16 denotes an image supplied from the TV camera 15. It is an A / D converter that converts a signal into a digital signal. Reference numeral 17 denotes a computer that stores and calculates an image signal converted into a digital signal for each pixel, and adheres the image data to be measured based on the relationship of the coating thickness of the adhesive 10 to the reference image data obtained in advance. The application thickness of the agent 10 is calculated. Reference numeral 18 denotes a display that displays the calculated application thickness of the adhesive 10 for each pixel.
[0008]
Next, the operation will be described. Near infrared rays emitted from the light source 11 are reflected by the adhesive application surface of the application object 9 and reach the filter 12. The filter 12 transmits only near-infrared light in the absorption wavelength band of the specific component contained in the adhesive 10, but the near-infrared light transmitted through the filter 12 has a different degree of absorption depending on the coating thickness of the adhesive 10, The strength changes according to the thickness of the adhesive 10 applied.
[0009]
This intensity change is captured as image data in the computer 17 via the TV camera 15 and the A / D converter 16. A sample in which the coating thickness of the adhesive 10 is changed is manufactured in advance to obtain reference image data, and the coating thickness is obtained by dividing the weight of the adhesive 10 by the coating area assuming that the density of the adhesive 10 is constant. And the reference image data and the coating thickness of the adhesive 10 are associated with each other. Thereafter, the application thickness of the adhesive 10 is calculated by the computer 17 from the difference between the image data to be measured and the reference image data, and the calculation result is displayed by the display 18. The illustrated configuration is an effective means when the component that absorbs near infrared rays is uniformly dispersed in the adhesive 10, the irradiation intensity of the near infrared rays on the coated surface is uniform and constant, and the adhesive 10 does not flow. .
[0010]
[Problems to be solved by the invention]
By the way, in order to obtain a sufficient adhesive strength in the adhesion of an adherend using an adhesive that starts and cures by mixing two liquids (referred to as a two-liquid room-temperature curable adhesive), 2 It is necessary to control the weight ratio of the liquid and mix well. The method of spraying the two liquids simultaneously from different nozzles and applying them by mixing is the best method for obtaining sufficient mixing in terms of mixing. On the other hand, the weight of each of the two liquids to be sprayed cannot be measured. Conventionally, the management of the weight ratio of two liquid mixing (referred to as mixing failure) relies on the accuracy of the adhesive spray application mechanism, which is uncertain. It was a thing.
[0011]
In order to compensate for the uncertainty of mixing failure, it is necessary to set an excessive adhesive strength far exceeding the required adhesive strength. Since the bonding strength is proportional to the bonding area, the bonding area is set excessively. In addition, increasing the adhesion area also has an advantage that even if the mixing failure is deviated from a predetermined value in a partial portion and the adhesion strength is reduced, there is no problem as a whole.
[0012]
On the other hand, there is a method in which two liquids are put in separate syringes regardless of spray application and the application weight is measured each time the adhesive is applied one by one, followed by mixing with a stirring member. Therefore, it takes a long time and productivity is poor. In addition, since only an insufficient degree of mixing can be obtained, it is eventually necessary to increase the bonding area.
[0013]
Therefore, for example, the adhesion area larger than the magnet attachment area, such as the adhesion of the rotor of the motor to the magnet, cannot be obtained and the adhesion strength exceeding the required adhesion strength cannot be obtained. A curable adhesive cannot be used, and a one-component adhesive that is cured by heating (referred to as a one-component heat-curable adhesive) has been used.
[0014]
In the one-component heat curing type adhesive, in order to complete the curing polymerization reaction, it is necessary to raise the temperature of the adhesive to a predetermined temperature. For this purpose, it is necessary to raise the temperature of the adherend between which the adhesive is sandwiched. For example, a rotor of a large motor requires a lot of time to heat, resulting in poor productivity. In addition, a large heating furnace is required and the equipment cost is great. Compared with this, the two-component room-temperature curable adhesive does not require heating of the adherend and can shorten the adhesive curing time, so it is highly productive and does not require a heating furnace. Can be reduced.
[0015]
In order to introduce a two-component room temperature curable adhesive for the purpose of reducing the bonding cost, it is required to measure and manage the amount of adhesive applied during spraying between the spray gun and the application target.
[0016]
The adhesive being sprayed is, for example, in a state having fine particles of the adhesive having a speed in a conical region. Considering that this is irradiated with light and receiving light on the opposite side with a spray adhesive in between, the part without adhesive fine particles is transmitted as it is, and the part with fine particles is transmitted with reduced light intensity. Or light that is reflected and transmitted or blocked by the surface of the fine particles depending on the incident angle.
[0017]
When the spray application amount of the adhesive changes, for example, in a conical spray shape, the diameter of a circle that is a cut perpendicular to the axis changes, and the ratio of the adhesive fine particles in the circle changes. The change in the ratio of the adhesive fine particles in the circle is caused by the change in the size and number of the fine particles. The diameter and shape of the circle and the size and number of fine particles in the circle change sequentially during spraying.
[0018]
Changes in the diameter and shape of the circle and the size and number of particles in the circle are captured by the change in the amount of received light. First, the direction of the light applied to the spray adhesive is unidirectional and uniform. It is required to have strength. When light is irradiated from various directions, the light is reflected or interferes in various directions due to changes in the diameter of the circle and the size of the fine particles, and light outside the predetermined range is received. The received light cannot be associated. Even if the irradiation light is uneven or changes in intensity, the same unevenness or intensity change cannot be received as it is, and the irradiation light and the received light cannot be correlated. I can't.
[0019]
The first conventional example shown in Japanese Patent Laid-Open No. 61-225608 having the configuration shown in FIG. 9 is based on the premise that the magnetic body does not transmit light, and the received light intensity (signal level) with and without the magnetic body. By using the fact that there is a large difference in the amount of light, it is configured so that no special measures are taken with respect to the direction of illumination light, brightness unevenness, and the influence of disturbance light, which makes the amount of received light unstable. The quantity cannot be measured stably.
[0020]
Further, the second conventional example shown in Japanese Patent Application Laid-Open No. 07-181018 having the configuration shown in FIG. 10 is based on the premise that the component that absorbs near infrared rays is uniformly dispersed in the adhesive. It cannot be expected that the component that absorbs near infrared rays is uniformly dispersed in the fine particles of the spray adhesive. Moreover, since it becomes the structure which does not take a special countermeasure about the influence of a near infrared ray direction and an intensity | strength nonuniformity similarly to a 1st prior art example, the application quantity of a spraying adhesive agent cannot be measured stably.
[0021]
The present invention has been made to solve the above-described problems, and is an adhesive application device that can stably measure the amount of adhesive applied in the spray application of a two-component room temperature curable adhesive. The purpose is to obtain.
[0022]
[Means for Solving the Problems]
The adhesive coating apparatus according to the present invention is a spray gun that sprays two liquids of an adhesive that starts and cures by mixing two liquids simultaneously from different nozzles toward an application area of an object to be coated. A projector and a light receiver arranged so that the irradiated parallel laser light is received across the cone axis of the adhesive sprayed from the spray gun, the sensor signal value, and the adhesive application amount; Is stored immediately before the spraying of the adhesive into the space between the projector and the receiver within a range that can be approximated by the above conversion formula. The amount of adhesive applied is determined from the sensor signal value obtained by integrating the signal corresponding to the ratio of the laser light amount of the light receiver during spraying of the adhesive to the laser light amount of the light receiver based on the above conversion formula. Measure quantity Together, it is characterized in that the coating amount of the adhesive spray has an arithmetic unit for performing acceptability determination of whether they meet the above specifications.
[0023]
Further, the calculation means calculates the sensor signal value and the adhesive application amount during the spraying time collected by changing the setting value of the parameter for changing the spray state and the application amount of the adhesive, and the sensor signal value on the horizontal axis. Based on the third-order regression equation H and the first-order regression equation I, which are plotted in a two-dimensional coordinate system with the coating amount taken along the vertical axis, A linear regression equation J indicating the correlation with the differential coefficient of the third-order regression equation H in the sensor signal value for obtaining the coating amount of the control standard median value, and the correlation between the differential coefficient and the regression coefficient of the first-order regression equation I A linear regression equation K representing the above and the linear equation obtained by substituting the regression equation J into the regression equation K is used as the calibration equation L of the above conversion equation, and the sensor signal value and the adhesive collected at the time of calibration Substituting the applied amount into the calibration formula L, the conversion formula between the sensor signal value and the applied amount of adhesive is derived. The one in which the features.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a diagram for explaining an adhesive coating apparatus according to Embodiment 1 of the present invention, and is a diagram for explaining a parallel laser light irradiation method. In FIG. 1, 19 is a spray gun for spraying and applying an adhesive to an application object, 20 is an adhesive sprayed in a conical shape from the spray gun 19 to the application object 21, and 22 is spraying perpendicular to the cone axis. A parallel laser beam crossing the adhesive is irradiated from the projector 23 to the light receiver 24.
[0025]
FIG. 2 is a view of FIG. 1 as viewed from above, and shows a state in which parallel laser light 22 is not completely blocked by the spray adhesive 20 but is transmitted with a light amount reduced at a portion indicated by a broken line 25.
[0026]
Moreover, FIG. 3 is a figure explaining the means to measure the application quantity of a 2 liquid room temperature curing adhesive. In FIG. 3, two spray guns 19 are used to apply the two-component room temperature curable adhesive. The two spray guns 19 are distributed and tilted with respect to the vertical direction, and are arranged so that the two liquids coincide on the application surface of the application object 21. The two sets of laser projectors and receivers 23 and 24 are arranged so that the parallel laser beam 22 crosses perpendicularly to the cone axis of the spray adhesive. Reference numeral 27 denotes an A / D converter that converts an analog signal supplied from the light receiver 24 through the signal cable 26a into a digital signal. Reference numeral 28 denotes a digital signal supplied from the A / D converter 27 through the signal cable 26b for bonding. It is a computer as a calculation means which converts into the application quantity of an agent and outputs the pass / fail judgment of the application quantity.
[0027]
In the above configuration, since the laser is excellent in straightness at a single wavelength, the spray adhesive can be irradiated with light in one direction without unevenness. Moreover, since the energy density is high, it is easy to distinguish from ambient light. By irradiating the spray adhesive 20 with this laser as parallel light, the diameter and shape of the circle of the spray adhesive at the cut perpendicular to the conical axis and the variation in the size and number of the adhesive fine particles in the circle are received by the light receiver 24. It can be seen as a change in the amount of received light. The amount of received light during the spraying of the adhesive is indicated by a waveform as shown in FIG. 4, for example. The horizontal axis represents time T, and the vertical axis represents the digital signal value E supplied from the light receiver 24 of the sensor via the A / D converter 27.
[0028]
FIG. 5 is a diagram for explaining the relationship between the amount of adhesive applied and the integral value of the signal waveform shown in FIG. In FIG. 5, the horizontal axis represents the sensor signal value X obtained by integrating the waveform of FIG. 4, and the vertical axis represents the adhesive application amount Y. M0 represents the standard median value of the amount of adhesive applied, and E0 represents the sensor signal value corresponding thereto. When the adhesive application amount is changed and the sensor signal value at that time is taken, the linear regression equation Y = aX + b (a) is obtained for the sensor signal value X and the adhesive application amount Y in the adhesive in the same production lot. : A regression coefficient, b: a constant), a range R in which a correlation that can be approximated is obtained and a range that is not so are obtained. By applying the linear regression equation obtained in the range R as a conversion formula for calculating the coating amount Y from the sensor signal value X together with the standard value of the coating amount, the computer 28 stores the coating amount during the spraying of the adhesive. Measurement can be performed to determine whether or not the standard value is satisfied, and the result can be output.
[0029]
Embodiment 2. FIG.
The viscosity of the adhesive varies depending on the production lot and the storage period from the date of manufacture to the date of use. The viscosity is adjusted by the adhesive manufacturer, but it varies by 10 to 20% depending on the production lot. This is subject to changes due to the length of the storage period. Moreover, the viscosity of many adhesives does not become a constant value with respect to the flow rate. Adhesive manufacturers measure viscosity at a specified low speed and adjust the viscosity. However, if the production lot and storage period are different, the viscosity at the high speed is different even if the specified low speed viscosity is the same. It is impossible for an adhesive maker to adjust the viscosity at an arbitrary flow rate, and since it is generally controlled at a low speed such as the discharge speed of an adhesive in a widely used coating machine, the viscosity at high speed in spray coating is Equal to unmanaged.
[0030]
When the viscosity of the adhesive changes, the diameter and shape of the cut perpendicular to the cone axis of the sprayed adhesive by parallel laser light, and the size and number of the adhesive fine particles in the circle change greatly, and the regression coefficient of the conversion formula in FIG. a and constant b change. Therefore, it is necessary to derive and use a conversion formula (regression coefficient a or constant b) for each sealed container of the adhesive in consideration of the variation in the storage period. In order to derive the conversion formula, it is necessary to change the application amount Y of the adhesive and plot the corresponding sensor signal value X as shown in FIG.
[0031]
However, since the production of the product is stopped during this work, it is desired to minimize the work time. The viscosity does not always change so as to cause a problem in the accuracy of coating amount measurement for each sealed container of adhesive. If it is not confirmed whether the coating amount is in the vicinity of the standard median MO for each sealed container, the coating amount Y is adjusted (referred to as coating amount check operation), so that the conversion formula can be set only by this operation. Is desirable.
[0032]
FIG. 6 is a diagram for explaining a method for deriving a conversion formula in a coating amount check operation in the calibration of the conversion formula (first-order regression formula I) by the calculator 28 according to Embodiment 2 of the present invention. . In FIG. 6, the horizontal axis represents the sensor signal value X, and the vertical axis represents the amount of spray adhesive applied Y. FIG. 6 uses an adhesive of one sealed container (same viscosity) in this two-dimensional coordinate system. 3 is obtained by plotting the sensor signal value X during the spraying time collected by changing the set value of the parameter (spray pressure of the spray gun 19) for changing the coating amount and the coating amount Y of the adhesive, and obtaining by the least square approximation method. The following regression equation H (H = AX 3 + q, A is a regression coefficient, q is a constant), primary regression equation I (I = aX + b), 3 in the sensor signal value E0 to obtain the application amount M0 of the control standard median value shows the differential coefficient 3AE0 2 of the following regression equation H.
[0033]
The linear regression formula I is a conversion formula for converting the applied amount Y of the adhesive from the sensor signal value X to be obtained for each sealed container of the adhesive. The regression equation I is determined by obtaining a regression coefficient a and a constant b. As a result of examining the regression equation and the differential coefficient obtained in FIG. 6 by changing the viscosity of the adhesive for a large number of sealed container adhesives, the correlation shown in FIG. 7 and FIG.
[0034]
Figure 7 is a management standard median coating amount M0 and relationships derivative 3AE0 2 first-order regression equation J (: 3AE0 2 = cM0 + d, c is the regression coefficient, d is a constant) indicates a can be approximated by. Further, FIG. 8 is the derivative 3AE0 2 relationship is 1 the regression coefficients a regression formula I linear regression equation K (a = e (3AE0 2 ) + f, e are regression coefficients, f is a constant) that can be approximated by Show. When the regression equation J is substituted into the regression equation K, the linear equation L: a = e (cM0 + d) + f is obtained. From this, b = M0−aE0 is obtained. That is, in the application check operation, when the adhesive application amount M0 and the sensor signal value E0 are obtained, the regression coefficient a and the constant b of the conversion formula are obtained from this.
[0035]
When measuring the amount of spray adhesive applied during product production, add / subtract the total coating amount conversion error due to the error in deriving the above regression equations and differential coefficients to the coating amount calculated based on the conversion formula I. It is determined whether the obtained value satisfies the standard upper and lower limits of the coating amount.
[0036]
As described above, the conversion formula can be derived only by the application check work, and the time for calibrating the conversion formula can be reduced (included in the application check work time).
[0037]
【The invention's effect】
As described above, according to the present invention, the amount of light received and the amount of adhesive applied are related by a linear regression equation using parallel laser light. The application amount of the liquid can be measured, and there is an effect of reducing the bonding cost by applying a two-liquid room temperature curing adhesive.
[0038]
In addition, the conversion formula between the received light amount and the adhesive application amount can be calibrated with the received light amount and the adhesive application amount obtained in the application amount check operation performed for each sealed container of the adhesive, so the conversion formula calibration time There is an effect to reduce.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an adhesive coating apparatus according to Embodiment 1 of the present invention and for explaining a parallel laser beam irradiation method;
FIG. 2 is a view of FIG. 1 as viewed from above, and shows a state in which parallel laser light 22 is not completely blocked by the spray adhesive 20 but is transmitted with a light amount reduced at a portion indicated by a broken line 25;
FIG. 3 is a diagram for explaining means for measuring the coating amount of a two-component room temperature curing adhesive according to Embodiment 1 of the present invention.
FIG. 4 is a diagram for explaining a signal waveform supplied from a light receiver according to the first embodiment of the present invention.
FIG. 5 is a diagram for explaining the relationship between the amount of adhesive applied and the sensor signal value according to the first embodiment of the present invention.
FIG. 6 is a diagram for explaining a method for deriving a conversion formula in a coating amount check operation according to the second embodiment of the present invention.
7 is a diagram for explaining the present invention according to the second embodiment of the invention, the coating amount M0 and derivative 3AE0 2 relationship management standard median.
[8] relates to the second embodiment of the present invention, is a diagram illustrating the relationship between the regression coefficient a derivative 3AE0 2 regression formula I.
FIG. 9 is a diagram for explaining a conventional apparatus for detecting coating unevenness of a coating material.
FIG. 10 is a diagram for explaining a conventional apparatus for detecting the coating thickness of an adhesive.
[Explanation of symbols]
19 spray gun, 20 adhesive, 21 application object, 22 parallel laser beam, 23 projector, 24 light receiver, 25 attenuated laser beam, 26a, 26b signal cable, 27 A / D converter, 28 computer (calculation means) ).

Claims (1)

2液を混合することによって重合反応が開始して硬化する接着剤の2液を別々のノズルから同時に塗布対象物の被塗布領域に向けて噴霧するスプレーガンと、
照射される平行なレーザ光が上記スプレーガンから噴霧される接着剤の円錐軸に直交して横切り受光するように配置された投光器および受光器と、
センサ信号値と接着剤の塗布量との相関関係が1次の回帰式として与えられる換算式と塗布量の規格値とを記憶していて、上記換算式で近似できる範囲で、投受光器間の空間に接着剤が噴霧される直前の受光器のレーザ光量に対する接着剤噴霧中の受光器のレーザ光量の割合に応じた信号を積分して得られるセンサ信号値から上記換算式に基づいて接着剤の塗布量を求めるようにして塗布量の計測を行うと共に、接着剤噴霧中の塗布量が上記規格値を満たすか否かの合否判定を行う演算手段と
を備え
上記演算手段は、接着剤の噴霧状態と塗布量を変化させるパラメータの設定値を変化させて収集した噴霧時間中のセンサ信号値と接着剤の塗布量を、センサ信号値を横軸に、塗布量を縦軸にとった2次元座標系にプロットし、最小二乗近似法で求めた3次の回帰式Hと1次の回帰式Iに基づいて、管理規格中央値の塗布量と当該管理規格中央値の塗布量を得るセンサ信号値における3次の回帰式Hの微分係数との相関を示す1次の回帰式J、及びこの微分係数と1次の回帰式Iの回帰係数の相関を示す1次の回帰式Kを求め、回帰式Jを回帰式Kに代入して求めた1次式を上記換算式の校正式Lとして、校正をする際に収集したセンサ信号値と接着剤の塗布量を校正式Lに代入してセンサ信号値と接着剤の塗布量の換算式を導出する
ことを特徴とする接着剤塗布装置。
A spray gun that sprays two liquids of an adhesive that starts and cures by mixing the two liquids simultaneously from different nozzles toward the application area of the object to be coated;
A projector and a receiver arranged so that the irradiated parallel laser light is received across the cone axis of the adhesive sprayed from the spray gun;
A conversion formula in which the correlation between the sensor signal value and the adhesive application amount is given as a linear regression equation and a standard value of the application amount are stored. Bonding based on the above conversion formula from the sensor signal value obtained by integrating the signal corresponding to the ratio of the laser light quantity of the light receiver during spraying of the adhesive to the laser light quantity of the light receiver immediately before the adhesive is sprayed into the space And calculating the application amount so as to determine the application amount of the agent, and calculating means for determining whether or not the application amount during the spraying of the adhesive satisfies the standard value ,
The calculation means applies the sensor signal value and the adhesive application amount during the spraying time collected by changing the setting value of the parameter that changes the spray state and the application amount of the adhesive, with the sensor signal value as the horizontal axis. Based on the 3rd order regression equation H and the 1st order regression equation I obtained by plotting the amount in a two-dimensional coordinate system with the vertical axis, and using the least square approximation method, the application amount of the management standard and the management standard A linear regression equation J indicating the correlation with the differential coefficient of the cubic regression equation H in the sensor signal value for obtaining the median coating amount, and a correlation between the differential coefficient and the regression coefficient of the linear regression equation I are illustrated. The linear regression equation K is obtained, and the linear equation obtained by substituting the regression equation J into the regression equation K is used as the calibration equation L of the above conversion equation, and the sensor signal values collected during calibration and the application of the adhesive JP that by substituting the amount the calibration equation L derives a conversion formula of the coating weight of the sensor signal value and the adhesive Adhesive applying device to.
JP2001078627A 2001-03-19 2001-03-19 Adhesive applicator Expired - Fee Related JP3868751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078627A JP3868751B2 (en) 2001-03-19 2001-03-19 Adhesive applicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078627A JP3868751B2 (en) 2001-03-19 2001-03-19 Adhesive applicator

Publications (2)

Publication Number Publication Date
JP2002273283A JP2002273283A (en) 2002-09-24
JP3868751B2 true JP3868751B2 (en) 2007-01-17

Family

ID=18935219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078627A Expired - Fee Related JP3868751B2 (en) 2001-03-19 2001-03-19 Adhesive applicator

Country Status (1)

Country Link
JP (1) JP3868751B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104996A1 (en) * 2014-04-08 2015-10-08 Marco Systemanalyse Und Entwicklung Gmbh metering valve
KR102584260B1 (en) * 2022-02-10 2023-10-04 건국대학교 산학협력단 Apparatus and method for predicting coating layer thickness in slot-die coating process

Also Published As

Publication number Publication date
JP2002273283A (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JP4614001B2 (en) Three-dimensional quantitative method using transmitted X-ray
JP6075372B2 (en) Material property measuring device
EP3270120B1 (en) Measurement method, measurement device, and program
JP5702298B2 (en) Improved differential coat weight measurement by means of nuclear or X-ray gauge
CN104076050A (en) X-ray analyzing apparatus
JP3868751B2 (en) Adhesive applicator
CN113029949A (en) Medium attenuation coefficient measuring device
CN108037095A (en) A kind of measuring device and method of black matrix absolute transmission rate
JPH03252512A (en) Method and device for on-line measurement of oil film or coated film
CN116734760B (en) Device and method for simultaneously detecting curing depth and light transmittance of UV adhesive
CN105651188A (en) Detection method and detection device for detecting thickness of adhesive layer
KR940002506B1 (en) System for determining the base weight of cord reinforced tire fabric background of the invention
JP2007232472A (en) Basis weight measuring method of powder and basis weight measuring instrument of powder
JP3326960B2 (en) Paint film thickness measuring device
KR100418803B1 (en) A calibration device of pressure sensitive paint
US4986660A (en) Stock consistency transmitter
JP2964800B2 (en) Wet film thickness measuring device
CN209326587U (en) A kind of automatic calibration device using ray
JP3326961B2 (en) Paint film thickness measuring device
JP2950084B2 (en) Wet film thickness measuring device
JPH02309205A (en) Thickness inspector for adhesive tape
JPH0387605A (en) Method and device for measuring film thickness
Saha et al. Color measurement methods for medical displays
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JPH0933419A (en) Method and device for measuring semiturbid object

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees