JP2001196843A - Expandable film antenna for outer space - Google Patents

Expandable film antenna for outer space

Info

Publication number
JP2001196843A
JP2001196843A JP2000008150A JP2000008150A JP2001196843A JP 2001196843 A JP2001196843 A JP 2001196843A JP 2000008150 A JP2000008150 A JP 2000008150A JP 2000008150 A JP2000008150 A JP 2000008150A JP 2001196843 A JP2001196843 A JP 2001196843A
Authority
JP
Japan
Prior art keywords
truss structure
film
antenna
balloon
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000008150A
Other languages
Japanese (ja)
Other versions
JP3868689B2 (en
Inventor
Kazuo Tanizawa
一雄 谷沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000008150A priority Critical patent/JP3868689B2/en
Publication of JP2001196843A publication Critical patent/JP2001196843A/en
Application granted granted Critical
Publication of JP3868689B2 publication Critical patent/JP3868689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/081Inflatable antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1235Collapsible supports; Means for erecting a rigid antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/161Collapsible reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an expandable film antenna for the outer space provided with a precise, inexpensive and reliably developed antenna mirror surface. SOLUTION: In the expandable film antenna for the outer space having a balloon film and an annular support positioned outside the periphery of the balloon film to support the balloon film, the annular support has synchronous development truss structure where constituting members are uniforms and developed at a controlled speed and the whole shape is deformed and developed similarly. Furthermore, a grid network formed of dielectric thin wires is connected to the outer surface of one or both of a film on a radio wave entering side and a film on a radio wave reflecting side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、宇宙用の膨張膜ア
ンテナに関し、詳しくはその鏡面形成に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inflatable membrane antenna for space use, and more particularly, to the formation of a mirror surface thereof.

【0002】[0002]

【従来の技術】従来の、例えば大型の宇宙用の膨張膜ア
ンテナは、打ち上げロケットへの収納を可能とするた
め、高い可撓性か或いは容易に折り畳み出来る性質が必
要であった。このため、アンテナ鏡面は、金メッキされ
た金属細線で編まれた金属メッシュを用いた電波反射膜
と、軌道上にて、これを展開させる展開構造で構成さ
れ、一般にメッシュ鏡面と称されるものが大部分であっ
た。しかし、上記の金属細線は、無限に細い線が形成で
きるわけでもなく、又、編み方にも制限があるため、精
々数ギガヘルツまでの低い周波数でしか成り立たない鏡
面しか形成できないものであった。又、上記のメッシュ
鏡面では、金メッキを使うため材料自身が高価となるこ
と、メッシュを広げるために複雑で高価な展開機構が必
要となること等のため、経済的なものではなかった。こ
のため、将来予定されている、50GHz程度の周波数
での観測、VSOP2(10m径、日本、2008年)
やARISE(14m径、米国、2015年)等の計画
では、より経済的で、より面精度の高い新しい構造が必
要とされている。
2. Description of the Related Art A conventional inflatable membrane antenna for a large space, for example, needs to be highly flexible or easily foldable in order to be housed in a launch vehicle. For this reason, the antenna mirror surface is composed of a radio wave reflection film using a metal mesh woven with fine gold-plated metal wires and a deployment structure that deploys this on orbit, and what is generally called a mesh mirror surface is used. Most were. However, the above-mentioned thin metal wire cannot form an infinitely thin line, and there is also a limitation in the method of knitting, so that only a mirror surface that can be formed at a low frequency of at most several gigahertz can be formed. Further, the above-mentioned mesh mirror surface is not economical because the material itself is expensive due to the use of gold plating, and a complicated and expensive deployment mechanism is required to expand the mesh. For this reason, observations at a frequency of about 50 GHz planned in the future, VSOP2 (10 m diameter, Japan, 2008)
And plans such as ARISE (14m diameter, USA, 2015) require new structures that are more economical and have higher surface accuracy.

【0003】ところで、去る1996年に打ち上げられ
たSPARTAN207衛星で試験された膨張膜アンテ
ナは、上記要求を満たす鏡面構造として開発されたもの
である(R.E.Freeland et al, "
Validation ofa Unique Con
cept for a Low−cost, Ligh
tweight Space−deployable
Antenna Structure", IAF−9
3−I.1.204(1993))。この衛星の軌道上
の膨張膜アンテナ鏡面の形状を図7に、鏡面の断面図を
図8に示す。
[0003] The inflatable membrane antenna tested on the STARTAN 207 satellite launched in 1996 was developed as a mirror surface structure that satisfies the above requirements (RE Freeland et al, "
Validation of Unique Con
cept for a Low-cost, Light
tweight Space-deployable
Antenna Structure ", IAF-9
3-I. 1.204 (1993)). FIG. 7 shows the shape of the mirror of the inflatable membrane antenna in the orbit of the satellite, and FIG. 8 shows a sectional view of the mirror.

【0004】図7、8において、1はSPARTAN2
07の衛星本体、2は衛星本体1に取り付けられ、収納
時にアンテナ鏡面を収納する収納箱、3は膨張ストラッ
トであり、衛星本体2側からアンテナ鏡面を支持し、図
示されていない膨張手段により、軌道上で膨張用の気体
の挿入が可能となっている。4は円環状支持体としての
膨張トーラスである。円環状支持体は、後述する風船膜
10の周縁外側に位置し当該風船膜10を展開させ、展
開状態に支持するものである。この例の膨張トーラス4
は、上記膨張ストラット3の先端部に取り付けられ、軌
道上において、上記膨張手段によって円環状に膨張す
る。5は張架索であり、一端が上記膨張トーラス4の内
周部に取り付けられ、他端がアンテナ反射鏡の周縁端部
を構成する縫合部6に結合されている。この縫合部6
は、電波入射側に配置される電波入射側膜としての、例
えば誘電体薄膜よりなる透過膜7と、電波反射面を有す
る電波反射側膜としての、例えばプラスチック膜8とが
重ねあわされた状態にて、互いの円周部即ち周縁部が縫
合された部分である。尚、9は電波反射率を高めるため
に、上記プラスチック膜8の上面即ち凹面に塗布された
アルミコートである。以下、本明細書においては、上記
の電波入射側膜(透過膜7)と電波反射側膜(プラスチ
ック膜8)との周縁が互いに縫合され、内部への気体の
出し入れによって膨張収縮自在に形成された膨張体を風
船膜10と称す。
[0004] In Figs.
The satellite body 07 is attached to the satellite body 1, the storage box for storing the antenna mirror surface when stored, and 3 is an expansion strut, which supports the antenna mirror surface from the satellite body 2 side, and is provided by expansion means (not shown). Inflation gas can be inserted on the orbit. Reference numeral 4 denotes an expansion torus as an annular support. The annular support is located outside the peripheral edge of the balloon film 10 described later, and deploys the balloon film 10 to support the balloon film 10 in the deployed state. Expansion torus 4 of this example
Is attached to the distal end of the inflatable strut 3 and is inflated annularly on the track by the inflating means. Reference numeral 5 denotes a tension cable, one end of which is attached to the inner peripheral portion of the expansion torus 4 and the other end of which is connected to a suturing portion 6 which constitutes the peripheral edge of the antenna reflector. This suture part 6
Is a state in which a transmission film 7 made of, for example, a dielectric thin film as a radio wave incident side film disposed on the radio wave incident side and a plastic film 8 as a radio wave reflection side film having a radio wave reflection surface are overlapped. , Are circumferentially sewn portions, that is, portions where peripheral portions are sewn. Reference numeral 9 denotes an aluminum coat applied to the upper surface, that is, the concave surface of the plastic film 8 in order to increase the radio wave reflectance. Hereinafter, in the present specification, the peripheral edges of the radio wave incident side film (transmitting film 7) and the radio wave reflecting side film (plastic film 8) are sewn to each other, and are formed so as to be able to expand and contract by introducing and removing gas into the inside. The expanded body is referred to as a balloon film 10.

【0005】上記の構造において、電波反射膜として高
価な金メッキメッシュの代わりに安価なアルミメッキし
た6μm厚のプラスチック膜を、又、複雑な展開機構の
代わりに40g以下の窒素で上記膜を膨張させてパラボ
ラ面即ち鏡面を作る方式を用いることで、滑らかで高精
度な鏡面を安価に形成することが一応できた。しかし、
実際の試験においては次のような不都合が生じた。即
ち、本来ならば、軌道上において、図示されていない膨
張手段により、膨張ストラット3及び膨張トーラス4が
膨張され、膨張トーラス4が膨張した後、図示されてい
ない膨張手段により、透過膜7とプラスチック膜8とで
成る風船膜10の内部に窒素ガス等の気体が注入され
て、風船膜10が膨張し、プラスチック膜8をパラボラ
状に展開させること、正確には、風船膜10の膨張によ
って張架索5に作用する風船膜10の中心方向の力と、
膨張トーラス4の膨張によって張架索5に作用する風船
膜10の放射方向に働く力との釣り合いによって風船膜
10が所定の形状に展開するようになっていた。
In the above structure, an inexpensive aluminum-plated plastic film having a thickness of 6 μm is used as a radio wave reflection film instead of an expensive gold-plated mesh, and the film is expanded with nitrogen of 40 g or less instead of a complicated developing mechanism. By using a method of forming a parabolic surface, that is, a mirror surface, it was possible to form a smooth, high-precision mirror surface at low cost. But,
In the actual test, the following inconveniences occurred. That is, the expansion strut 3 and the expansion torus 4 are expanded on the track by expansion means (not shown), and after the expansion torus 4 expands, the permeable membrane 7 and the plastic are expanded by the expansion means (not shown). A gas such as nitrogen gas is injected into the inside of the balloon film 10 composed of the film 8 to expand the balloon film 10 and expand the plastic film 8 in a parabolic manner. A force in the direction of the center of the balloon film 10 acting on the erection cord 5,
The balloon film 10 is developed into a predetermined shape by balancing with the radial force of the balloon film 10 acting on the tension cable 5 by the expansion of the expansion torus 4.

【0006】しかし、この風船膜10の膨張・展開は失
敗した。原因は、膨張展開の制御装置がなかったため、
無秩序な展開が行われ、鏡面を膨張させる図示されてい
ない圧力弁が故障した、と報告されている(R.E.F
reeland et al, "Significa
nce of the Inflatable Ant
enna Experiment Technolog
y", AIAA−98−2104, SDM '98
(1998))。又、上記不都合の外に、膜材料の材
質、厚さに対するバラツキや製造時の寸法のバラツキが
直接的に風船膜10の展開形状に強く作用するため、高
い鏡面精度が安定的に得られない点にも問題があった。
However, the balloon membrane 10 failed to expand and deploy. The cause was that there was no control device for expansion and deployment,
It has been reported that a chaotic deployment has taken place and a pressure valve (not shown) that expands the mirror has failed (REF).
reeland et al, "Significa
once of the inflatable Ant
enna Experiment Technology
y ", AIAA-98-2104, SDM '98
(1998)). In addition to the above-mentioned disadvantages, variations in the material and thickness of the film material and variations in dimensions at the time of manufacturing directly act strongly on the developed shape of the balloon film 10, so that high mirror surface accuracy cannot be stably obtained. There were also problems with the points.

【0007】[0007]

【発明が解決しようとする課題】将来の、安価で高精度
な大型の宇宙用膨張膜アンテナの鏡面としては、膨張膜
構造が基本的に適合するが、膨張展開制御の具体的方
式、及び製作時の寸法等の各種バラツキに対する安定性
の課題を解決しない限り、所望の鏡面を得る実現性は少
ない。本発明は、上記課題を解消し、安価で信頼性の高
い大型で高精度な膨張膜アンテナ鏡面を備えた宇宙用膨
張膜アンテナの提供を目的とする。
As a mirror surface of a future inexpensive, high-precision, large-sized inflatable membrane antenna for space, an inflatable membrane structure is basically suitable. Unless the problem of stability against various variations such as the size at the time is solved, there is little possibility of obtaining a desired mirror surface. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide an inflatable membrane antenna for space having an inexpensive, highly reliable, large and highly accurate inflatable membrane antenna mirror surface.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、風船
膜と当該風船膜の周縁外側に位置し当該風船膜を支持す
る円環状支持体とを有する宇宙用膨張膜アンテナにおい
て、上記円環状支持体は、構成部材が一様で、制御され
た速度で展開し、全体形状が相似的に変形し且つ展開す
る同期展開トラス構造としたことを特徴とする。
According to the first aspect of the present invention, there is provided an inflatable space antenna for a space having a balloon film and an annular support positioned outside the periphery of the balloon film and supporting the balloon film. The annular support is characterized by a synchronously deployed truss structure in which the components are uniform, deploy at a controlled speed, and the overall shape is similarly deformed and deployed.

【0009】請求項2の発明は、請求項1の宇宙用膨張
膜アンテナ発明において、風船膜の電波入射側膜と電波
反射側膜との何れか一方又は双方の外表面に誘電体の細
線で形成された格子網を接合したことを特徴とする。
The invention of claim 2 is based on the invention of the inflatable film antenna for space according to claim 1, wherein one or both of the radio wave incident side film and the radio wave reflection side film of the balloon film is made of a thin dielectric line. It is characterized in that the formed lattice networks are joined.

【0010】請求項3の発明は、請求項1又は請求項2
に記載の宇宙用膨張膜アンテナにおいて、同期展開トラ
ス構造は、伸縮可能な斜め部材を有し、下部、或いは上
部横部材の端部に歯車が装着された平行四辺形リンク複
数個を、互いに隣接する横部材の歯車が噛み合うよう
に、環状に直列に結合したトラス構造と、上記歯車を直
接的或いは間接的に回転制御する駆動系とを備えた構造
であることを特徴とする。
[0010] The invention of claim 3 is claim 1 or claim 2.
In the inflatable membrane antenna for space according to the above, the synchronous deployment truss structure has a diagonal member that can be extended and retracted, and a plurality of parallelogram links having gears attached to ends of lower or upper transverse members are adjacent to each other. And a drive system that directly or indirectly controls the rotation of the gears so that the gears of the horizontal members mesh with each other.

【0011】請求項4の発明は、請求項1又は請求項2
に記載の宇宙用膨張膜アンテナにおいて、同期展開トラ
ス構造は、対角線上に張架されたループワイヤを有し、
下部、或いは上部横部材の端部に歯車が装着された平行
四辺形リンク複数個を、互いに隣接する横部材の歯車が
噛み合うように、環状に直列に結合したトラス構造と、
上記歯車を直接的或いは間接的に回転制御する駆動系と
を備えた構造であることを特徴とする。
[0011] The invention of claim 4 is the invention of claim 1 or claim 2.
In the inflatable membrane antenna for space according to the above, the synchronous deployment truss structure has a loop wire stretched diagonally,
A truss structure in which a plurality of parallelogram links each having a gear attached to an end of a lower or upper horizontal member are connected in series in a ring so that gears of adjacent horizontal members mesh with each other,
A drive system for directly or indirectly controlling the rotation of the gear is provided.

【0012】請求項5の発明は、請求項1又は請求項2
に記載の宇宙用膨張膜アンテナにおいて、同期展開トラ
ス構造は、伸縮可能な斜め部材を有し、下部、或いは上
部横部材の端部にプーリーが装着された平行四辺形リン
ク複数個を、互いに隣接する横部材のプーリー間をベル
トを介して結合したトラス構造と、上記プーリーを直接
的或いは間接的に回転制御する駆動系とを備えた構造で
あることを特徴とする。
[0012] The invention of claim 5 is the invention of claim 1 or claim 2.
In the inflatable membrane antenna for space according to the above, the synchronous deployment truss structure has a diagonal member that can be extended and retracted, and a plurality of parallelogram links having pulleys attached to ends of lower or upper horizontal members are adjacent to each other. And a drive system for directly or indirectly controlling the rotation of the pulleys.

【0013】請求項6の発明は、請求項1又は請求項2
に記載の宇宙用膨張膜アンテナにおいて、同期展開トラ
ス構造は、対角線上に張架されたループワイヤを有し、
下部、或いは上部横部材の端部にプーリーが装着された
平行四辺形リンク複数個を、互いに隣接する横部材のプ
ーリー間をベルトを介して結合したトラス構造と、上記
プーリーを直接的或いは間接的に回転制御する駆動系と
を備えた構造であることを特徴とする。
[0013] The invention of claim 6 is the invention of claim 1 or claim 2.
In the inflatable membrane antenna for space according to the above, the synchronous deployment truss structure has a loop wire stretched diagonally,
A truss structure in which a plurality of parallelogram links each having a pulley attached to an end of a lower or upper horizontal member are connected between pulleys of adjacent horizontal members via a belt, and the pulley is directly or indirectly connected. And a drive system for controlling rotation.

【0014】[0014]

【発明の実施の形態】実施の形態1.実施の形態1は、
風船膜10の周縁外側に位置し、当該風船膜10を環状
に取り巻いた状態において、張架索5を介して支持する
円環状支持体の実施形態を示すもので、円環状支持体
は、構成部材が一様で、制御された速度で展開し、全体
形状が相似的に変形し且つ展開する同期展開トラス構造
としたものである。以下、この同期展開トラス構造を図
1(a)乃至図1(c)に基づいて説明する。図1はア
ンテナ鏡面の構造図で、(a)は電波軸から見た鏡面平
面図、(b)は風船膜10の側面図、(c)は同期展開
トラスの構造を示す側面図である。尚、従来技術として
説明した図7及び図8と同一の符号は実質的に同一若し
くは相応する内容のものであるから、その説明を省略す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiment 1
An embodiment of an annular support which is located outside the peripheral edge of the balloon membrane 10 and supports the balloon membrane 10 via the tension cable 5 in a state surrounding the balloon membrane 10 in an annular shape is shown. A synchronous deployment truss structure in which the members are uniform and deploy at a controlled speed, and the overall shape is similarly deformed and deployed. Hereinafter, the synchronous deployment truss structure will be described with reference to FIGS. 1 (a) to 1 (c). 1A and 1B are structural views of a mirror surface of an antenna. FIG. 1A is a plan view of the mirror surface as viewed from a radio wave axis, FIG. 1B is a side view of a balloon film 10, and FIG. Note that the same reference numerals as those in FIGS. 7 and 8 described as the related art have substantially the same or corresponding contents, and therefore description thereof will be omitted.

【0015】円環状支持体としての同期展開トラス12
は、図1(a)に示すように、鏡面最外周即ち風船膜1
0の周縁外側に位置し、複数個の平行四辺形リンクが、
互いにその側辺を共有して正多角形状となるよう環状に
結合された構造となっている。図2は、図1に示された
同期展開トラス12の基本周期部分の構造、及び動作を
詳細に示すもので、図2(a)はロケットに収納された
収納時の形状、図2(b)は展開途中の形状、図2
(c)は展開完了後の形状を示す。
Synchronous deployment truss 12 as annular support
Is a mirror outermost periphery, that is, a balloon film 1 as shown in FIG.
0, a plurality of parallelogram links located outside the periphery of
The structure is such that the sides are shared with each other to form a regular polygon and are connected in a ring shape. FIG. 2 shows in detail the structure and operation of the basic period portion of the synchronous deployment truss 12 shown in FIG. 1, and FIG. 2 (a) shows the shape when stored in a rocket, and FIG. ) Is the shape in the middle of development, Fig. 2
(C) shows the shape after the development is completed.

【0016】図2(a)乃至図2(c)において、13
は、上記の各平行四辺形リンクを構成する横方向に平行
な上下一対の横側辺を構成する横部材であり、13aは
その上方の横側辺としての横部材、13bは下方の横側
辺としての横部材を示す。又、14は、同じく、記各平
行四辺形リンクを構成する縦方向に平行な左右一対の縦
側辺を構成する縦部材であり、14aは図において相対
的に左側に位置する縦側辺としての縦部材、14bはそ
の右側に位置する縦側辺としての縦部材を示す。この隣
合う各平行四辺形リンクは、縦側辺としての縦部材14
を互いに共有して環状に直列に結合されている。即ち、
図示の形態1では、隣合う一方の横部材13aと他方の
横部材13bとが縦部材14を共有する形でピン結合さ
れている。
In FIG. 2A to FIG. 2C, 13
Are horizontal members forming a pair of upper and lower horizontal sides parallel to the horizontal direction that constitute each of the above parallelogram links, 13a is a horizontal member as an upper horizontal side, and 13b is a lower horizontal side. The horizontal member as a side is shown. Similarly, 14 is a vertical member forming a pair of left and right vertical sides parallel to the vertical direction forming each parallelogram link, and 14a is a vertical side positioned relatively on the left side in the figure. The vertical member 14b indicates a vertical member as a vertical side located on the right side thereof. Each adjacent parallelogram link is a vertical member 14 as a vertical side.
Are shared with each other and connected in series in a ring. That is,
In the illustrated embodiment 1, one adjacent horizontal member 13a and the other horizontal member 13b are pin-coupled so as to share the vertical member 14.

【0017】又、15は、各平行四辺形リンクの対角線
上を結ぶように走る伸縮可能な斜め部材としての伸縮斜
材であり、図2(b)に示すように、一方の縦部材14
aの上端側と、隣接する他方の縦部材14bの下端側と
に、当該斜め部材15の両部材端がピン結合されてい
る。この場合、隣合う平行四辺形リンクの各伸縮斜材1
5は共有する縦部材14に対し対称となるように配置さ
れる。このように、歯車端子16の取り付け位置を、交
互に配置せず、上段或いは下段に揃えることで、部材間
の干渉を防ぐようにしている。尚、図2(b)におい
て、図中の角度θは、展開時における縦部材14に対す
る横部材13の回転角を示す。
Reference numeral 15 denotes a stretchable diagonal member as an extendable diagonal member that runs so as to connect diagonal lines of each parallelogram link. As shown in FIG.
Both ends of the diagonal member 15 are pin-connected to the upper end side of a and the lower end side of the other adjacent vertical member 14b. In this case, each elastic diagonal member 1 of the adjacent parallelogram link
5 are arranged symmetrically with respect to the shared vertical member 14. In this way, the mounting positions of the gear terminals 16 are not alternately arranged but are aligned at the upper or lower stage, thereby preventing interference between members. In FIG. 2B, the angle θ in the figure indicates the rotation angle of the horizontal member 13 with respect to the vertical member 14 at the time of development.

【0018】図3は、図2に示された横部材13と縦部
材14との結合部の詳細を示す分解図である。図中の符
号16は端部に噛み合い用の歯を有する歯車端子で、こ
の歯車端子16は軸穴を有し、横部材13の端部に取り
付けられている。17は、この横部材13の他端に取り
付けられたピン端子、18は縦部材14の端部に取り付
けられ、隣接する上記横部材13の歯車端子16同士が
互いに噛み合うよう介在する縦部材端子である。この縦
部材端子18は隣合う2つの歯車端子16,16を軸受
する軸受穴を有している。19、19は、上記2つの歯
車端子16、16の軸穴に各々挿通されて、上記縦部材
端子18の軸受穴を通り、横部材13と縦部材14とを
ピン結合する歯車軸としてのピンである。20は、上記
のピン19、19の先端部に取り付けられるCクリッ
プ、21は一個所以上にて上記クリップ20の代わりに
取り付けられると共に、上記ピン19に出力軸が連結さ
れ、ハウシング部を介して上記縦部材端子18に取り付
けられた駆動系を構成する展開制御手段としての制御モ
ータである。
FIG. 3 is an exploded view showing details of the joint between the horizontal member 13 and the vertical member 14 shown in FIG. Reference numeral 16 in the drawing denotes a gear terminal having a meshing tooth at an end. The gear terminal 16 has a shaft hole and is attached to an end of the horizontal member 13. Reference numeral 17 denotes a pin terminal attached to the other end of the horizontal member 13, and reference numeral 18 denotes a vertical member terminal attached to an end of the vertical member 14 and interposed so that the gear terminals 16 of the adjacent horizontal member 13 mesh with each other. is there. The vertical member terminal 18 has a bearing hole for bearing two adjacent gear terminals 16, 16. Pins 19, 19 are inserted as shaft holes of the two gear terminals 16, 16, pass through the bearing holes of the vertical member terminal 18, and pin as a gear shaft for pin-connecting the horizontal member 13 and the vertical member 14. It is. 20 is a C-clip attached to the tip of the pins 19, 19, and 21 is attached at one or more places in place of the clip 20, and an output shaft is connected to the pin 19, via a housing. It is a control motor as a deployment control means constituting a drive system attached to the vertical member terminal 18.

【0019】図4は、図2に示された伸縮可能な斜め部
材としての伸縮斜材15の構成を示す断面図である。図
中の符号22は外パイプ、23は上記外パイプ22の端
部に取り付けられ、縦部材14に図示されていない縦部
材端子18と同様な端子を通じて結合されるピン端子、
24は上記外パイプ22の内側を習動する内パイプ、2
5は上記内パイプ24の端部に取り付けられ、縦部材1
4とピン結合されるピン端子、26は上記内パイプ24
の他端に取り付けられたバネ端子、27は上記ピン結合
子23と、上記バネ端子26との間に取り付けられ、常
に両者を近づける力を発生させる付勢手段としてのコイ
ルバネである。
FIG. 4 is a cross-sectional view showing the structure of the stretchable oblique member 15 as the stretchable oblique member shown in FIG. Reference numeral 22 in the figure denotes an outer pipe, 23 denotes a pin terminal attached to the end of the outer pipe 22 and connected to the vertical member 14 through a terminal similar to the vertical member terminal 18 not shown,
24 is an inner pipe that moves inside the outer pipe 22;
5 is attached to the end of the inner pipe 24,
4 is a pin terminal which is pin-coupled to 4;
A spring terminal 27 attached to the other end is a coil spring which is attached between the pin connector 23 and the spring terminal 26 and serves as urging means for constantly generating a force for bringing the both closer together.

【0020】上記のように、この実施の形態1の同期展
開トラス構造は、伸縮可能な斜め部材15を有し、下
部、或いは上部横部材13の端部に歯車として歯車端子
16、16が装着された平行四辺形リンク複数個を、互
いに隣接する横部材13,13の歯車即ち歯車端子1
6、16が噛み合うように、環状に直列に結合したトラ
ス構造と、上記歯車(歯車端子16)を直接的或いは間
接的に回転制御する駆動系としての制御モータ21とを
備えた構造としたものである。以下、図1乃至図4にお
いて、この同期展開トラス構造の動作を説明する。先
ず、図示されていない膨張装置、或いは展開機構等によ
って、衛星本体2と膨張膜アンテナ鏡面とを電気的及び
機械的に結合する膨張ストラット3、或いは、この膨張
ストラット3が果たす機能に相応する相当品を膨張、或
いは展開させる。展開させた後、例えば地上からの指令
等により、図示していない解放機構等の駆動系(駆動手
段)によって、図2(a)に示されるように、ジグザグ
状に収納された平行四辺形リンクを、図2(b)に示さ
れるように、伸縮斜材15に内臓されたコイルバネ27
の収縮力により伸縮斜材15の長さを短縮させること
で、、平行四辺形のリンク形状が長方形に近づくように
展開する。
As described above, the synchronous deployment truss structure of the first embodiment has the extendable and oblique member 15, and the gear terminals 16 and 16 are mounted as gears at the lower or upper end of the horizontal member 13. A plurality of parallelogram links are connected to the gears of the adjacent horizontal members 13, ie, the gear terminal 1.
A structure having a truss structure in which rings 6 and 16 are connected in series in a ring, and a control motor 21 as a drive system for directly or indirectly controlling the rotation of the gear (gear terminal 16). It is. Hereinafter, the operation of the synchronous deployment truss structure will be described with reference to FIGS. First, an expansion strut 3 for electrically and mechanically coupling the satellite main body 2 and the mirror surface of the expansion membrane antenna by an expansion device or a deployment mechanism (not shown), or a function corresponding to the function performed by the expansion strut 3. Inflate or unfold the item. After being developed, a parallelogram link stored in a zigzag shape as shown in FIG. 2A by a drive system (drive means) such as a release mechanism (not shown) in response to a command from the ground, for example. As shown in FIG. 2B, the coil spring 27 built in the elastic
By reducing the length of the stretchable diagonal member 15 by the contraction force, the link shape of the parallelogram is developed so as to approach a rectangle.

【0021】展開の際、横部材13は縦部材14に対し
て零度から90度まで回転するが、この回転角θは歯車
端子16により、隣接する横部材13に伝えられるた
め、全ての平行四辺形リンクは同じ角度だけ同時的に回
転し、同一の変形形状となる。又、この場合、上記横部
材13の回転速度は、制御モータ21により所望の或い
は所定の速度に制御することができる。
During deployment, the horizontal member 13 rotates from zero to 90 degrees with respect to the vertical member 14, but since this rotation angle θ is transmitted to the adjacent horizontal member 13 by the gear terminal 16, all the parallelograms are rotated. The shape links rotate simultaneously by the same angle, resulting in the same deformed shape. In this case, the rotation speed of the horizontal member 13 can be controlled by the control motor 21 to a desired or predetermined speed.

【0022】このように、上記実施の形態1に示す同期
展開トラス12は、環状に連結された各平行四辺形リン
クが上記のように同期して、同一形状にて、一斉に同心
円上状に展開して行くため、環状に廻る一連の平行四辺
形リンクの環内に支持された風船膜10は張架索5を通
じて均一に広げられて行く。即ち、円周形状で設計され
た同期展開トラス12では、展開途中の円の直径は、ほ
ぼ展開後の直径のSIN[θ]倍となるため、この回転
角θの値と変化率(速度)とを制御することにより、風
船膜10を所定の速度で、且つ均一に広げることができ
る。そして、同期展開トラス12が完全に展開(回転角
θ=90度)した後、図示されていない気体挿入手段と
しての例えば空気挿入筒により、風船膜10の内部に気
体例えば空気や窒素等が挿入されると、図1(b)に示
すように風船膜10がパラボラ状に膨張する。
As described above, in the synchronous deployment truss 12 shown in the first embodiment, the parallelogram links connected in a ring are synchronized in the same manner as described above, and have the same shape and concentric circles all at once. As it unfolds, the balloon membrane 10 supported in the ring of a series of parallelogram links that loop around the ring is evenly spread through the tie 5. That is, in the synchronous deployment truss 12 designed in a circumferential shape, the diameter of the circle in the middle of deployment is almost SIN [θ] times the diameter after deployment, and thus the value of the rotation angle θ and the rate of change (speed). Is controlled, the balloon film 10 can be spread uniformly at a predetermined speed. Then, after the synchronous deployment truss 12 is completely deployed (rotational angle θ = 90 degrees), a gas such as air or nitrogen is inserted into the balloon film 10 by, for example, an air insertion tube (not shown) as gas insertion means. Then, the balloon film 10 expands in a parabolic manner as shown in FIG.

【0023】この実施の形態1では、図1(b)に示す
ように、風船膜10の電波入射側膜としての透過膜7と
電波反射側膜としての誘導体膜8の双方の外表面に誘電
体の細線、例えば伸びケーブルで形成された三角形状の
格子網を接合してある。風船膜10の外側の表面に取り
付けられるこの格子網11は、風船膜10の電波入射側
膜と電波反射側膜との何れか一方に設けてもよい。又、
格子は三角形状に限らず、適当な形状でもよい。このよ
うに、風船膜10の表面を格子網11で覆うことによ
り、所定の気圧下で、所定の面精度が達成される。
In the first embodiment, as shown in FIG. 1B, dielectric films are formed on both outer surfaces of the transmission film 7 as the radio wave incident side film and the dielectric film 8 as the radio wave reflection side film of the balloon film 10. A triangular grid formed by body wires, for example, stretched cables, is joined. The lattice network 11 attached to the outer surface of the balloon film 10 may be provided on one of the radio wave incident side film and the radio wave reflection side film of the balloon film 10. or,
The lattice is not limited to a triangular shape, and may have an appropriate shape. As described above, by covering the surface of the balloon film 10 with the grid net 11, a predetermined surface accuracy is achieved under a predetermined pressure.

【0024】例えば、風船膜10の平均的曲率半径を
ρ、膜張力をN、及び格子網11の平均三角格子の外接
円の半径をR、ケーブルの張力をTとすると、得られる
風船膜10の最適面精度δは[式1]にて与えられる。 [式1] δ=0.2×[R2/(2ρ)]×[T/(N×L)] メッシュ展開鏡面で得られる最適面精度δは[式2]に
て与えられることを考慮すれば、風船膜の最適面精度は
通常の設計範囲(1>>[T/(N×L)])にて、メ
ッシュ展開鏡面で得られる最適面精度よりも、はるかに
良い値が得られることが分かる。 [式2]δ>0.2×[R2/(2ρ)] 又、風船膜10の材料にバラツキがある場合でも、格子
網11があるため風船膜10の形状は局所的な変形に抑
えられるため、大幅な面精度劣化を起こす可能性が少な
い。
For example, if the average radius of curvature of the balloon membrane 10 is ρ, the membrane tension is N, the radius of the circumcircle of the average triangular lattice of the lattice network 11 is R, and the tension of the cable is T, the obtained balloon membrane 10 Is given by [Equation 1]. [Equation 1] δ = 0.2 × [R 2 / (2ρ)] × [T / (N × L)] Considering that the optimum surface accuracy δ obtained by the mesh development mirror surface is given by [Equation 2]. Then, in the normal design range (1 >> [T / (N × L)]), the optimum surface accuracy of the balloon film is much better than the optimum surface accuracy obtained by the mesh development mirror surface. You can see that. [Equation 2] δ> 0.2 × [R 2 / (2ρ)] Even when the material of the balloon film 10 varies, the shape of the balloon film 10 is suppressed to local deformation because of the lattice network 11. Therefore, there is little possibility that the surface accuracy is significantly deteriorated.

【0025】この実施の形態1によれば、アンテナ展開
時、同期展開トラス12が、収縮力を有す伸縮斜材15
を対角線上に配置した平行四辺形リンクで構成され、各
平行四辺形リンクが歯車端子16で同期して展開し、制
御モータ21にて所望の速度で展開する構成のため、風
船膜10は放射状に、一様にゆっくりと広がることがで
き、展開の信頼性が高められる。即ち、同期展開トラス
12が歯車端子16により完全に同期され、且つ制御モ
ータ21により展開速度が所望の値に制御されるので、
膨張のバラツキによる材料破損が避けられ、風船膜10
は信頼性が高く安定した膨張が行えるのである。又、風
船膜10の表面は誘電体のケーブルで形成された格子網
11に覆われているため、膜の材質や寸法のバラツキに
よる影響の少ない鏡面を備えた宇宙用膨張膜アンテナを
提供することができる。
According to the first embodiment, when the antenna is deployed, the synchronous deploying truss 12 is provided with the contractible elastic diagonal member 15.
Are arranged diagonally, and the parallelogram links are developed synchronously by the gear terminal 16 and are developed by the control motor 21 at a desired speed. In addition, it can spread uniformly and slowly, and the reliability of deployment is enhanced. That is, since the synchronous deployment truss 12 is completely synchronized by the gear terminal 16 and the deployment speed is controlled to a desired value by the control motor 21,
Material damage due to variation in expansion is avoided, and the balloon film 10
Can provide reliable and stable expansion. Further, since the surface of the balloon film 10 is covered with a lattice network 11 formed of a dielectric cable, it is possible to provide an inflatable film antenna for space having a mirror surface which is less affected by variations in film material and dimensions. Can be.

【0026】又、上記実施の形態1では、格子網11は
透過膜7及びプラスチック膜8双方の外表面に取り付け
たが、プラスチック膜8の表面だけでも同一の効果が得
られる。Ku〜Ka帯等高い周波数帯で鏡面を使う場合
で、僅かでも電波のブロッキングが問題となる場合に有
効である。尚、この場合には網形状の対称性が崩れるた
め、正確な詳細釣り合い計算と製造法が必要となる。
又、格子網11の網目形状としては三角形のものを用い
たが、四角形、或いは六角形でも、定性的には同等な効
果を得ることができる。製造の容易性、或いは特殊付属
物とのインターフェースが必要な時に有効である。即
ち、網目形状が三角形の格子網を四角形、或いは六角形
の格子網で置き換えることで、安価に製造できたり、特
殊なインタフェースに適合させることができる。又、風
船膜10の外側に例えば誘電体ケーブで形成した三角形
状の格子網を取り付けることで、材料或いは製造時のバ
ラツキに強い高精度鏡面が得られる。又、同期展開トラ
ス12の歯車端子16の位置としては、伸縮斜材15が
取り付いていない縦部材14の端部に置いたが、縦部材
14の上端、或いは下端に揃えても、定性的には同等な
効果を得ることができる。歯車端子16と他部材との干
渉を避けねばならぬときに有効である。
Further, in the first embodiment, the grid net 11 is attached to the outer surfaces of both the transmission film 7 and the plastic film 8, but the same effect can be obtained only by the surface of the plastic film 8. This is effective when a mirror surface is used in a high frequency band such as the Ku to Ka band, and even if a slight blocking of radio waves becomes a problem. In this case, since the symmetry of the net shape is broken, an accurate detailed balance calculation and a manufacturing method are required.
In addition, although a triangular mesh is used as the mesh shape of the grid network 11, a qualitatively equivalent effect can be obtained with a square or a hexagon. This is useful when easy manufacturing or an interface with special accessories is required. That is, by replacing a grid with a triangular mesh with a square or hexagonal grid, it can be manufactured at low cost or can be adapted to a special interface. Further, by attaching a triangular lattice network formed of, for example, a dielectric cable to the outside of the balloon film 10, a high-precision mirror surface resistant to variations in materials or manufacturing can be obtained. In addition, the position of the gear terminal 16 of the synchronous deployment truss 12 is set at the end of the vertical member 14 to which the telescopic diagonal member 15 is not attached. Can achieve the same effect. This is effective when interference between the gear terminal 16 and other members must be avoided.

【0027】実施の形態2.実施の形態2は、上記実施
の形態1の同期展開トラス12の構造において、歯車即
ち歯車端子16の代わりにプーリーを用いて展開の同期
を実現させたものである。これを図5に基づいて説明す
る。図5は、隣接する横部材13のプーリー28,28
同士が出会わされた状態(歯車端子16、16同士が互
いに噛み合った状態に相応)を示す側面図であり、両プ
ーリー28,28を支承即ち軸受する軸受穴を有する縦
部材端子18は省略してある。図5において、28は歯
車端子16の代わりに横部材13に取り付けられたプー
リーであり、29は出会わされた状態即ち隣接するプー
リー28とプーリー28とを結合するために掛けまわさ
れた同期ベルトである。
Embodiment 2 FIG. In the second embodiment, in the structure of the synchronous deployment truss 12 of the first embodiment, the deployment is synchronized by using a pulley instead of the gear, that is, the gear terminal 16. This will be described with reference to FIG. FIG. 5 shows the pulleys 28 and 28 of the adjacent horizontal member 13.
FIG. 4 is a side view showing a state where the two gears meet each other (corresponding to a state where the gear terminals 16 and 16 are meshed with each other), omitting a vertical member terminal 18 having a bearing hole for supporting or bearing both pulleys 28 and 28. is there. In FIG. 5, reference numeral 28 denotes a pulley attached to the cross member 13 instead of the gear terminal 16, and reference numeral 29 denotes a synchronous belt which is wound in a state where the pulleys 28 are brought into contact with each other. is there.

【0028】次にこの同期展開トラス構造の動作につい
て説明する。同期ベルト29は、互いに隣接する平行四
辺形のプーリー28とプーリー28との間を8の字を描
くように掛けまわされているため、上記実施の形態1の
歯車端子16の場合と同様に、横部材13の回転角θを
隣接する横部材13に伝える。上記実施の形態1では、
隣接する歯車端子16、16間に温度差、或いは極端な
温度変化が生じると、歯車端子16同士が噛み合ってし
まい、接触抵抗が増大して展開角の伝達が効率的に行わ
れなくなる虞もあり得るが、この実施の形態2では同期
ベルト29を用いているので、この同期ベルト29に適
度の伸縮性を与えておくことにより、完全な同期は多少
犠牲になるものの、横部材13の歯車と横部材13の歯
車と間の接触がないため、上記の接触抵抗の増大がない
形で、展開角の伝達が可能となる。従って、この実施の
形態2は、熱環境の厳しい軌道上で用いる場合には極め
て有効である。
Next, the operation of the synchronous deployment truss structure will be described. Since the synchronous belt 29 is stretched between the parallelogram pulleys 28 adjacent to each other in such a manner as to draw a figure of eight, as in the case of the gear terminal 16 of the first embodiment, The rotation angle θ of the horizontal member 13 is transmitted to the adjacent horizontal member 13. In the first embodiment,
If a temperature difference or an extreme temperature change occurs between the adjacent gear terminals 16, 16, the gear terminals 16 mesh with each other, and the contact resistance increases, so that transmission of the development angle may not be performed efficiently. However, since the synchronous belt 29 is used in the second embodiment, by imparting an appropriate elasticity to the synchronous belt 29, perfect synchronization is somewhat sacrificed. Since there is no contact between the lateral member 13 and the gear, the development angle can be transmitted without increasing the contact resistance. Therefore, the second embodiment is extremely effective when used on an orbit with severe thermal environment.

【0029】実施の形態3.実施の形態3は、上記実施
の形態1の同期展開トラス構造において、伸縮斜材15
及び制御モータ21の代わりにワイヤ及び回転ドラムを
用いて展開の駆動力と展開速度制御を実現したものであ
る。これを図6(a)乃至図6(c)に基づいて説明す
る。図6(a)は収納時形状、図6(b)は展開途中形
状、図6(c)は展開後形状を示す図で、実施の形態1
における図2(a)乃至図2(c)に相応する。
Embodiment 3 The third embodiment is different from the synchronous deployment truss structure of the first embodiment in that the telescopic diagonal member 15 is used.
In addition, a driving force for deployment and deployment speed control are realized by using a wire and a rotating drum instead of the control motor 21. This will be described with reference to FIGS. 6A to 6C. FIG. 6A is a diagram showing a shape at the time of storage, FIG. 6B is a diagram showing a shape during deployment, and FIG. 6C is a diagram showing a shape after deployment.
2 (a) to 2 (c) in FIG.

【0030】図6(a)乃至図6(c)において、図中
の符号30はループワイヤである。この一本のループワ
イヤ30は、その一端が後述の回転ドラム32側に固定
され、その他端側が同期展開トラス12側に延在してい
る。同期展開トラス12側に延在するループワイヤ30
の中間部は、同期展開トラス12を構成する各平行四辺
形リンクの対角線の位置、即ち斜め部材15の位置に延
在するように配設されて、同期展開トラス12の周方向
に一巡している。31は伝達プーリーであり、各平行四
辺形リンクの縦部材14に取り付けられ、上記ループワ
イヤ30の方向を変換し、隣接する平行四辺形リンクに
移行させる。回転ドラム32は、ループワイヤ30を巻
き取ったり巻解いたりするドラムで、同期展開トラス1
2の適所に装備されている。
6A to 6C, reference numeral 30 in the drawings denotes a loop wire. One end of this one loop wire 30 is fixed to the rotary drum 32 described later, and the other end extends to the synchronous deployment truss 12 side. Loop wire 30 extending to synchronous deployment truss 12 side
Is disposed so as to extend at a diagonal position of each parallelogram link constituting the synchronous deployment truss 12, that is, at a position of the oblique member 15, and makes a round in the circumferential direction of the synchronous deployment truss 12. I have. Reference numeral 31 denotes a transmission pulley, which is attached to the vertical member 14 of each parallelogram link, changes the direction of the loop wire 30 and shifts the loop wire 30 to the adjacent parallelogram link. The rotating drum 32 is a drum that winds and unwinds the loop wire 30,
It is equipped in two places.

【0031】次にこの実施の形態3の動作について説明
する。先ず、収納時、図示されていない鏡面保持機構が
解放されると、回転ドラム32が回転してループワイヤ
30を巻き取り始める。ループワイヤ30が巻き取られ
て行くと、ループワイヤ30は、伝達プーリー31によ
って方向転換されながら、各平行四辺形リンクの対角線
上に配回されているため、対角線の短縮に応じて、同期
展開トラス12を構成する各平行四辺形リンクは、図6
(b)に示すように、横部材13が回転し、長方形状に
向かって変形して行く。この横部材13の回転角θは、
上記実施の形態1の場合では歯車端子16に、上記実施
の形態2の場合では同期ベルト29によって、同期が達
成され、展開即ち回転速度は回転ドラム32の回転速度
の制御により達成される。この実施の形態3では、実施
の形態1或いは2で使用される、複雑な伸縮機構部品を
有する伸縮部材15を用いること無く、適宜配設された
伝達プーリー31に掛けまわされ、各平行四辺形リンク
の対角線上を延在して行く一本のループワイヤ30を回
転ドラムで巻き取る構成であるため、軽量で安価な同期
展開トラスが得られる。
Next, the operation of the third embodiment will be described. First, at the time of storage, when a mirror holding mechanism (not shown) is released, the rotary drum 32 rotates to start winding the loop wire 30. As the loop wire 30 is wound up, the loop wire 30 is arranged on the diagonal of each parallelogram link while being turned by the transmission pulley 31, so that the loop wire 30 is synchronously developed according to the shortening of the diagonal. Each parallelogram link constituting the truss 12 is shown in FIG.
As shown in (b), the horizontal member 13 rotates and deforms toward a rectangular shape. The rotation angle θ of the lateral member 13 is
Synchronization is achieved by the gear terminal 16 in the case of the first embodiment and by the synchronous belt 29 in the case of the second embodiment, and the development, that is, the rotation speed is achieved by controlling the rotation speed of the rotary drum 32. In the third embodiment, each parallelogram is hung on the appropriately arranged transmission pulley 31 without using the telescopic member 15 having a complicated telescopic mechanism component used in the first or second embodiment. Since one loop wire 30 extending on the diagonal line of the link is wound by a rotating drum, a lightweight and inexpensive synchronous deployment truss can be obtained.

【0032】[0032]

【発明の効果】請求項1の発明によれば、従来の膨張ト
ーラスを、構成部材が一様で、制御された速度で展開
し、全体形状が相似的に変形し且つ展開する同期展開ト
ラスで置き換えたので、膨張時の形状制御が可能な鏡面
を備えた宇宙用膨張アンテナを提供できる。
According to the first aspect of the present invention, a conventional inflating torus is developed by a synchronous deploying truss in which the constituent members are deployed uniformly and at a controlled speed, and the overall shape is deformed and deployed similarly. Because of the replacement, it is possible to provide a space expansion antenna having a mirror surface capable of controlling the shape during expansion.

【0033】請求項2の発明によれば、風船膜の外側表
面に格子網を取り付けたので、材料・寸法のバラツキに
対しても鏡面劣化の少ない高精度なアンテナ鏡面を備え
た宇宙用膨張アンテナを提供できる。
According to the second aspect of the present invention, since the lattice network is attached to the outer surface of the balloon film, a space expansion antenna having a high-precision antenna mirror surface with little mirror deterioration even with respect to variations in materials and dimensions. Can be provided.

【0034】請求項3の発明によれば、伸縮可能な斜め
部材を有し、横部材の端部に歯車を装着した平行四辺形
リンクを、隣接する横部材の歯車が噛み合うように、環
状に直列に結合したトラス構造と、上記歯車を回転させ
る駆動系とを備えた同期展開トラス構造としたので、膨
張展開制御が可能なアンテナ鏡面を備えた宇宙用膨張ア
ンテナを提供できる。
According to the third aspect of the present invention, the parallelogram link having the diagonal member which can be extended and contracted and the gear attached to the end of the horizontal member is formed into an annular shape so that the gears of the adjacent horizontal member mesh with each other. Since the synchronous deployment truss structure includes a truss structure connected in series and a drive system for rotating the gear, a space expansion antenna having an antenna mirror surface capable of expansion and deployment control can be provided.

【0035】請求項4の発明によれば、対角線上に張架
されたループワイヤを有し、横部材の端部に歯車が装着
された平行四辺形リンクを、互いに隣接する横部材の歯
車が噛み合うように、環状に直列に結合したトラス構造
と、上記歯車を回転させる駆動系とを備えた同期展開ト
ラス構造としたので、膨張展開制御が可能なアンテナ鏡
面を得た備えた宇宙用膨張アンテナを提供できる。
According to the fourth aspect of the present invention, a parallelogram link having a loop wire stretched on a diagonal line and having a gear mounted on an end of the horizontal member is connected to a gear of a horizontal member adjacent to each other. A synchronous expansion truss structure including a truss structure connected in series in a ring so as to mesh with each other, and a drive system for rotating the gears, so that a space expansion antenna having an antenna mirror surface capable of expansion and deployment control is provided. Can be provided.

【0036】請求項5の発明によれば、伸縮可能な斜め
部材を有し、横部材の端部にプーリーを装着した平行四
辺形リンク複数個を、互いに隣接する横部材のプーリー
間をベルトで結合したトラス構造と、上記プーリーを回
転させる駆動系とを備えた同期展開トラス構造としたの
で、膨張展開制御が可能なアンテナ鏡面を備えた宇宙用
膨張アンテナを提供できる。又、歯車端子に代えて、プ
ーリーと同期ベルトとに置き換えることで、厳しい熱変
形下でも、低い抵抗のままで展開同期性を確保すること
ができる。
According to the fifth aspect of the present invention, a plurality of parallelogram links having a diagonal member which can be extended and contracted, and a pulley attached to an end of the horizontal member, and a belt between the pulleys of the adjacent horizontal members. Since the synchronous deployment truss structure includes the coupled truss structure and the drive system for rotating the pulley, it is possible to provide a space expansion antenna having an antenna mirror surface capable of controlling expansion and deployment. Further, by replacing the gear terminal with a pulley and a synchronous belt, even under severe thermal deformation, deployment synchronization can be ensured with a low resistance.

【0037】請求項6の発明によれば、対角線上に張架
されたループワイヤを有し、横部材の端部にプーリーが
装着された平行四辺形リンク複数個を、互いに隣接する
横部材のプーリー間をベルトで結合したトラス構造と、
上記プーリーを回転させる駆動系とを備えた同期展開ト
ラス構造としたので、膨張展開制御が可能なアンテナ鏡
面を備えた宇宙用膨張アンテナを提供できる。
According to the sixth aspect of the present invention, a plurality of parallelogram links each having a loop wire stretched on a diagonal line and having a pulley attached to an end of the cross member are connected to the cross member of the adjacent cross member. A truss structure in which pulleys are connected with a belt,
Since the synchronous deployment truss structure includes a drive system for rotating the pulley, a space expansion antenna having an antenna mirror surface capable of controlling expansion and deployment can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1のアンテナ鏡面の構造図で、
(a)は電波軸から見た鏡面平面図、(b)は風船膜1
0の側面図、(c)は同期展開トラスの構造を示す側面
図である。
FIG. 1 is a structural diagram of a mirror surface of an antenna according to a first embodiment;
(A) is a mirror plan view from the radio axis, (b) is a balloon film 1
0 is a side view showing the structure of the synchronous deployment truss.

【図2】 実施の形態1の同期展開トラスの基本周期部
分の構造及び動作を詳細に示す図で、(a)はロケット
に収納された収納時の形状を示す図、(b)は展開途中
の形状を示す図、(c)は展開完了後の形状を示す図で
ある。
FIGS. 2A and 2B are diagrams showing in detail the structure and operation of a basic period portion of the synchronous deployment truss according to the first embodiment, wherein FIG. (C) is a diagram showing the shape after the development is completed.

【図3】 実施の形態1の横部材と縦部材との結合部の
詳細を示す分解図である。
FIG. 3 is an exploded view showing details of a joint between a horizontal member and a vertical member according to the first embodiment.

【図4】 実施の形態1の斜め部材としての伸縮斜材の
構成を示す断面図である。
FIG. 4 is a cross-sectional view illustrating a configuration of an elastic oblique member as the oblique member according to the first embodiment.

【図5】 実施の形態2の互いに隣接する横部材のプー
リー同士が出会わされた状態を示す側面図である。
FIG. 5 is a side view showing a state where pulleys of horizontal members adjacent to each other in Embodiment 2 meet each other.

【図6】 実施の形態3の同期展開トラス構造を示す図
で、(a)は収納時形状を示す図、(b)は展開途中形
状を示す図、(c)は展開後形状を示す図である。
FIGS. 6A and 6B are diagrams showing a synchronously deployed truss structure according to the third embodiment, wherein FIG. 6A is a diagram showing a shape at the time of storage, FIG. 6B is a diagram showing a shape during deployment, and FIG. It is.

【図7】 従来の宇宙用膨張アンテナの斜視図である。FIG. 7 is a perspective view of a conventional space expansion antenna.

【図8】 図7の鏡面の断面図である。FIG. 8 is a sectional view of the mirror surface of FIG. 7;

【符号の説明】[Explanation of symbols]

1 衛星、2 収納箱、3 膨張ストラット、4 膨張
トーラス、5 張架索、6 縫合部、7 透過膜、8
プラスチック膜、9 アルミコート、10 風船膜、1
1 格子網、12 同期展開トラス(円環状支持体)、
13 横部材、14 縦部材、15 伸縮斜材、16
歯車端子(歯車)、18 縦部材端子、21 制御モー
タ(駆動系・展開制御手段)、22 外パイプ、24
内パイプ、28 プーリー、29 同期ベルト、30
ループワイヤ、31 伝達プーリー、32 回転ドラム
(駆動系・展開制御手段)。
1 satellite, 2 storage box, 3 inflatable strut, 4 inflatable torus, 5 cable, 6 suture, 7 permeable membrane, 8
Plastic film, 9 Aluminum coat, 10 Balloon film, 1
1 lattice network, 12 synchronous deployment truss (annular support),
13 horizontal member, 14 vertical member, 15 telescopic diagonal material, 16
Gear terminal (gear), 18 vertical member terminal, 21 control motor (drive system / deployment control means), 22 outer pipe, 24
Inner pipe, 28 pulley, 29 synchronous belt, 30
Loop wire, 31 transmission pulley, 32 rotating drum (drive system / deployment control means).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 風船膜と当該風船膜の周縁外側に位置し
当該風船膜を支持する円環状支持体とを有する宇宙用膨
張膜アンテナにおいて、 上記円環状支持体は、構成部材が一様で、制御された速
度で展開し、全体形状が相似的に変形し且つ展開する同
期展開トラス構造としたことを特徴とする宇宙用膨張膜
アンテナ。
1. An inflatable membrane antenna for space having a balloon membrane and an annular support positioned outside the periphery of the balloon membrane and supporting the balloon membrane, wherein the annular support has a uniform component. An inflatable membrane antenna for space, characterized in that it has a synchronous deployment truss structure that deploys at a controlled speed and deforms and deploys in a similar manner in overall shape.
【請求項2】 風船膜の電波入射側膜と電波反射側膜と
の何れか一方又は双方の外表面に誘電体の細線で形成さ
れた格子網を接合したことを特徴とする請求項1に記載
の宇宙用膨張膜アンテナ。
2. The method according to claim 1, wherein a lattice network formed by a dielectric thin wire is joined to one or both of the outer surfaces of the radio wave incident side film and the radio wave reflection side film of the balloon film. An inflatable membrane antenna for space as described in the above.
【請求項3】 同期展開トラス構造は、伸縮可能な斜め
部材を有し、下部、或いは上部横部材の端部に歯車が装
着された平行四辺形リンク複数個を、互いに隣接する横
部材の歯車が噛み合うように、環状に直列に結合したト
ラス構造と、上記歯車を直接的或いは間接的に回転制御
する駆動系とを備えた構造であることを特徴とする請求
項1又は請求項2に記載の宇宙用膨張膜アンテナ。
3. The synchronous deployment truss structure has a diagonal member that can be extended and retracted, and a plurality of parallelogram links each having a gear attached to an end of a lower or upper transverse member and a gear of a transverse member adjacent to each other. 3. The truss structure according to claim 1, wherein the truss structure includes a truss structure connected in series in a ring so that the gears mesh with each other, and a drive system that directly or indirectly controls the rotation of the gear. 4. Inflatable membrane antenna for space.
【請求項4】 同期展開トラス構造は、対角線上に張架
されたループワイヤを有し、下部、或いは上部横部材の
端部に歯車が装着された平行四辺形リンク複数個を、互
いに隣接する横部材の歯車が噛み合うように、環状に直
列に結合したトラス構造と、上記歯車を直接的或いは間
接的に回転制御する駆動系とを備えた構造であることを
特徴とする請求項1又は請求項2に記載の宇宙用膨張膜
アンテナ。
4. The synchronous deployment truss structure has a loop wire stretched diagonally, and a plurality of parallelogram links having gears attached to ends of lower or upper cross members are adjacent to each other. 2. A structure comprising a truss structure which is annularly connected in series so that gears of a lateral member mesh with each other, and a drive system which directly or indirectly controls the rotation of the gears. Item 3. An inflatable film antenna for space according to item 2.
【請求項5】 同期展開トラス構造は、伸縮可能な斜め
部材を有し、下部、或いは上部横部材の端部にプーリー
が装着された平行四辺形リンク複数個を、互いに隣接す
る横部材のプーリー間をベルトを介して結合したトラス
構造と、上記プーリーを直接的或いは間接的に回転制御
する駆動系とを備えた構造であることを特徴とする請求
項1又は請求項2に記載の宇宙用膨張膜アンテナ。
5. The synchronous deployment truss structure has a diagonal member that can be extended and retracted, and a plurality of parallelogram links each having a pulley attached to an end of a lower or upper horizontal member, and pulleys of adjacent horizontal members. 3. The space according to claim 1, wherein the truss structure has a truss structure in which the pulleys are connected via a belt, and a drive system that directly or indirectly controls the rotation of the pulley. Inflatable membrane antenna.
【請求項6】 同期展開トラス構造は、対角線上に張架
されたループワイヤを有し、下部、或いは上部横部材の
端部にプーリーが装着された平行四辺形リンク複数個
を、互いに隣接する横部材のプーリー間をベルトを介し
て結合したトラス構造と、上記プーリーを直接的或いは
間接的に回転制御する駆動系とを備えた構造であること
を特徴とする請求項1又は請求項2に記載の宇宙用膨張
膜アンテナ。
6. The synchronous deployment truss structure has a loop wire stretched diagonally, and a plurality of parallelogram links each having a pulley attached to an end of a lower or upper cross member are adjacent to each other. 3. A structure comprising a truss structure in which pulleys of a horizontal member are connected via a belt, and a drive system for directly or indirectly controlling the rotation of the pulleys. An inflatable membrane antenna for space as described in the above.
JP2000008150A 2000-01-17 2000-01-17 Expansion membrane antenna for space Expired - Fee Related JP3868689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008150A JP3868689B2 (en) 2000-01-17 2000-01-17 Expansion membrane antenna for space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008150A JP3868689B2 (en) 2000-01-17 2000-01-17 Expansion membrane antenna for space

Publications (2)

Publication Number Publication Date
JP2001196843A true JP2001196843A (en) 2001-07-19
JP3868689B2 JP3868689B2 (en) 2007-01-17

Family

ID=18536467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008150A Expired - Fee Related JP3868689B2 (en) 2000-01-17 2000-01-17 Expansion membrane antenna for space

Country Status (1)

Country Link
JP (1) JP3868689B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048737A2 (en) * 2001-12-05 2003-06-12 The Johns Hopkins University Expandable sensor array
KR101214545B1 (en) 2009-09-14 2012-12-24 한국전자통신연구원 Length adjusting device for cable-network antenna's tension-tie
CN104900978A (en) * 2015-05-13 2015-09-09 上海宇航系统工程研究所 Periphery type space mesh equal-bottom expanding and gathering mechanism
CN110206149A (en) * 2019-06-19 2019-09-06 郑州大学 A kind of large span lower electromagnetic loss plane membrane structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU201366U1 (en) * 2020-02-04 2020-12-11 Александр Витальевич Лопатин Parabolic transformable torus reflector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048737A2 (en) * 2001-12-05 2003-06-12 The Johns Hopkins University Expandable sensor array
WO2003048737A3 (en) * 2001-12-05 2003-10-30 Univ Johns Hopkins Expandable sensor array
GB2396921A (en) * 2001-12-05 2004-07-07 Univ Johns Hopkins Expandable sensor array
US6801475B2 (en) 2001-12-05 2004-10-05 The Johns Hopkins University Expandable sensor array
KR101214545B1 (en) 2009-09-14 2012-12-24 한국전자통신연구원 Length adjusting device for cable-network antenna's tension-tie
CN104900978A (en) * 2015-05-13 2015-09-09 上海宇航系统工程研究所 Periphery type space mesh equal-bottom expanding and gathering mechanism
CN104900978B (en) * 2015-05-13 2018-01-12 上海宇航系统工程研究所 A kind of perimetric pattern spatial networks Deng Dizhanshou mechanisms
CN110206149A (en) * 2019-06-19 2019-09-06 郑州大学 A kind of large span lower electromagnetic loss plane membrane structure
CN110206149B (en) * 2019-06-19 2020-09-01 郑州大学 Large-span low-electromagnetic-loss planar membrane structure

Also Published As

Publication number Publication date
JP3868689B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
US3618111A (en) Expandable truss paraboloidal antenna
EP3480885B1 (en) Deployable antenna reflector
US5990851A (en) Space deployable antenna structure tensioned by hinged spreader-standoff elements distributed around inflatable hoop
JP3291481B2 (en) Combination structure of photovoltaic array and deployable RF reflector
US9755318B2 (en) Mesh reflector with truss structure
JPH1141027A (en) Antenna and its arranging method
WO2005027186A2 (en) Expansion-type reflection mirror
EP3598576B1 (en) Reflecting systems, such as reflector antenna systems, with tension-stabilized reflector positional apparatus
JP2019512191A (en) Foldable RF membrane antenna
WO2015130505A1 (en) Mesh reflector with truss structure
US6229501B1 (en) Reflector and reflector element for antennas for use in outer space and a method for deploying the reflectors
KR101754234B1 (en) Antenna on boarding a satellite
JP2008187650A (en) Deployable antenna
JPH10135725A (en) Synchronous rotating two-axes machine hinge assembly
JP2001196843A (en) Expandable film antenna for outer space
JP7459237B2 (en) Deployable assembly for antenna
JP3516648B2 (en) Method and apparatus for mesh folding of deployable mesh antenna
JP4877809B2 (en) Deployable antenna
JP2005086698A (en) Developable antenna
US3495250A (en) Expandable cavity-backed spiral antenna
RU2795105C1 (en) Deployable antenna assembly
JPH04288705A (en) Horn antenna
JP4512755B2 (en) Deployable mesh antenna, its folding device, and its folding method
JP3889384B2 (en) Deployment antenna
JPS6249709A (en) Expansion type antenna reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees