JP3868689B2 - Expansion membrane antenna for space - Google Patents

Expansion membrane antenna for space Download PDF

Info

Publication number
JP3868689B2
JP3868689B2 JP2000008150A JP2000008150A JP3868689B2 JP 3868689 B2 JP3868689 B2 JP 3868689B2 JP 2000008150 A JP2000008150 A JP 2000008150A JP 2000008150 A JP2000008150 A JP 2000008150A JP 3868689 B2 JP3868689 B2 JP 3868689B2
Authority
JP
Japan
Prior art keywords
pair
synchronous
parallelogram
adjacent
truss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000008150A
Other languages
Japanese (ja)
Other versions
JP2001196843A (en
Inventor
一雄 谷沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000008150A priority Critical patent/JP3868689B2/en
Publication of JP2001196843A publication Critical patent/JP2001196843A/en
Application granted granted Critical
Publication of JP3868689B2 publication Critical patent/JP3868689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/081Inflatable antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1235Collapsible supports; Means for erecting a rigid antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/161Collapsible reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、宇宙用の膨張膜アンテナに関し、詳しくはその鏡面形成に関するものである。
【0002】
【従来の技術】
従来の、例えば大型の宇宙用の膨張膜アンテナは、打ち上げロケットへの収納を可能とするため、高い可撓性か或いは容易に折り畳み出来る性質が必要であった。このため、アンテナ鏡面は、金メッキされた金属細線で編まれた金属メッシュを用いた電波反射膜と、軌道上にて、これを展開させる展開構造で構成され、一般にメッシュ鏡面と称されるものが大部分であった。
しかし、上記の金属細線は、無限に細い線が形成できるわけでもなく、又、編み方にも制限があるため、精々数ギガヘルツまでの低い周波数でしか成り立たない鏡面しか形成できないものであった。
又、上記のメッシュ鏡面では、金メッキを使うため材料自身が高価となること、メッシュを広げるために複雑で高価な展開機構が必要となること等のため、経済的なものではなかった。
このため、将来予定されている、50GHz程度の周波数での観測、VSOP2(10m径、日本、2008年)やARISE(14m径、米国、2015年)等の計画では、より経済的で、より面精度の高い新しい構造が必要とされている。
【0003】
ところで、去る1996年に打ち上げられたSPARTAN207衛星で試験された膨張膜アンテナは、上記要求を満たす鏡面構造として開発されたものである(R.E.Freeland et al, "Validation ofa Unique Concept for a Low−cost, Lightweight Space−deployable Antenna Structure", IAF−93−I.1.204(1993))。この衛星の軌道上の膨張膜アンテナ鏡面の形状を図7に、鏡面の断面図を図8に示す。
【0004】
図7、8において、1はSPARTAN207の衛星本体、2は衛星本体1に取り付けられ、収納時にアンテナ鏡面を収納する収納箱、3は膨張ストラットであり、衛星本体2側からアンテナ鏡面を支持し、図示されていない膨張手段により、軌道上で膨張用の気体の挿入が可能となっている。
4は円環状支持体としての膨張トーラスである。円環状支持体は、後述する風船膜10の周縁外側に位置し当該風船膜10を展開させ、展開状態に支持するものである。この例の膨張トーラス4は、上記膨張ストラット3の先端部に取り付けられ、軌道上において、上記膨張手段によって円環状に膨張する。
5は張架索であり、一端が上記膨張トーラス4の内周部に取り付けられ、他端がアンテナ反射鏡の周縁端部を構成する縫合部6に結合されている。
この縫合部6は、電波入射側に配置される電波入射側膜としての、例えば誘電体薄膜よりなる透過膜7と、電波反射面を有する電波反射側膜としての、例えばプラスチック膜8とが重ねあわされた状態にて、互いの円周部即ち周縁部が縫合された部分である。尚、9は電波反射率を高めるために、上記プラスチック膜8の上面即ち凹面に塗布されたアルミコートである。
以下、本明細書においては、上記の電波入射側膜(透過膜7)と電波反射側膜(プラスチック膜8)との周縁が互いに縫合され、内部への気体の出し入れによって膨張収縮自在に形成された膨張体を風船膜10と称す。
【0005】
上記の構造において、電波反射膜として高価な金メッキメッシュの代わりに安価なアルミメッキした6μm厚のプラスチック膜を、又、複雑な展開機構の代わりに40g以下の窒素で上記膜を膨張させてパラボラ面即ち鏡面を作る方式を用いることで、滑らかで高精度な鏡面を安価に形成することが一応できた。
しかし、実際の試験においては次のような不都合が生じた。
即ち、本来ならば、軌道上において、図示されていない膨張手段により、膨張ストラット3及び膨張トーラス4が膨張され、膨張トーラス4が膨張した後、図示されていない膨張手段により、透過膜7とプラスチック膜8とで成る風船膜10の内部に窒素ガス等の気体が注入されて、風船膜10が膨張し、プラスチック膜8をパラボラ状に展開させること、正確には、風船膜10の膨張によって張架索5に作用する風船膜10の中心方向の力と、膨張トーラス4の膨張によって張架索5に作用する風船膜10の放射方向に働く力との釣り合いによって風船膜10が所定の形状に展開するようになっていた。
【0006】
しかし、この風船膜10の膨張・展開は失敗した。原因は、膨張展開の制御装置がなかったため、無秩序な展開が行われ、鏡面を膨張させる図示されていない圧力弁が故障した、と報告されている(R.E.Freeland et al, "Significance of the Inflatable Antenna Experiment Technology", AIAA−98−2104, SDM '98(1998))。
又、上記不都合の外に、膜材料の材質、厚さに対するバラツキや製造時の寸法のバラツキが直接的に風船膜10の展開形状に強く作用するため、高い鏡面精度が安定的に得られない点にも問題があった。
【0007】
【発明が解決しようとする課題】
将来の、安価で高精度な大型の宇宙用膨張膜アンテナの鏡面としては、膨張膜構造が基本的に適合するが、膨張展開制御の具体的方式、及び製作時の寸法等の各種バラツキに対する安定性の課題を解決しない限り、所望の鏡面を得る実現性は少ない。
本発明は、上記課題を解消し、安価で信頼性の高い大型で高精度な膨張膜アンテナ鏡面を備えた宇宙用膨張膜アンテナの提供を目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明は、表面が格子網で覆われ、内部に気体を注入することによりパラボラ状に膨張する風船膜と、上記風船膜の表面を覆った上記格子網の周縁外側に位置された平行四辺形リンクは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、対角線上で伸縮可能で、隣り合う各平行四辺形リンクの共有する上記縦部材に対称に配置された斜め部材から構成され、当該複数の平行四辺形リンクが、互いに側辺を共有して正多角形状となるよう環状に結合された構造を有する同期展開トラスと、上記同期展開トラスを構成する上記横部材の端部に軸穴を有し、かつ上記縦部材に取り付けられ、隣接する上記横部材の端部に相対して配置された歯車と、上記同期展開トラスの平行四辺形リンク複数個を、互いに隣接する上記横部材の上記歯車が双方に噛み合うように装着され、上記歯車を回転制御する制御モータとを具備したことを特徴とする。
【0009】
請求項2の発明は、表面が格子網で覆われ、内部に気体を注入することによりパラボラ状に膨張する風船膜と、上記風船膜の表面を覆った上記格子網の周縁外側に位置された平行四辺形リンクは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、対角線上に張架されたループワイヤから構成され、当該複数の平行四辺形リンクが、互いに側辺を共有して正多角形状となるよう環状に結合された構造を有する同期展開トラスと、上記同期展開トラスを構成する上記横部材の端部に軸穴を有し、かつ上記縦部材に取り付けられ、隣接する上記横部材の端部に相対して配置された歯車と、上記同期展開トラスの平行四辺形リンク複数個を、互いに隣接する上記横部材の上記歯車が双方に噛み合うように装着され、上記歯車を回転制御する回転ドラムとを具備したことを特徴とする。
【0010】
請求項3の発明は、表面が格子網で覆われ、内部に気体を注入することによりパラボラ状に膨張する風船膜と、上記風船膜の表面を覆った上記格子網の周縁外側に位置された平行四辺形リンクは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、対角線上で伸縮可能で、隣り合う各平行四辺形リンクの共有する上記縦部材に対称に配置された斜め部材から構成され、当該複数の平行四辺形リンクが、互いに側辺を共有して正多角形状となるよう環状に結合された構造を有する同期展開トラスと、上記同期展開トラスを構成する上記横部材の端部に軸穴を有し、かつ上記縦部材に取り付けられ、隣接する上記横部材の端部に相対して配置されたプーリーと、 上記同期展開トラスの平行四辺形リンク複数個を、互いに隣接する上記横部材の上記プーリーが同期ベルトにより結合されるように装着され、上記プーリーを回転制御する制御モータとを具備したことを特徴とする。
【0011】
請求項4の発明は、表面が格子網で覆われ、内部に気体を注入することによりパラボラ状に膨張する風船膜と、上記風船膜の表面を覆った上記格子網の周縁外側に位置された平行四辺形リンクは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、対角線上に張架されたループワイヤから構成され、当該複数の平行四辺形リンクが、互いに側辺を共有して正多角形状となるよう環状に結合された構造を有する同期展開トラスと、上記同期展開トラスを構成する上記横部材の端部に軸穴を有し、かつ上記縦部材に取り付けられ、隣接する上記横部材の端部に相対して配置されたプーリーと、上記同期展開トラスの平行四辺形リンク複数個を、互いに隣接する上記横部材の上記プーリーが同期ベルトにより結合されるように装着され、上記プーリーを回転制御する回転ドラムとを具備したことを特徴とする。
【0012】
請求項5の発明は、請求項1ないし請求項に記載の宇宙用膨張膜アンテナにおいて、上記風船膜は、当該風船膜の電波入射側膜と電波反射側膜との何れか一方又は双方の外表面に誘電体の細線で形成された格子網を接合したことを特徴とする。
【0014】
【発明の実施の形態】
実施の形態1.
実施の形態1は、風船膜10の周縁外側に位置し、当該風船膜10を環状に取り巻いた状態において、張架索5を介して支持する円環状支持体の実施形態を示すもので、円環状支持体は、構成部材が一様で、制御された速度で展開し、全体形状が相似的に変形し且つ展開する同期展開トラス構造としたものである。
以下、この同期展開トラス構造を図1(a)乃至図1(c)に基づいて説明する。図1はアンテナ鏡面の構造図で、(a)は電波軸から見た鏡面平面図、(b)は風船膜10の側面図、(c)は同期展開トラスの構造を示す側面図である。尚、従来技術として説明した図7及び図8と同一の符号は実質的に同一若しくは相応する内容のものであるから、その説明を省略する。
【0015】
円環状支持体としての同期展開トラス12は、図1(a)に示すように、鏡面最外周即ち風船膜10の周縁外側に位置し、複数個の平行四辺形リンクが、互いにその側辺を共有して正多角形状となるよう環状に結合された構造となっている。
図2は、図1に示された同期展開トラス12の基本周期部分の構造、及び動作を詳細に示すもので、図2(a)はロケットに収納された収納時の形状、図2(b)は展開途中の形状、図2(c)は展開完了後の形状を示す。
【0016】
図2(a)乃至図2(c)において、13は、上記の各平行四辺形リンクを構成する横方向に平行な上下一対の横側辺を構成する横部材であり、13aはその上方の横側辺としての横部材、13bは下方の横側辺としての横部材を示す。
又、14は、同じく、記各平行四辺形リンクを構成する縦方向に平行な左右一対の縦側辺を構成する縦部材であり、14aは図において相対的に左側に位置する縦側辺としての縦部材、14bはその右側に位置する縦側辺としての縦部材を示す。
この隣合う各平行四辺形リンクは、縦側辺としての縦部材14を互いに共有して環状に直列に結合されている。即ち、図示の形態1では、隣合う一方の横部材13aと他方の横部材13bとが縦部材14を共有する形でピン結合されている。
【0017】
又、15は、各平行四辺形リンクの対角線上を結ぶように走る伸縮可能な斜め部材としての伸縮斜材であり、図2(b)に示すように、一方の縦部材14aの上端側と、隣接する他方の縦部材14bの下端側とに、当該斜め部材15の両部材端がピン結合されている。この場合、隣合う平行四辺形リンクの各伸縮斜材15は共有する縦部材14に対し対称となるように配置される。このように、歯車端子16の取り付け位置を、交互に配置せず、上段或いは下段に揃えることで、部材間の干渉を防ぐようにしている。
尚、図2(b)において、図中の角度θは、展開時における縦部材14に対する横部材13の回転角を示す。
【0018】
図3は、図2に示された横部材13と縦部材14との結合部の詳細を示す分解図である。
図中の符号16は端部に噛み合い用の歯を有する歯車端子で、この歯車端子16は軸穴を有し、横部材13の端部に取り付けられている。
17は、この横部材13の他端に取り付けられたピン端子、18は縦部材14の端部に取り付けられ、隣接する上記横部材13の歯車端子16同士が互いに噛み合うよう介在する縦部材端子である。この縦部材端子18は隣合う2つの歯車端子16,16を軸受する軸受穴を有している。
19、19は、上記2つの歯車端子16、16の軸穴に各々挿通されて、上記縦部材端子18の軸受穴を通り、横部材13と縦部材14とをピン結合する歯車軸としてのピンである。
20は、上記のピン19、19の先端部に取り付けられるCクリップ、21は一個所以上にて上記クリップ20の代わりに取り付けられると共に、上記ピン19に出力軸が連結され、ハウシング部を介して上記縦部材端子18に取り付けられた駆動系を構成する展開制御手段としての制御モータである。
【0019】
図4は、図2に示された伸縮可能な斜め部材としての伸縮斜材15の構成を示す断面図である。
図中の符号22は外パイプ、23は上記外パイプ22の端部に取り付けられ、縦部材14に図示されていない縦部材端子18と同様な端子を通じて結合されるピン端子、24は上記外パイプ22の内側を習動する内パイプ、25は上記内パイプ24の端部に取り付けられ、縦部材14とピン結合されるピン端子、26は上記内パイプ24の他端に取り付けられたバネ端子、27は上記ピン結合子23と、上記バネ端子26との間に取り付けられ、常に両者を近づける力を発生させる付勢手段としてのコイルバネである。
【0020】
上記のように、この実施の形態1の同期展開トラス構造は、伸縮可能な斜め部材15を有し、下部、或いは上部横部材13の端部に歯車として歯車端子16、16が装着された平行四辺形リンク複数個を、互いに隣接する横部材13,13の歯車即ち歯車端子16、16が噛み合うように、環状に直列に結合したトラス構造と、上記歯車(歯車端子16)を直接的或いは間接的に回転制御する駆動系としての制御モータ21とを備えた構造としたものである。
以下、図1乃至図4において、この同期展開トラス構造の動作を説明する。
先ず、図示されていない膨張装置、或いは展開機構等によって、衛星本体2と膨張膜アンテナ鏡面とを電気的及び機械的に結合する膨張ストラット3、或いは、この膨張ストラット3が果たす機能に相応する相当品を膨張、或いは展開させる。
展開させた後、例えば地上からの指令等により、図示していない解放機構等の駆動系(駆動手段)によって、図2(a)に示されるように、ジグザグ状に収納された平行四辺形リンクを、図2(b)に示されるように、伸縮斜材15に内臓されたコイルバネ27の収縮力により伸縮斜材15の長さを短縮させることで、、平行四辺形のリンク形状が長方形に近づくように展開する。
【0021】
展開の際、横部材13は縦部材14に対して零度から90度まで回転するが、この回転角θは歯車端子16により、隣接する横部材13に伝えられるため、全ての平行四辺形リンクは同じ角度だけ同時的に回転し、同一の変形形状となる。又、この場合、上記横部材13の回転速度は、制御モータ21により所望の或いは所定の速度に制御することができる。
【0022】
このように、上記実施の形態1に示す同期展開トラス12は、環状に連結された各平行四辺形リンクが上記のように同期して、同一形状にて、一斉に同心円上状に展開して行くため、環状に廻る一連の平行四辺形リンクの環内に支持された風船膜10は張架索5を通じて均一に広げられて行く。
即ち、円周形状で設計された同期展開トラス12では、展開途中の円の直径は、ほぼ展開後の直径のSIN[θ]倍となるため、この回転角θの値と変化率(速度)とを制御することにより、風船膜10を所定の速度で、且つ均一に広げることができる。
そして、同期展開トラス12が完全に展開(回転角θ=90度)した後、図示されていない気体挿入手段としての例えば空気挿入筒により、風船膜10の内部に気体例えば空気や窒素等が挿入されると、図1(b)に示すように風船膜10がパラボラ状に膨張する。
【0023】
この実施の形態1では、図1(b)に示すように、風船膜10の電波入射側膜としての透過膜7と電波反射側膜としての誘導体膜8の双方の外表面に誘電体の細線、例えば伸びケーブルで形成された三角形状の格子網を接合してある。
風船膜10の外側の表面に取り付けられるこの格子網11は、風船膜10の電波入射側膜と電波反射側膜との何れか一方に設けてもよい。又、格子は三角形状に限らず、適当な形状でもよい。
このように、風船膜10の表面を格子網11で覆うことにより、所定の気圧下で、所定の面精度が達成される。
【0024】
例えば、風船膜10の平均的曲率半径をρ、膜張力をN、及び格子網11の平均三角格子の外接円の半径をR、ケーブルの張力をTとすると、得られる風船膜10の最適面精度δは[式1]にて与えられる。
[式1]
δ=0.2×[R2/(2ρ)]×[T/(N×L)]
メッシュ展開鏡面で得られる最適面精度δは[式2]にて与えられることを考慮すれば、風船膜の最適面精度は通常の設計範囲(1>>[T/(N×L)])にて、メッシュ展開鏡面で得られる最適面精度よりも、はるかに良い値が得られることが分かる。
[式2]
δ>0.2×[R2/(2ρ)]
又、風船膜10の材料にバラツキがある場合でも、格子網11があるため風船膜10の形状は局所的な変形に抑えられるため、大幅な面精度劣化を起こす可能性が少ない。
【0025】
この実施の形態1によれば、アンテナ展開時、同期展開トラス12が、収縮力を有す伸縮斜材15を対角線上に配置した平行四辺形リンクで構成され、各平行四辺形リンクが歯車端子16で同期して展開し、制御モータ21にて所望の速度で展開する構成のため、風船膜10は放射状に、一様にゆっくりと広がることができ、展開の信頼性が高められる。即ち、同期展開トラス12が歯車端子16により完全に同期され、且つ制御モータ21により展開速度が所望の値に制御されるので、膨張のバラツキによる材料破損が避けられ、風船膜10は信頼性が高く安定した膨張が行えるのである。
又、風船膜10の表面は誘電体のケーブルで形成された格子網11に覆われているため、膜の材質や寸法のバラツキによる影響の少ない鏡面を備えた宇宙用膨張膜アンテナを提供することができる。
【0026】
又、上記実施の形態1では、格子網11は透過膜7及びプラスチック膜8双方の外表面に取り付けたが、プラスチック膜8の表面だけでも同一の効果が得られる。Ku〜Ka帯等高い周波数帯で鏡面を使う場合で、僅かでも電波のブロッキングが問題となる場合に有効である。尚、この場合には網形状の対称性が崩れるため、正確な詳細釣り合い計算と製造法が必要となる。
又、格子網11の網目形状としては三角形のものを用いたが、四角形、或いは六角形でも、定性的には同等な効果を得ることができる。製造の容易性、或いは特殊付属物とのインターフェースが必要な時に有効である。即ち、網目形状が三角形の格子網を四角形、或いは六角形の格子網で置き換えることで、安価に製造できたり、特殊なインタフェースに適合させることができる。
又、風船膜10の外側に例えば誘電体ケーブで形成した三角形状の格子網を取り付けることで、材料或いは製造時のバラツキに強い高精度鏡面が得られる。
又、同期展開トラス12の歯車端子16の位置としては、伸縮斜材15が取り付いていない縦部材14の端部に置いたが、縦部材14の上端、或いは下端に揃えても、定性的には同等な効果を得ることができる。歯車端子16と他部材との干渉を避けねばならぬときに有効である。
【0027】
実施の形態2.
実施の形態2は、上記実施の形態1の同期展開トラス12の構造において、歯車即ち歯車端子16の代わりにプーリーを用いて展開の同期を実現させたものである。これを図5に基づいて説明する。図5は、隣接する横部材13のプーリー28,28同士が出会わされた状態(歯車端子16、16同士が互いに噛み合った状態に相応)を示す側面図であり、両プーリー28,28を支承即ち軸受する軸受穴を有する縦部材端子18は省略してある。
図5において、28は歯車端子16の代わりに横部材13に取り付けられたプーリーであり、29は出会わされた状態即ち隣接するプーリー28とプーリー28とを結合するために掛けまわされた同期ベルトである。
【0028】
次にこの同期展開トラス構造の動作について説明する。同期ベルト29は、互いに隣接する平行四辺形のプーリー28とプーリー28との間を8の字を描くように掛けまわされているため、上記実施の形態1の歯車端子16の場合と同様に、横部材13の回転角θを隣接する横部材13に伝える。
上記実施の形態1では、隣接する歯車端子16、16間に温度差、或いは極端な温度変化が生じると、歯車端子16同士が噛み合ってしまい、接触抵抗が増大して展開角の伝達が効率的に行われなくなる虞もあり得るが、この実施の形態2では同期ベルト29を用いているので、この同期ベルト29に適度の伸縮性を与えておくことにより、完全な同期は多少犠牲になるものの、横部材13の歯車と横部材13の歯車と間の接触がないため、上記の接触抵抗の増大がない形で、展開角の伝達が可能となる。従って、この実施の形態2は、熱環境の厳しい軌道上で用いる場合には極めて有効である。
【0029】
実施の形態3.
実施の形態3は、上記実施の形態1の同期展開トラス構造において、伸縮斜材15及び制御モータ21の代わりにワイヤ及び回転ドラムを用いて展開の駆動力と展開速度制御を実現したものである。これを図6(a)乃至図6(c)に基づいて説明する。図6(a)は収納時形状、図6(b)は展開途中形状、図6(c)は展開後形状を示す図で、実施の形態1における図2(a)乃至図2(c)に相応する。
【0030】
図6(a)乃至図6(c)において、図中の符号30はループワイヤである。この一本のループワイヤ30は、その一端が後述の回転ドラム32側に固定され、その他端側が同期展開トラス12側に延在している。
同期展開トラス12側に延在するループワイヤ30の中間部は、同期展開トラス12を構成する各平行四辺形リンクの対角線の位置、即ち斜め部材15の位置に延在するように配設されて、同期展開トラス12の周方向に一巡している。
31は伝達プーリーであり、各平行四辺形リンクの縦部材14に取り付けられ、上記ループワイヤ30の方向を変換し、隣接する平行四辺形リンクに移行させる。
回転ドラム32は、ループワイヤ30を巻き取ったり巻解いたりするドラムで、同期展開トラス12の適所に装備されている。
【0031】
次にこの実施の形態3の動作について説明する。
先ず、収納時、図示されていない鏡面保持機構が解放されると、回転ドラム32が回転してループワイヤ30を巻き取り始める。
ループワイヤ30が巻き取られて行くと、ループワイヤ30は、伝達プーリー31によって方向転換されながら、各平行四辺形リンクの対角線上に配回されているため、対角線の短縮に応じて、同期展開トラス12を構成する各平行四辺形リンクは、図6(b)に示すように、横部材13が回転し、長方形状に向かって変形して行く。
この横部材13の回転角θは、上記実施の形態1の場合では歯車端子16に、上記実施の形態2の場合では同期ベルト29によって、同期が達成され、展開即ち回転速度は回転ドラム32の回転速度の制御により達成される。
この実施の形態3では、実施の形態1或いは2で使用される、複雑な伸縮機構部品を有する伸縮部材15を用いること無く、適宜配設された伝達プーリー31に掛けまわされ、各平行四辺形リンクの対角線上を延在して行く一本のループワイヤ30を回転ドラムで巻き取る構成であるため、軽量で安価な同期展開トラスが得られる。
【0032】
【発明の効果】
請求項1の発明によれば、複数個の平行四辺形リンクのそれぞれは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、各平行四辺形リンクの対角線上を結ぶように走る伸縮可能な斜め部材とを有し、横部材の端部に歯車を装着した平行四辺形リンクを、隣接する横部材の歯車が噛み合うように、環状に直列に結合したトラス構造と、上記歯車を回転させる駆動系とを備えた同期展開トラス構造としたので、膨張時の形状制御が可能な鏡面を備えた、すなわち、膨張展開制御が可能なアンテナ鏡面を備えた宇宙用膨張アンテナを提供できる。
【0033】
請求項2の発明によれば、複数個の平行四辺形リンクのそれぞれは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、各平行四辺形リンクの対角線上に張架されたループワイヤとを有し、横部材の端部に歯車が装着された平行四辺形リンクを、互いに隣接する横部材の歯車が噛み合うように、環状に直列に結合したトラス構造と、上記歯車を回転させる駆動系とを備えた同期展開トラス構造としたので、膨張展開制御が可能なアンテナ鏡面を得た備えた宇宙用膨張アンテナを提供できる。
【0034】
請求項3の発明によれば、複数個の平行四辺形リンクのそれぞれは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、各平行四辺形リンクの対角線上を結ぶように走る伸縮可能な斜め部材とを有し、横部材の端部にプーリーを装着した平行四辺形リンク複数個を、互いに隣接する横部材のプーリー間をベルトで結合したトラス構造と、上記プーリーを回転させる駆動系とを備えた同期展開トラス構造としたので、膨張展開制御が可能なアンテナ鏡面を備えた宇宙用膨張アンテナを提供できる。
又、歯車端子に代えて、プーリーと同期ベルトとに置き換えることで、厳しい熱変形下でも、低い抵抗のままで展開同期性を確保することができる。
【0035】
請求項4の発明によれば、複数個の平行四辺形リンクのそれぞれは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、各平行四辺形リンクの対角線上に張架されたループワイヤとを有し、横部材の端部にプーリーが装着された平行四辺形リンク複数個を、互いに隣接する横部材のプーリー間をベルトで結合したトラス構造と、上記プーリーを回転させる駆動系とを備えた同期展開トラス構造としたので、膨張展開制御が可能なアンテナ鏡面を備えた宇宙用膨張アンテナを提供できる。
又、歯車端子に代えて、プーリーと同期ベルトとに置き換えることで、厳しい熱変形下でも、低い抵抗のままで展開同期性を確保することができる
【0036】
請求項5の発明によれば、風船膜の外側表面に格子網を取り付けたので、材料・寸法のバラツキに対しても鏡面劣化の少ない高精度なアンテナ鏡面を備えた宇宙用膨張アンテナを提供できる。
【図面の簡単な説明】
【図1】 実施の形態1のアンテナ鏡面の構造図で、(a)は電波軸から見た鏡面平面図、(b)は風船膜10の側面図、(c)は同期展開トラスの構造を示す側面図である。
【図2】 実施の形態1の同期展開トラスの基本周期部分の構造及び動作を詳細に示す図で、(a)はロケットに収納された収納時の形状を示す図、(b)は展開途中の形状を示す図、(c)は展開完了後の形状を示す図である。
【図3】 実施の形態1の横部材と縦部材との結合部の詳細を示す分解図である。
【図4】 実施の形態1の斜め部材としての伸縮斜材の構成を示す断面図である。
【図5】 実施の形態2の互いに隣接する横部材のプーリー同士が出会わされた状態を示す側面図である。
【図6】 実施の形態3の同期展開トラス構造を示す図で、(a)は収納時形状を示す図、(b)は展開途中形状を示す図、(c)は展開後形状を示す図である。
【図7】 従来の宇宙用膨張アンテナの斜視図である。
【図8】 図7の鏡面の断面図である。
【符号の説明】
1 衛星、2 収納箱、3 膨張ストラット、4 膨張トーラス、5 張架索、6 縫合部、7 透過膜、8 プラスチック膜、9 アルミコート、10 風船膜、11 格子網、12 同期展開トラス(円環状支持体)、13 横部材、14 縦部材、15 伸縮斜材、16 歯車端子(歯車)、18 縦部材端子、21 制御モータ(駆動系・展開制御手段)、22 外パイプ、24 内パイプ、28 プーリー、29 同期ベルト、30 ループワイヤ、31 伝達プーリー、32 回転ドラム(駆動系・展開制御手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an expansion membrane antenna for space use, and more particularly to formation of a mirror surface thereof.
[0002]
[Prior art]
A conventional expansion membrane antenna for a large space, for example, has to be highly flexible or easily foldable in order to be housed in a launch vehicle. For this reason, the antenna mirror surface is composed of a radio wave reflection film using a metal mesh knitted with gold-plated fine metal wires and a deployment structure that expands it on a track, and what is commonly called a mesh mirror surface Mostly.
However, the above-mentioned fine metal wires cannot be formed infinitely thin lines, and there is a limitation in the knitting method, so that only a mirror surface that can be formed only at a low frequency up to several gigahertz can be formed.
Further, the mesh mirror surface described above is not economical because the material itself is expensive because gold plating is used, and a complicated and expensive deployment mechanism is required to widen the mesh.
For this reason, future plans such as observation at a frequency of about 50 GHz, VSOP2 (10 m diameter, Japan, 2008) and ARISE (14 m diameter, US, 2015) are more economical and more New structures with high accuracy are needed.
[0003]
By the way, the expansion membrane antenna tested by the SPATRAN 207 satellite launched in 1996 was developed as a mirror structure satisfying the above requirements (RE Freeland et al, “Validation of Unique Concept for a Low”). -Cost, Lightweight Space-deployable Antenna Structure ", IAF-93-I.1.204 (1993)). The shape of the mirror surface of the expansion membrane antenna in the orbit of this satellite is shown in FIG. 7, and the cross-sectional view of the mirror surface is shown in FIG.
[0004]
7 and 8, 1 is a satellite body of SPATRAN 207, 2 is a storage box that is attached to the satellite body 1 and stores the antenna mirror surface when stored, 3 is an expansion strut, and supports the antenna mirror surface from the satellite body 2 side. By means of expansion means not shown, expansion gas can be inserted on the track.
Reference numeral 4 denotes an expansion torus as an annular support. The annular support is positioned outside the peripheral edge of the balloon membrane 10 to be described later, expands the balloon membrane 10 and supports it in the expanded state. The expansion torus 4 of this example is attached to the distal end portion of the expansion strut 3 and expands in an annular shape by the expansion means on the track.
Reference numeral 5 denotes a tension cable, one end of which is attached to the inner peripheral portion of the expansion torus 4 and the other end is connected to a stitching portion 6 constituting the peripheral end of the antenna reflector.
The stitching portion 6 includes a transmission film 7 made of, for example, a dielectric thin film as a radio wave incidence side film disposed on the radio wave incidence side, and a plastic film 8 as a radio wave reflection side film having a radio wave reflection surface. In the state of being crushed, each of the circumferential portions, that is, the peripheral portions are stitched portions. Reference numeral 9 denotes an aluminum coat applied to the upper surface, that is, the concave surface of the plastic film 8 in order to increase the radio wave reflectance.
Hereinafter, in the present specification, the peripheral edges of the radio wave incident side film (transmission film 7) and the radio wave reflection side film (plastic film 8) are stitched together, and are formed so as to be freely expandable and contractible by taking gas into and out of the inside. The expanded body is referred to as a balloon membrane 10.
[0005]
In the above structure, an inexpensive aluminum-plated plastic film having a thickness of 6 μm is used as a radio wave reflecting film instead of an expensive gold-plated mesh, and the film is expanded by using 40 g or less of nitrogen instead of a complicated deployment mechanism. In other words, by using a method for creating a mirror surface, it was possible to form a smooth and highly accurate mirror surface at a low cost.
However, the following inconvenience occurred in the actual test.
That is, normally, on the track, the expansion strut 3 and the expansion torus 4 are expanded by expansion means (not shown). After the expansion torus 4 is expanded, the permeable membrane 7 and the plastic are expanded by expansion means (not shown). A gas such as nitrogen gas is injected into the balloon film 10 formed of the film 8 to expand the balloon film 10 and expand the plastic film 8 in a parabolic shape. The balloon membrane 10 has a predetermined shape by a balance between the force in the center direction of the balloon membrane 10 acting on the cable 5 and the force acting in the radial direction of the balloon membrane 10 acting on the tension cable 5 due to the expansion of the expansion torus 4. It was supposed to expand.
[0006]
However, the expansion / deployment of the balloon membrane 10 failed. The cause is reported to be that there was no control device for inflating and deploying, so that disordered deployment occurred and a pressure valve (not shown) that inflates the mirror surface failed (RE Freeland et al, "Significance of the Inflatable Antenna Experiment Technology ", AIAA-98-2104, SDM '98 (1998)).
In addition to the above disadvantages, variations in the material and thickness of the membrane material and variations in dimensions at the time of manufacture directly affect the developed shape of the balloon membrane 10, so that high mirror surface accuracy cannot be stably obtained. There was also a problem.
[0007]
[Problems to be solved by the invention]
As the mirror surface of a future, inexpensive, high-precision large-scale space expansion membrane antenna, the expansion membrane structure is basically compatible, but it is stable against various variations such as the specific method of expansion and deployment control and dimensions during manufacture. Unless the problem of sexuality is solved, there is little possibility of obtaining a desired mirror surface.
An object of the present invention is to solve the above-mentioned problems and to provide an expansion membrane antenna for space provided with a large-sized and highly accurate expansion membrane antenna mirror surface that is inexpensive and highly reliable.
[0008]
[Means for Solving the Problems]
  The invention of claim 1The surface is covered with a lattice network, and it expands in a parabolic shape by injecting gas into it.With balloon membraneThe parallelogram links positioned on the outer periphery of the lattice net covering the surface of the balloon membrane are composed of a lateral member forming a pair of upper and lower lateral sides parallel to the lateral direction, and a pair of left and right parallel to the longitudinal direction. A plurality of parallelogram links, each of which is composed of a vertical member that constitutes the vertical side of each other, and an oblique member that can be extended and contracted on a diagonal line and that is symmetrically disposed on the vertical member shared by each adjacent parallelogram link. Has a structure in which the sides are shared with each other in a ring shape so as to form a regular polygon, and has a shaft hole at the end of the lateral member constituting the synchronous deployment truss, and A gear mounted on a vertical member and disposed opposite to an end of the adjacent transverse member and a plurality of parallelogram links of the synchronously deploying truss are engaged with each other by the gear of the adjacent lateral member. And turn the gear above And a control motor for controllingIt is characterized by that.
[0009]
  The invention of claim 2A balloon membrane whose surface is covered with a lattice network and expands in a parabolic manner by injecting gas inside, and a parallelogram link positioned outside the periphery of the lattice network covering the surface of the balloon membrane is A plurality of horizontal members that constitute a pair of upper and lower lateral sides parallel to the direction, a longitudinal member that constitutes a pair of left and right vertical sides parallel to the longitudinal direction, and loop wires stretched diagonally. The parallel quadrilateral links have a structure in which the sides are shared with each other in a ring shape so as to form a regular polygon, and a shaft hole is formed at the end of the transverse member constituting the synchronous deployment truss. A plurality of parallel quadrilateral links of the synchronous deployment truss, and a gear mounted on the vertical member and disposed relative to an end of the adjacent horizontal member. Installed so that gears mesh with each other Is, and a rotary drum rotating controlling the gearIt is characterized by that.
[0010]
  The invention of claim 3A balloon membrane whose surface is covered with a lattice network and expands in a parabolic manner by injecting gas into the inside, and a parallelogram link positioned outside the periphery of the lattice network covering the surface of the balloon membrane A horizontal member that forms a pair of upper and lower horizontal sides parallel to the direction, a vertical member that forms a pair of left and right vertical sides parallel to the vertical direction, and each of the adjacent parallelogram links that can be expanded and contracted diagonally. A synchronously deployed truss comprising a diagonal member arranged symmetrically with the longitudinal member to be shared, and having a structure in which the plurality of parallelogram links are annularly coupled so as to share a side and to form a regular polygon. And a pulley having an axial hole at the end of the transverse member constituting the synchronous deployment truss and attached to the longitudinal member and disposed opposite to the end of the adjacent transverse member;  A plurality of parallelogram links of the synchronous deployment truss are mounted such that the pulleys of the lateral members adjacent to each other are coupled by a synchronous belt, and a control motor that controls the rotation of the pulleys is provided.It is characterized by that.
[0011]
  The invention of claim 4A balloon membrane whose surface is covered with a lattice network and expands in a parabolic manner by injecting gas into the inside, and a parallelogram link positioned outside the periphery of the lattice network covering the surface of the balloon membrane A plurality of horizontal members constituting a pair of upper and lower lateral sides parallel to the direction, a longitudinal member constituting a pair of left and right vertical sides parallel to the longitudinal direction, and loop wires stretched diagonally. The parallel quadrilateral link has a structure in which the sides are shared with each other in a ring shape so as to form a regular polygon, and a shaft hole is formed at the end of the transverse member constituting the synchronous deployment truss. A pulley attached to the longitudinal member and disposed opposite to the end of the adjacent transverse member, and a plurality of parallel quadrilateral links of the synchronous deployment truss. Pulley is synchronized belt It mounted as engaged, and and a rotary drum rotating controlling the pulleyIt is characterized by that.
[0012]
  The invention of claim 5 is the invention of claim 1.OrClaim4In the expansion membrane antenna for space described inThe balloon film is formed by bonding a lattice network formed of thin dielectric wires to the outer surface of one or both of the radio wave incident side film and the radio wave reflection side film of the balloon film.It is characterized by that.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 shows an embodiment of an annular support that is located outside the peripheral edge of the balloon membrane 10 and that supports the balloon membrane 10 via the tension cable 5 in a state of surrounding the balloon membrane 10 in an annular shape. The annular support has a synchronous deployment truss structure in which the constituent members are uniform, expand at a controlled speed, and the overall shape deforms and expands similarly.
Hereinafter, this synchronous deployment truss structure will be described with reference to FIGS. 1 (a) to 1 (c). 1A and 1B are structural views of an antenna mirror surface, where FIG. 1A is a plan view of a mirror surface viewed from a radio wave axis, FIG. 1B is a side view of a balloon membrane 10, and FIG. Note that the same reference numerals as those in FIGS. 7 and 8 described as the prior art have substantially the same or corresponding contents, and the description thereof is omitted.
[0015]
As shown in FIG. 1 (a), the synchronous deployment truss 12 as an annular support is located on the outermost peripheral surface of the mirror surface, that is, on the outer periphery of the balloon membrane 10, and a plurality of parallelogram links have their sides aligned with each other. It is a structure that is connected in an annular shape so as to share a regular polygonal shape.
FIG. 2 shows in detail the structure and operation of the basic periodic portion of the synchronous deployment truss 12 shown in FIG. 1, and FIG. 2 (a) shows the shape when housed in the rocket, FIG. 2 (b). ) Shows the shape during development, and FIG. 2C shows the shape after completion of development.
[0016]
2 (a) to 2 (c), 13 is a transverse member constituting a pair of upper and lower lateral sides parallel to the transverse direction constituting each of the parallelogram links, and 13a is an upper part thereof. A horizontal member 13b as a horizontal side, and a horizontal member 13b as a lower horizontal side.
Similarly, 14 is a longitudinal member constituting a pair of left and right longitudinal sides parallel to the longitudinal direction constituting each parallelogram link, and 14a is a longitudinal side located relatively on the left side in the figure. 14b shows a vertical member as a vertical side located on the right side.
The adjacent parallelogram links are connected in series in a ring shape by sharing the vertical members 14 as the vertical sides. That is, in the illustrated embodiment 1, the adjacent one of the horizontal members 13a and the other horizontal member 13b are pin-coupled so as to share the vertical member 14.
[0017]
Reference numeral 15 denotes a stretchable oblique member as a stretchable oblique member that runs so as to connect diagonal lines of each parallelogram link, and as shown in FIG. 2 (b), the upper end side of one longitudinal member 14a The both ends of the diagonal member 15 are pin-coupled to the lower end side of the other adjacent vertical member 14b. In this case, the stretchable diagonal members 15 of the adjacent parallelogram links are arranged so as to be symmetric with respect to the common longitudinal member 14. In this way, the attachment positions of the gear terminals 16 are not arranged alternately, but are aligned at the upper stage or the lower stage, thereby preventing interference between members.
In FIG. 2B, the angle θ in the figure indicates the rotation angle of the transverse member 13 with respect to the longitudinal member 14 during deployment.
[0018]
FIG. 3 is an exploded view showing details of a connecting portion between the horizontal member 13 and the vertical member 14 shown in FIG.
Reference numeral 16 in the drawing is a gear terminal having meshing teeth at its end, and this gear terminal 16 has a shaft hole and is attached to the end of the lateral member 13.
17 is a pin terminal attached to the other end of the horizontal member 13, 18 is a vertical member terminal which is attached to the end of the vertical member 14 and is interposed so that the gear terminals 16 of the adjacent horizontal members 13 mesh with each other. is there. This vertical member terminal 18 has a bearing hole for bearing two adjacent gear terminals 16, 16.
Pins 19 and 19 are gear shafts that are inserted through the shaft holes of the two gear terminals 16 and 16, pass through the bearing holes of the vertical member terminal 18, and pin-couple the horizontal member 13 and the vertical member 14. It is.
Reference numeral 20 denotes a C-clip attached to the tip of the pins 19 and 19, and 21 denotes an attachment instead of the clip 20 at one or more places, and an output shaft is connected to the pin 19 via a housing part. It is a control motor as a development control means constituting a drive system attached to the vertical member terminal 18.
[0019]
FIG. 4 is a cross-sectional view showing the configuration of the stretchable diagonal member 15 as the stretchable diagonal member shown in FIG.
In the figure, reference numeral 22 is an outer pipe, 23 is a pin terminal attached to the end of the outer pipe 22 and coupled to the vertical member 14 through a terminal similar to the vertical member terminal 18 not shown, and 24 is the outer pipe. 22 is an inner pipe that moves on the inside, 22 is a pin terminal that is attached to the end of the inner pipe 24 and is pin-coupled to the longitudinal member 14, and 26 is a spring terminal that is attached to the other end of the inner pipe 24. A coil spring 27 is attached between the pin connector 23 and the spring terminal 26 and serves as an urging means that always generates a force for bringing both together.
[0020]
As described above, the synchronously deployable truss structure according to the first embodiment has the telescopic oblique member 15 and the parallel or parallel terminals with the gear terminals 16 and 16 mounted as gears at the lower or upper lateral member 13 end. A truss structure in which a plurality of quadrilateral links are connected in series in an annular manner so that the gears of the adjacent lateral members 13 and 13, that is, the gear terminals 16 and 16, mesh with each other and the gear (the gear terminal 16) directly or indirectly. And a control motor 21 as a drive system for rotational control.
The operation of this synchronous deployment truss structure will be described below with reference to FIGS.
First, the expansion strut 3 for electrically and mechanically coupling the satellite body 2 and the expansion membrane antenna mirror surface by an expansion device or a deployment mechanism (not shown), or a function corresponding to the function performed by the expansion strut 3 The product is inflated or expanded.
After deployment, for example, by a command from the ground, a parallelogram link housed in a zigzag shape as shown in FIG. 2A by a drive system (drive means) such as a release mechanism (not shown). As shown in FIG. 2 (b), the length of the stretchable diagonal member 15 is shortened by the contraction force of the coil spring 27 incorporated in the stretchable diagonal member 15, so that the parallelogram link shape becomes rectangular. Deploy to get closer.
[0021]
At the time of deployment, the transverse member 13 rotates from zero to 90 degrees with respect to the longitudinal member 14, but since this rotation angle θ is transmitted to the adjacent transverse member 13 by the gear terminal 16, all the parallelogram links are Rotate simultaneously by the same angle and have the same deformation shape. In this case, the rotational speed of the transverse member 13 can be controlled to a desired or predetermined speed by the control motor 21.
[0022]
As described above, in the synchronous deployment truss 12 shown in the first embodiment, the parallelogram links connected in an annular manner are synchronized as described above, and are deployed in a concentric circle at the same time in the same shape. In order to go, the balloon membrane 10 supported in the ring of a series of parallelogram links that circulate in an annular shape is spread uniformly through the tension cable 5.
That is, in the synchronous deployment truss 12 designed in a circumferential shape, the diameter of the circle in the middle of deployment is approximately SIN [θ] times the diameter after deployment, so the value of this rotation angle θ and the rate of change (speed) By controlling the above, the balloon membrane 10 can be spread uniformly at a predetermined speed.
Then, after the synchronous deployment truss 12 is completely deployed (rotation angle θ = 90 degrees), a gas such as air or nitrogen is inserted into the balloon membrane 10 by, for example, an air insertion cylinder as a gas insertion means (not shown). Then, the balloon membrane 10 expands in a parabolic shape as shown in FIG.
[0023]
In the first embodiment, as shown in FIG. 1B, thin dielectric wires are formed on the outer surfaces of both the transmission film 7 as the radio wave incident side film and the dielectric film 8 as the radio wave reflection side film of the balloon film 10. For example, a triangular lattice network formed of stretched cables is joined.
The lattice network 11 attached to the outer surface of the balloon film 10 may be provided on either the radio wave incident side film or the radio wave reflection side film of the balloon film 10. Further, the lattice is not limited to a triangular shape, and may have an appropriate shape.
Thus, by covering the surface of the balloon membrane 10 with the lattice network 11, a predetermined surface accuracy is achieved under a predetermined atmospheric pressure.
[0024]
For example, assuming that the average radius of curvature of the balloon membrane 10 is ρ, the membrane tension is N, the radius of the circumscribed circle of the average triangular lattice of the lattice network 11 is R, and the cable tension is T, the optimum surface of the balloon membrane 10 to be obtained. The accuracy δ is given by [Equation 1].
[Formula 1]
δ = 0.2 × [R2/ (2ρ)] × [T / (N × L)]
Considering that the optimum surface accuracy δ obtained with the mesh expansion mirror surface is given by [Equation 2], the optimum surface accuracy of the balloon membrane is the normal design range (1 >> [T / (N × L)]). It can be seen that a much better value can be obtained than the optimum surface accuracy obtained with the mesh expansion mirror surface.
[Formula 2]
δ> 0.2 × [R2/ (2ρ)]
Even when the material of the balloon membrane 10 varies, the shape of the balloon membrane 10 can be suppressed to local deformation because of the lattice network 11, and therefore there is little possibility of significant deterioration in surface accuracy.
[0025]
According to the first embodiment, when the antenna is deployed, the synchronous deployment truss 12 is constituted by the parallelogram links in which the stretchable diagonal members 15 having contraction force are arranged on the diagonal lines, and each parallelogram link is a gear terminal. The balloon film 10 can be expanded in synchronism at 16 and at a desired speed by the control motor 21, so that the balloon membrane 10 can be spread radially and uniformly, thereby increasing the reliability of the expansion. That is, since the synchronous deployment truss 12 is completely synchronized by the gear terminal 16 and the deployment speed is controlled to a desired value by the control motor 21, material breakage due to variation in expansion is avoided, and the balloon membrane 10 is reliable. High and stable expansion can be performed.
In addition, since the surface of the balloon membrane 10 is covered with a lattice network 11 formed of a dielectric cable, an expansion membrane antenna for space having a mirror surface that is less affected by variations in the material and dimensions of the membrane is provided. Can do.
[0026]
In the first embodiment, the lattice network 11 is attached to the outer surfaces of both the permeable membrane 7 and the plastic membrane 8. However, the same effect can be obtained by using only the surface of the plastic membrane 8. This is effective when a mirror surface is used in a high frequency band such as the Ku to Ka band, and even if a slight amount of radio wave blocking becomes a problem. In this case, since the symmetry of the net shape is lost, an accurate detailed balance calculation and a manufacturing method are required.
In addition, although the triangular mesh is used as the mesh shape of the lattice net 11, a square or hexagonal shape can provide a qualitatively equivalent effect. This is useful when manufacturing is easy or when an interface with special accessories is required. That is, by replacing the lattice network having a triangular mesh shape with a square or hexagonal lattice network, it can be manufactured at low cost or adapted to a special interface.
Further, by attaching a triangular lattice network formed of, for example, a dielectric cable to the outside of the balloon membrane 10, a highly accurate mirror surface that is resistant to variations in materials or manufacturing can be obtained.
Further, the position of the gear terminal 16 of the synchronous deployment truss 12 is set at the end of the vertical member 14 to which the stretchable diagonal member 15 is not attached. Can obtain an equivalent effect. This is effective when interference between the gear terminal 16 and other members must be avoided.
[0027]
Embodiment 2. FIG.
In the second embodiment, in the structure of the synchronous deployment truss 12 of the first embodiment, the synchronization of the deployment is realized by using a pulley instead of the gear, that is, the gear terminal 16. This will be described with reference to FIG. FIG. 5 is a side view showing a state in which the pulleys 28 and 28 of the adjacent lateral members 13 are in contact with each other (corresponding to a state in which the gear terminals 16 and 16 are engaged with each other). The vertical member terminal 18 having a bearing hole for bearing is omitted.
In FIG. 5, 28 is a pulley attached to the cross member 13 instead of the gear terminal 16, and 29 is a synchronous belt which is brought into contact with each other, i.e., the adjacent pulley 28 and the pulley 28. is there.
[0028]
Next, the operation of this synchronous deployment truss structure will be described. Since the synchronous belt 29 is looped between the parallelogram pulley 28 and the pulley 28 adjacent to each other so as to draw a figure of 8, the same as in the case of the gear terminal 16 of the first embodiment, The rotation angle θ of the horizontal member 13 is transmitted to the adjacent horizontal member 13.
In the first embodiment, when a temperature difference or an extreme temperature change occurs between the adjacent gear terminals 16 and 16, the gear terminals 16 are engaged with each other, the contact resistance is increased, and the transmission of the deployment angle is efficient. However, since the synchronization belt 29 is used in the second embodiment, perfect synchronization is somewhat sacrificed by giving the synchronization belt 29 appropriate elasticity. Since there is no contact between the gear of the horizontal member 13 and the gear of the horizontal member 13, the spread angle can be transmitted without increasing the contact resistance. Therefore, the second embodiment is extremely effective when used on a trajectory having a severe thermal environment.
[0029]
Embodiment 3 FIG.
In the third embodiment, in the synchronous deployment truss structure of the first embodiment, the driving force and the deployment speed are controlled by using a wire and a rotating drum instead of the telescopic oblique member 15 and the control motor 21. . This will be described with reference to FIGS. 6 (a) to 6 (c). 6 (a) shows a shape when stored, FIG. 6 (b) shows a shape during development, and FIG. 6 (c) shows a shape after development. FIGS. 2 (a) to 2 (c) in the first embodiment. It corresponds to.
[0030]
6A to 6C, reference numeral 30 in the figure is a loop wire. One end of the loop wire 30 is fixed to a rotating drum 32 described later, and the other end extends to the synchronous deployment truss 12 side.
The intermediate portion of the loop wire 30 extending to the side of the synchronous deployment truss 12 is arranged to extend to the diagonal position of each parallelogram link constituting the synchronous deployment truss 12, that is, the position of the oblique member 15. , It makes a round in the circumferential direction of the synchronous deployment truss 12.
A transmission pulley 31 is attached to the vertical member 14 of each parallelogram link, changes the direction of the loop wire 30 and shifts to the adjacent parallelogram link.
The rotating drum 32 is a drum that winds and unwinds the loop wire 30, and is installed at a proper position of the synchronous deployment truss 12.
[0031]
Next, the operation of the third embodiment will be described.
First, when a mirror surface holding mechanism (not shown) is released during storage, the rotating drum 32 rotates and starts to wind up the loop wire 30.
When the loop wire 30 is wound up, the loop wire 30 is routed on the diagonal line of each parallelogram link while being redirected by the transmission pulley 31, so that the synchronous deployment is performed in accordance with the shortening of the diagonal line. As shown in FIG. 6B, the parallelogram links constituting the truss 12 are deformed toward the rectangular shape as the transverse member 13 rotates.
The rotation angle θ of the lateral member 13 is synchronized with the gear terminal 16 in the case of the first embodiment and by the synchronization belt 29 in the case of the second embodiment. This is achieved by controlling the rotational speed.
In the third embodiment, the parallelogram is hung around the transmission pulley 31 appropriately disposed without using the elastic member 15 having the complicated elastic mechanism parts used in the first or second embodiment. Since one loop wire 30 extending on the diagonal line of the link is wound up by a rotating drum, a lightweight and inexpensive synchronous deployment truss can be obtained.
[0032]
【The invention's effect】
  According to the invention of claim 1,Each of the plurality of parallelogram links includes a horizontal member that forms a pair of upper and lower horizontal sides parallel to the horizontal direction, a vertical member that forms a pair of left and right vertical sides parallel to the vertical direction, and each parallelogram A parallelogram link having a telescopic diagonal member that runs so as to connect diagonal lines of the shape link, and a gear mounted on the end of the transverse member, is arranged in series in an annular manner so that the gear of the adjacent transverse member is engaged. Because it was a synchronously deployed truss structure equipped with a truss structure coupled to and a drive system for rotating the gear,With a mirror surface that allows shape control during expansionIn other words, antenna mirror surface capable of expansion and deployment controlAn expansion antenna for space equipped with
[0033]
  According to the invention of claim 2,Each of the plurality of parallelogram links includes a horizontal member that forms a pair of upper and lower horizontal sides parallel to the horizontal direction, a vertical member that forms a pair of left and right vertical sides parallel to the vertical direction, and each parallelogram Loop wires stretched diagonally of the shape link, and parallel parallel links with gears attached to the ends of the transverse members in series so that the gears of the transverse members adjacent to each other mesh. Because it is a synchronized deployment truss structure with a combined truss structure and a drive system that rotates the gears, expansion and deployment control is possibleA space expansion antenna having an antenna mirror surface can be provided.
[0034]
  According to the invention of claim 3,Each of the plurality of parallelogram links includes a horizontal member that forms a pair of upper and lower horizontal sides parallel to the horizontal direction, a vertical member that forms a pair of left and right vertical sides parallel to the vertical direction, and each parallelogram A parallel link with multiple parallelogram links that have a telescopic diagonal member running so as to connect the diagonals of the link and with a pulley attached to the end of the transverse member. Since the truss structure and the synchronous deployment truss structure with the drive system that rotates the pulley,It is possible to provide a space expansion antenna having an antenna mirror surface capable of expansion and deployment control.
  In addition, by replacing the gear terminal with a pulley and a synchronous belt, it is possible to ensure deployment synchronization with a low resistance even under severe thermal deformation.
[0035]
  According to the invention of claim 4,Each of the plurality of parallelogram links includes a horizontal member that forms a pair of upper and lower horizontal sides parallel to the horizontal direction, a vertical member that forms a pair of left and right vertical sides parallel to the vertical direction, and each parallelogram Truss which has a loop wire stretched on the diagonal line of a link and a plurality of parallelogram links each having a pulley attached to the end of the transverse member, and the pulleys of the transverse members adjoining each other by a belt Because it is a synchronous deployment truss structure with a structure and a drive system that rotates the pulley,It is possible to provide a space expansion antenna having an antenna mirror surface capable of expansion and deployment control.
  Also, by replacing with a pulley and a synchronous belt instead of a gear terminal, it is possible to ensure deployment synchronization with a low resistance even under severe thermal deformation..
[0036]
  According to the fifth aspect of the present invention, since the lattice network is attached to the outer surface of the balloon membrane, it is possible to provide a space expansion antenna having a highly accurate antenna mirror surface with little mirror deterioration even with respect to material / dimension variations. .
[Brief description of the drawings]
FIGS. 1A and 1B are structural views of an antenna mirror surface according to a first embodiment, where FIG. 1A is a plan view of a mirror surface viewed from a radio wave axis, FIG. 1B is a side view of a balloon membrane 10, and FIG. FIG.
FIGS. 2A and 2B are diagrams showing in detail the structure and operation of the basic period portion of the synchronous deployment truss of the first embodiment, wherein FIG. 2A is a diagram showing a shape when housed in the rocket, and FIG. (C) is a figure which shows the shape after completion | finish of expansion | deployment.
FIG. 3 is an exploded view showing details of a connecting portion between a horizontal member and a vertical member according to the first embodiment.
4 is a cross-sectional view showing a configuration of a stretchable diagonal material as an oblique member according to Embodiment 1. FIG.
FIG. 5 is a side view showing a state where pulleys of lateral members adjacent to each other in Embodiment 2 are met.
FIGS. 6A and 6B are diagrams showing a synchronous deployment truss structure according to a third embodiment, where FIG. 6A is a diagram illustrating a shape when stored, FIG. 6B is a diagram illustrating a shape during deployment, and FIG. 6C is a diagram illustrating a shape after deployment. It is.
FIG. 7 is a perspective view of a conventional space expansion antenna.
8 is a cross-sectional view of the mirror surface of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Satellite, 2 Storage box, 3 Expansion strut, 4 Expansion torus, 5 Tension cable, 6 Sewing part, 7 Permeation membrane, 8 Plastic membrane, 9 Aluminum coating, 10 Balloon membrane, 11 Grid network, 12 Synchronous deployment truss (circle) Annular support), 13 transverse member, 14 longitudinal member, 15 telescopic diagonal material, 16 gear terminal (gear), 18 longitudinal member terminal, 21 control motor (drive system / deployment control means), 22 outer pipe, 24 inner pipe, 28 pulleys, 29 synchronous belts, 30 loop wires, 31 transmission pulleys, 32 rotating drums (drive system / deployment control means).

Claims (5)

表面が格子網で覆われ、内部に気体を注入することによりパラボラ状に膨張する風船膜と
上記風船膜の表面を覆った上記格子網の周縁外側に位置された平行四辺形リンクは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、対角線上で伸縮可能で、隣り合う各平行四辺形リンクの共有する上記縦部材に対称に配置された斜め部材から構成され、
当該複数の平行四辺形リンクが、互いに側辺を共有して正多角形状となるよう環状に結合された構造を有する同期展開トラスと、
上記同期展開トラスを構成する上記横部材の端部に軸穴を有し、かつ上記縦部材に取り付けられ、隣接する上記横部材の端部に相対して配置された歯車と、
上記同期展開トラスの平行四辺形リンク複数個を、互いに隣接する上記横部材の上記歯車が双方に噛み合うように装着され、上記歯車を回転制御する制御モータと
を具備したことを特徴とする宇宙用膨張膜アンテナ。
A balloon membrane whose surface is covered with a lattice network and expands in a parabolic shape by injecting gas into the interior ,
The parallelogram links positioned on the outer periphery of the lattice network covering the surface of the balloon membrane include a pair of lateral members that form a pair of upper and lower lateral sides parallel to the lateral direction, and a pair of left and right parallel to the longitudinal direction. It is composed of a vertical member that constitutes the vertical side, and an oblique member that can be expanded and contracted on a diagonal line, and is symmetrically disposed on the vertical member shared by each adjacent parallelogram link,
A synchronous deployment truss having a structure in which the plurality of parallelogram links are connected in a ring shape to share a side with each other to form a regular polygon;
A gear having an axial hole at the end of the transverse member constituting the synchronous deployment truss and attached to the longitudinal member and disposed opposite to the end of the adjacent transverse member;
A plurality of parallel quadrilateral links of the synchronous deployment truss, mounted so that the gears of the lateral members adjacent to each other mesh with each other, and a control motor for controlling the rotation of the gears;
An expansion membrane antenna for space , comprising:
表面が格子網で覆われ、内部に気体を注入することによりパラボラ状に膨張する風船膜と、
上記風船膜の表面を覆った上記格子網の周縁外側に位置された平行四辺形リンクは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、対角線上に張架されたループワイヤから構成され、
当該複数の平行四辺形リンクが、互いに側辺を共有して正多角形状となるよう環状に結合された構造を有する同期展開トラスと、
上記同期展開トラスを構成する上記横部材の端部に軸穴を有し、かつ上記縦部材に取り付けられ、隣接する上記横部材の端部に相対して配置された歯車と、
上記同期展開トラスの平行四辺形リンク複数個を、互いに隣接する上記横部材の上記歯車が双方に噛み合うように装着され、上記歯車を回転制御する回転ドラムと
を具備したことを特徴とする宇宙用膨張膜アンテナ。
A balloon membrane whose surface is covered with a lattice network and expands in a parabolic shape by injecting gas into the interior,
The parallelogram links positioned on the outer periphery of the lattice network covering the surface of the balloon membrane include a pair of lateral members that form a pair of upper and lower lateral sides parallel to the lateral direction, and a pair of left and right parallel to the longitudinal direction. Consists of a vertical member constituting the vertical side and a loop wire stretched diagonally,
A synchronous deployment truss having a structure in which the plurality of parallelogram links are connected in a ring shape to share a side with each other to form a regular polygon;
A gear having an axial hole at the end of the transverse member constituting the synchronous deployment truss and attached to the longitudinal member and disposed opposite to the end of the adjacent transverse member;
A plurality of parallel quadrilateral links of the synchronously deployable truss, mounted so that the gears of the lateral members adjacent to each other mesh with each other, and a rotary drum for controlling the rotation of the gears;
An expansion membrane antenna for space , comprising:
表面が格子網で覆われ、内部に気体を注入することによりパラボラ状に膨張する風船膜と、
上記風船膜の表面を覆った上記格子網の周縁外側に位置された平行四辺形リンクは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、対角線上で伸縮可能で、隣り合う各平行四辺形リンクの共有する上記縦部材に対称に配置された斜め部材から構成され、
当該複数の平行四辺形リンクが、互いに側辺を共有して正多角形状となるよう環状に結合された構造を有する同期展開トラスと、
上記同期展開トラスを構成する上記横部材の端部に軸穴を有し、かつ上記縦部材に取り付けられ、隣接する上記横部材の端部に相対して配置されたプーリーと、
上記同期展開トラスの平行四辺形リンク複数個を、互いに隣接する上記横部材の上記プーリーが同期ベルトにより結合されるように装着され、上記プーリーを回転制御する制御モータと
を具備したことを特徴とする宇宙用膨張膜アンテナ。
A balloon membrane whose surface is covered with a lattice network and expands in a parabolic shape by injecting gas into the interior,
The parallelogram links positioned on the outer periphery of the lattice network covering the surface of the balloon membrane include a pair of lateral members that form a pair of upper and lower lateral sides parallel to the lateral direction, and a pair of left and right parallel to the longitudinal direction. It is composed of a vertical member that constitutes the vertical side, and an oblique member that can be expanded and contracted on a diagonal line, and is symmetrically disposed on the vertical member shared by each adjacent parallelogram link,
A synchronous deployment truss having a structure in which the plurality of parallelogram links are connected in a ring shape to share a side with each other to form a regular polygon;
A pulley having an axial hole at the end of the transverse member constituting the synchronous deployment truss and attached to the longitudinal member and disposed opposite to the end of the adjacent transverse member;
A plurality of parallelogram links of the synchronous deployment truss, mounted so that the pulleys of the lateral members adjacent to each other are coupled by a synchronous belt, and a control motor for controlling the rotation of the pulleys;
An expansion membrane antenna for space , comprising:
表面が格子網で覆われ、内部に気体を注入することによりパラボラ状に膨張する風船膜と、
上記風船膜の表面を覆った上記格子網の周縁外側に位置された平行四辺形リンクは、横方向に平行な上下一対の横側辺を構成する横部材と、縦方向に平行な左右一対の縦側辺を構成する縦部材と、対角線上に張架されたループワイヤから構成され、
当該複数の平行四辺形リンクが、互いに側辺を共有して正多角形状となるよう環状に結合された構造を有する同期展開トラスと、
上記同期展開トラスを構成する上記横部材の端部に軸穴を有し、かつ上記縦部材に取り付けられ、隣接する上記横部材の端部に相対して配置されたプーリーと、
上記同期展開トラスの平行四辺形リンク複数個を、互いに隣接する上記横部材の上記プ ーリーが同期ベルトにより結合されるように装着され、上記プーリーを回転制御する回転ドラムと
を具備したことを特徴とする宇宙用膨張膜アンテナ。
A balloon membrane whose surface is covered with a lattice network and expands in a parabolic shape by injecting gas into the interior,
The parallelogram links positioned on the outer periphery of the lattice network covering the surface of the balloon membrane include a pair of lateral members that form a pair of upper and lower lateral sides parallel to the lateral direction, and a pair of left and right parallel to the longitudinal direction. Consists of a vertical member constituting the vertical side and a loop wire stretched diagonally,
A synchronous deployment truss having a structure in which the plurality of parallelogram links are connected in a ring shape to share a side with each other to form a regular polygon;
A pulley having an axial hole at the end of the transverse member constituting the synchronous deployment truss and attached to the longitudinal member and disposed opposite to the end of the adjacent transverse member;
The parallelogram linkage plurality of the synchronous deployable truss is mounted such that the flop Ri adjacent the transverse member is coupled by synchronous belt with each other, a rotary drum rotating controlling the pulley
An expansion membrane antenna for space , comprising:
上記風船膜は、当該風船膜の電波入射側膜と電波反射側膜との何れか一方又は双方の外表面に誘電体の細線で形成された格子網を接合したことを特徴とする請求項1ないし4のいずれか1項に記載の宇宙用膨張膜アンテナ。 2. The balloon film according to claim 1, wherein a lattice network formed of thin dielectric wires is bonded to an outer surface of one or both of a radio wave incident side film and a radio wave reflection side film of the balloon film. 5. The space expansion membrane antenna according to any one of items 1 to 4 .
JP2000008150A 2000-01-17 2000-01-17 Expansion membrane antenna for space Expired - Fee Related JP3868689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008150A JP3868689B2 (en) 2000-01-17 2000-01-17 Expansion membrane antenna for space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008150A JP3868689B2 (en) 2000-01-17 2000-01-17 Expansion membrane antenna for space

Publications (2)

Publication Number Publication Date
JP2001196843A JP2001196843A (en) 2001-07-19
JP3868689B2 true JP3868689B2 (en) 2007-01-17

Family

ID=18536467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008150A Expired - Fee Related JP3868689B2 (en) 2000-01-17 2000-01-17 Expansion membrane antenna for space

Country Status (1)

Country Link
JP (1) JP3868689B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU201366U1 (en) * 2020-02-04 2020-12-11 Александр Витальевич Лопатин Parabolic transformable torus reflector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002357214A1 (en) * 2001-12-05 2003-06-17 The Johns Hopkins University Expandable sensor array
KR101214545B1 (en) 2009-09-14 2012-12-24 한국전자통신연구원 Length adjusting device for cable-network antenna's tension-tie
CN104900978B (en) * 2015-05-13 2018-01-12 上海宇航系统工程研究所 A kind of perimetric pattern spatial networks Deng Dizhanshou mechanisms
CN110206149B (en) * 2019-06-19 2020-09-01 郑州大学 Large-span low-electromagnetic-loss planar membrane structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU201366U1 (en) * 2020-02-04 2020-12-11 Александр Витальевич Лопатин Parabolic transformable torus reflector

Also Published As

Publication number Publication date
JP2001196843A (en) 2001-07-19

Similar Documents

Publication Publication Date Title
US10797402B2 (en) Deployable antenna reflector
US3618111A (en) Expandable truss paraboloidal antenna
JP3291481B2 (en) Combination structure of photovoltaic array and deployable RF reflector
US5990851A (en) Space deployable antenna structure tensioned by hinged spreader-standoff elements distributed around inflatable hoop
US8021069B2 (en) Redundant radial release apparatus
US9755318B2 (en) Mesh reflector with truss structure
US9484636B2 (en) Mesh reflector with truss structure
WO2014127813A1 (en) Deployable support structure
JPH1141027A (en) Antenna and its arranging method
EP3598576B1 (en) Reflecting systems, such as reflector antenna systems, with tension-stabilized reflector positional apparatus
JP6390949B2 (en) Deployable mesh antenna
US6229501B1 (en) Reflector and reflector element for antennas for use in outer space and a method for deploying the reflectors
JP3868689B2 (en) Expansion membrane antenna for space
EP0823750B1 (en) Synchronous rotation dual-axis mechanical hinge assembly
CN106887714A (en) Gas-filled unfolded cable mesh reflector antenna reflector
US6848796B2 (en) Radiation reflector
JP7459237B2 (en) Deployable assembly for antenna
JPH11321799A (en) Antenna reflector
JP3516648B2 (en) Method and apparatus for mesh folding of deployable mesh antenna
JP3891972B2 (en) Deployment antenna
JP4877809B2 (en) Deployable antenna
RU2214659C2 (en) Large-size deployable space reflector
JP2019195151A (en) Expandable reflector and expansion structure for expandable reflector
RU2795105C1 (en) Deployable antenna assembly
JP3878651B2 (en) Deployable reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees