JP3868651B2 - Induction heating coil - Google Patents

Induction heating coil Download PDF

Info

Publication number
JP3868651B2
JP3868651B2 JP03115899A JP3115899A JP3868651B2 JP 3868651 B2 JP3868651 B2 JP 3868651B2 JP 03115899 A JP03115899 A JP 03115899A JP 3115899 A JP3115899 A JP 3115899A JP 3868651 B2 JP3868651 B2 JP 3868651B2
Authority
JP
Japan
Prior art keywords
long material
induction heating
conductor
heating coil
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03115899A
Other languages
Japanese (ja)
Other versions
JP2000234122A (en
Inventor
和範 佐野
和秀 古市
利治 有島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP03115899A priority Critical patent/JP3868651B2/en
Publication of JP2000234122A publication Critical patent/JP2000234122A/en
Application granted granted Critical
Publication of JP3868651B2 publication Critical patent/JP3868651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、長尺材の長手方向に沿って相対的に移動しながらこの長尺材を誘導加熱する誘導加熱コイルに関する。
【0002】
【従来の技術】
従来から、誘導加熱を利用して鋼材などの被処理物(ワーク)の表面層を硬化させる高周波焼入れが広く用いられている。この高周波焼入れでは、被処理物を加熱する際に誘導加熱コイルが使用される。被処理物として例えば複数本の長尺材を高周波焼入れする際には、誘導加熱コイルを固定しておき、複数本の長尺材を順に連続してその長手方向に移動させながら誘導加熱コイルで加熱し、その後急冷して硬化させる。
【0003】
このように複数本の長尺材を連続して加熱する場合、この長尺材の側壁のうち長手方向両端部では長尺材の端面にも誘導電流(渦電流)が流れる。このため、誘導電流が端面に流れた分だけ、長手方向両端部の側壁の表面層に流れる誘導電流が少なくなり、この表面層が焼入温度にまで加熱されにくい。この場合、長手方向両端部近傍の側壁の表面層は充分に硬化されず、所謂「焼逃げ」が長手方向両端部に発生することとなる。
【0004】
このような「焼逃げ」は、長尺材のうちの加熱スタート側の端部に顕著に発生する。また、「焼逃げ」は、複数本の長尺材を連続して高周波焼入れする場合に限らず、一本の長尺材を高周波焼入れするときにもその両端部に発生する。さらに、歯車の歯先を高周波焼入れするときにも歯先の両端部に発生することがある。
【0005】
ところで、長尺材を高周波焼入れする際は、通常、硬化させたい部分に誘導電流が発生するような誘導加熱コイルを用いてこの部分を焼入温度まで加熱する。この場合、硬化させたい部分だけでなく他の部分も焼入温度まで加熱され、この他の部分も硬化することがある。
【0006】
【発明が解決しようとする課題】
上記したような「焼逃げ」が発生した複数本の長尺材を互いに接続しさらに長くして使用する場合、未硬化部分(焼逃げ部分)を除去するために、各長尺材の長手方向両端部を切断する。従って、切断作業の費用が必要となり、しかも、長手方向両端部に相当する分の材料が無駄になるという問題がある。
【0007】
また、歯車の歯先を高周波焼入れするときに歯先の両端部に「焼逃げ」が発生すると、歯車を使用中に歯先の両端部にピッチングが起こるなどして歯車の寿命が短くなるという問題がある。
【0008】
ところで、上述したように、長尺材を高周波焼入れする際には、硬化させたい部分だけでなく、他の部分も焼入温度まで加熱されて硬化することがある。この場合、硬化した他の部分に孔開けなどの加工を施すことがある。しかし、硬化した他の部分は加工しにくく、加工作業に手間がかかるという問題がある。
【0009】
本発明は、上記事情に鑑み、長尺材の側壁の長手方向一端から他端までを充分に加熱して「焼逃げ」を防止できると共に、所望の部分だけを適確に加熱できる誘導加熱コイルを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明の誘導加熱コイルは、長手方向に延びる溝が側壁に形成された長尺材の上記長手方向に沿って相対的に移動しながらこの長尺材を誘導加熱する誘導加熱コイルにおいて、
(1)所定方向に延びる第1導体部と、
(2)この第1導体部に並行に延びる第2導体部と、
(3)上記第1導体部の一端と上記第2導体部の一端とを電気的に接続する、これら第1及び第2導体部に略直交する方向に延びる「く」字状の第3導体部と
を備えたことを特徴とするものである。
【0011】
ここで、
(4)上記第1導体部は、上記長尺材の上壁のうち、上記長手方向に直交する幅方向の端部の近傍をこの端部に沿って上記長手方向に延びるものであり、
(5)上記第2導体部は、上記溝の近傍をこの溝に沿って延びるものであり、
(6)上記第3導体部は、上記長尺材から遠ざかるように配置されるものであってもよい。
【0012】
また、誘導加熱コイルは、
(7)上記長尺材の下壁の近傍に位置する、上記第2導体部に電気的に接続された第4導体部を備えてもよい。
【0013】
さらに、
(8)上記長尺材は、上記長手方向に延びる溝がこの長尺材の左右両側壁それぞれに形成されたものであり、
(9)上記第1、第2及び第3導体部それぞれは、互いに向き合う一対のものであってもよい。
【0014】
さらにまた、
(10)上記第4導体部は、上記長尺材の下壁のうち、上記長手方向に直交する幅方向の両端の近傍にそれぞれ配置される一対の導体からなるものであってもよい。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の誘導加熱コイルを説明する。
【0016】
図1、図2を参照して、本発明の誘導加熱コイルの一実施形態を説明する。
【0017】
図1は、誘導加熱コイルの一実施形態を示す斜視図であり、図2は、図1の誘導加熱コイルを模式的に示す斜視図である。
【0018】
誘導加熱コイル10は、所定方向(ここでは、後述するように長尺材の長手方向であって、この長尺材の搬送方向でもある)に延びる第1導体部20と、この第1導体部20に並行に延びる第2導体部30とを備えている。第1導体部20の一端20aと第2導体部30の一端30aは「く」字状の第3導体部40を介して電気的に接続されている。「く」字状の第3導体部40は、第1及び第2導体部20,30に直交する平面上に配設されている。また、第1導体部20の他端20bは高周波電源(図示せず)に接続されている。
【0019】
第2導体部30の他端30bは、第1及び第2導体部20,30に直交してこれらから遠ざかる方向に延びる導体部50の一端50aに電気的に接続されている。この導体部50の他端50bは、ここから直角に折れ曲がって第2導体部30に並行に延びる導体部60の他端60bに電気的に接続されている。導体部60の一端60aは、導体部50,60双方に直交する方向に延びる導体部70の一端70aに電気的に接続されている。
【0020】
導体部70の他端70bは第4導体部80の一端80aに電気的に接続されており、この第4導体部80は第1及び第2導体部20,30に並行に延びている。上記した4つの導体部20,30,60,80はほぼ同じ長さである。第4導体部80の他端80bは、導体部70に並行に延びる導体部90の一端90aに電気的に接続されている。この導体部90の中央(一端90aと他端90bの中央)を直交して通る平面を対称面にしたとき、誘導加熱コイル10には、上記した第1導体部20、第2導体部30、第3導体部40、導体部50、導体部60、導体部70、第4導体部80と左右対称になるような第1導体部120、第2導体部130、第3導体部140、導体部150、導体部160、導体部170、第4導体部180が形成されている。これら各導体部120,130,140,150,160,170,180はそれぞれ対応する導体部20,30,40,50,60,70,80に向き合っている。
【0021】
誘導加熱コイル10は絶縁板(ベーク材)100に固定されている。この絶縁板100の中央部には矩形状の孔102が形成されており、この孔102を長尺材(被処理物)200(図5等参照)が通り抜ける。図3(a)に示すように、長尺材200が孔102を通り抜けて矢印A方向(図5参照)に搬送される際、長尺材200の上壁202のうち、この長尺材200の長手方向(矢印A方向)に直交する幅方向の両端部202aの近傍にはそれぞれ第1導体部20,120がこの両端部202aに沿って長手方向に延び、両端部202aに渦電流が生じることとなる。
【0022】
また、図5に示すように、長尺材200の側壁204には長手方向に延びる溝206が形成されている。長尺材200が孔102を通り抜けて矢印A方向(図5参照)に搬送される際には、図3(a)に示すように、第2導体部30,130が溝206に沿って延び、この溝206の側面には渦電流が生じることとなる。なお、第3導体部40,140は、長尺材200から遠ざかるように配置されるので、この第3導体部40,140を流れる交流電流によっては長尺材200に渦電流がほとんど生じない。
【0023】
図3から図5までを参照して、誘導加熱コイル10によって長尺材200に生じる渦電流を、従来の誘導加熱コイルの場合と比較して説明する。
【0024】
図3は、長尺材の側壁に向き合って配置された誘導加熱コイルを示す、(a)は本発明の誘導加熱コイルの場合を示す横断面図、(b)は従来の誘導加熱コイルの場合を示す横断面図である。図4は、長尺材の側壁と誘導加熱コイルの位置を示す、(a)は本発明の誘導加熱コイルの場合の概略を示す側壁図、(b)は従来の誘導加熱コイルの場合の概略を示す側壁図であり、渦電流が二点鎖線で模式的に示されている。図5は、長尺材に発生した渦電流を模式的に示す、(a)は本発明の誘導加熱コイルを用いたときの斜視図、(b)は従来の誘導加熱コイルを用いたときの斜視図であり、渦電流が二点鎖線で模式的に示されている。
【0025】
被処理物である長尺材200の側壁204には、上述したように、この長尺材200の長手方向(矢印A方向)に延びる溝206が形成されている(図4では図示せず)。本発明の誘導加熱コイル10を用いて長尺材200の側壁204を加熱する際、図3(a)に示すように、誘導加熱コイル10の第1導体部20,120が上壁202の幅方向の両端部202aの近傍に位置する。また、誘導加熱コイル10の第2導体部30,130が溝206の近傍に位置する。さらに、第4導体部80,180は、下壁208の幅方向両端部208aの近傍に位置する。なお、第3導体部40,140は、側壁204から離れている。
【0026】
長尺材200と誘導加熱コイル10の位置関係を上記のように保ったままこの長尺材200を長手方向(図3の紙面に垂直な方向)に所定速度で搬送する。この搬送の間、誘導加熱コイル10には、例えば電圧360V、周波数5.8kHzの高周波電力75kWが供給される。
【0027】
一方、図3(b)に示すように、従来の誘導加熱コイル300は、向き合った一対の「L」字状の導体部302,304を備えており、各導体部302,304は電気的に接続されている。従来の誘導加熱コイル300を用いて長尺材200の側壁204を加熱するに当っては、図5(b)に示すように、導体部30を長尺材200の溝206に所定間隔離れた状態で接近させ、長尺材200をその長手方向に所定速度で搬送する。この搬送の間、誘導加熱コイル300には、例えば電圧360V、周波数5.8kHzの高周波電力75kWが供給される。
【0028】
上述のようにして本発明の誘導加熱コイル10を用いて長尺材200を誘導加熱する際にこの長尺材200に生じる渦電流12と、従来の誘導加熱コイル300を用いて長尺材200を誘導加熱する際にこの長尺材200に生じる渦電流14とを比較して図4、図5に示す。
【0029】
本発明の誘導加熱コイル10を用いた場合、図4(a)と図5(a)に示すように、長尺材200には、上壁202の両端部202aと溝206の側面とに分散された渦電流12が生じる。このように渦電流12が被加熱部分だけに生じるように分散されており、硬化させたくない部分には渦電流が生じないので、この部分はほとんど加熱されない。また、このような分散された渦電流12は長手方向での加熱効率が良い。このため、長尺材200の長手方向端部209であっても、長手方向中央部207と同程度に充分加熱される。
【0030】
即ち、長尺材200の側壁204の長手方向一端から他端までを充分に加熱できる。従って、長尺材200の両端部202aと溝206の側面とが焼入温度に加熱されるように電力条件を設定した場合、これらに対応する長手方向端部209の部分も焼入温度に加熱される。このため、加熱直後に加熱部分を急冷すると、長尺材200の両端部202aと溝206の側面も、これらに対応する長手方向端部209の部分も一様に硬化されて「焼逃げ」を無くすことができる。
【0031】
また、第4導体部80,180に流れる交流電流によって、長尺材200の下壁208のうち幅方向両端部208aには渦電流13が生じ、この部分は焼入温度まで加熱される。この部分を加熱直後に急冷すると硬化する。この硬化に起因して変形が生じることがあるが、この変形は、両端部202aと溝206の側面の硬化にも起因して生じる。両者の変形が打ち消しあって、長尺材200全体としては、幅方向両端部208aを硬化しないときよりも変形が低減する。
【0032】
一方、従来の誘導加熱コイル300を用いた場合、図4(b)と図5(b)に示すように、長尺材200の側壁204には、この側壁204の全体にわたって広がる渦電流14が生じる。このような渦電流14は加熱効率が悪い。このため、長尺材200の長手方向端部209では、長手方向中央部207ほどは充分に加熱されない。即ち、長尺材200の側壁204の長手方向端部209とそれ以外の部分とでは、加熱温度が異なる。従って、長手方向中央部207が焼入温度に加熱されるように電力条件を設定した場合、長手方向端部209では焼入温度にまで加熱されにくい。このため、加熱直後に加熱部分を急冷しても、長手方向端部209では「焼逃げ」が生じるおそれがある。
【0033】
図6と図7を参照して、本発明の誘導加熱コイルと従来の誘導加熱コイルを用いて長尺材を高周波焼入れしたときの、長手方向中央部の硬さ分布と長手方向端部の硬さ分布とを比較する。
【0034】
図6は、長尺材200の長手方向端部の焼入パターンを模式的に示す、(a)は、本発明の誘導加熱コイルを用いたときの焼入パターンを示す模式図、(b)は、従来の誘導加熱コイルを用いたときの焼入パターンを示す模式図である。図7は、図6におけるc,d,e,f方向の硬さ分布を示すグラフであり、(a)は、本発明の誘導加熱コイルを用いたときのグラフ、(b)は、従来の誘導加熱コイルを用いたときのグラフである。
【0035】
長尺材200の材質はS55C(JIS規格)相当であり、長さ900mm、側壁の幅W70mmとした。加熱条件は、電圧360V、周波数5.8kHz、高周波電力75kWとした。また、長尺材200の搬送速度(送り速度)は、6.5mm/秒とした。なお、長尺材200を固定しておき、誘導加熱コイル10,300を移動させるように構成してもよく、長尺材200と誘導加熱コイル10,300とが相対的に移動するように構成すればよい。
【0036】
本発明の誘導加熱コイル10を用いた場合、長尺材200の長手方向端部209の焼入パターンは図6(a)に示すようになる。この焼入パターンは、長尺材200の長手方向中央部207(図4(a)参照)においても同様であった。また、長尺材200の長手方向端部209でも長手方向中央部207でも、図7(a)に示すような一様な硬さ分布が得られた。即ち、本発明の誘導加熱コイル10を用いた場合は、長尺材200の長手方向端部209でも長手方向中央部207でも、一様な焼入パターンと一様な硬さ分布が得られた。
【0037】
一方、従来の誘導加熱コイル300を用いた場合、長尺材200の長手方向端部209の焼入パターンは図6(b)に示すようになり、長手方向中央部207の焼入パターンは図6(a)に示すようになった。また、長尺材200の長手方向端部209における硬さ分布は、図7(b)に示すようになり、長手方向中央部207における硬さ分布は、図7(a)に示すようになった。即ち、従来の誘導加熱コイル300を用いた場合は、長尺材200の長手方向端部209と長手方向中央部207とでは、焼入パターンと硬さ分布が相違し、「焼逃げ」が発生した。
【0038】
【発明の効果】
以上説明したように本発明の誘導加熱コイルを用いて長尺材を加熱するときは、例えば、長尺材の上壁のうち長手方向に直交する幅方向の端部の近傍を第1導体部が長手方向に沿って延びるように配置すると共に、第2導体部が溝の近傍をこの溝に沿って延びるように配置する。また、「く」字状の第3導体部が長尺材から遠ざかるように配置する。このような状態に第1、第2、及び第3導体部を配置し、これらに交流電流を流すと、第1導体部が上壁のうち幅方向の端部の近傍に位置しているので、この端部に強い渦電流が流れる。また、第2導体部が溝に沿って延びているので、この溝の近傍にも強い渦電流が流れる。一方、第3導体部は長尺材から遠ざかるように配置されているので、この第3導体部を流れる交流電流によっては長尺材に渦電流がほとんど発生しない。この結果、渦電流が上壁の幅方向端部の近傍と溝の近傍とに分散して流れ、これらの部分が集中的に加熱される。このため、これらの部分だけを適確に焼入温度まで加熱できる。即ち、所望の部分だけを適確に焼入温度にまで加熱できると共に、「焼き逃げ」も防止できることとなる。
【0039】
ここで、上記第1導体部は、上記長尺材の上壁のうち、上記長手方向に直交する幅方向の端部の近傍をこの端部に沿って上記長手方向に延びるものであり、かつ、上記第2導体部は、上記溝の近傍をこの溝に沿って延びるものであり、かつ、上記第3導体部は、上記長尺材から遠ざかるように延びるものである場合は、第1導体部が長尺材の上壁のうち長手方向に直交する幅方向の端部の近傍を長手方向に沿っていると共に、第2導体部が溝の近傍をこの溝に沿って延びている。また、「く」字状の第3導体部は長尺材から遠ざかるように延びている。従って、これら第1、第2、及び第3導体部に交流電流を流すと、第1導体部が上壁のうち幅方向の端部の近傍に位置しているので、この端部に強い渦電流が流れる。また、第2導体部が溝に沿って延びているので、この溝の近傍にも強い渦電流が流れる。一方、第3導体部は長尺材から遠ざかるように配置されているので、この第3導体部を流れる交流電流によっては長尺材に渦電流がほとんど発生しない。この結果、渦電流が上壁の幅方向端部の近傍と溝の近傍とに分散して流れ、これらの部分が集中的に加熱される。このため、これらの部分だけを適確に焼入温度まで加熱できる。即ち、所望の部分だけを適確に焼入温度にまで加熱できると共に、「焼き逃げ」も防止できることとなる。
【0040】
また、誘導加熱コイルが、上記長尺材の下壁の近傍に位置する、上記第2導体部に電気的に接続された第4導体部を備えた場合は、第1及び第2導体部で長尺材を加熱した後に急冷してこの長尺材を硬化した場合、第1及び第2導体部による渦電流は分散しているので、長尺材は部分的に加熱され、この加熱された部分だけが硬化する。このため、長尺材が変形するおそれがある。しかし、第4導体部で下壁を加熱し急冷して硬化させた場合、この硬化に起因する変形が、第1及び第2導体部で加熱されて硬化した部分に起因する変形と打ち消し合うので、長尺材全体の変形を低減できる。
【0041】
さらに、上記長尺材は、上記長手方向に延びる溝がこの長尺材の左右両側壁それぞれに形成されたものであり、かつ、上記第1、第2及び第3導体部それぞれは、互いに向き合う一対のものである場合は、一対の第1、第2及び第3導体部によって、上壁の幅方向の左右両端部の近傍と2つの溝の近傍とが適確に焼入温度まで加熱され、所望の部分だけを適確に加熱できることとなる。
【0042】
さらにまた、上記第4導体部は、上記長尺材の下壁のうち、上記長手方向に直交する幅方向の両端の近傍にそれぞれ配置される一対の導体からなるものである場合は、第1及び第2導体部によって加熱されて硬化した部分に起因する変形は、一対の導体からなる第4導体部で加熱されて硬化した部分に起因する変形によっていっそう確実に打ち消されるので、長尺材全体の変形がいっそう低減される。
【図面の簡単な説明】
【図1】本発明の誘導加熱コイルの一実施形態を示す斜視図である。
【図2】図1の誘導加熱コイルを模式的に示す斜視図である。
【図3】長尺材の側壁に向き合って配置された誘導加熱コイルを示す、(a)は本発明の誘導加熱コイルの場合を示す横断面図、(b)は従来の誘導加熱コイルの場合を示す横断面図である。
【図4】長尺材の側壁と誘導加熱コイルの位置を示す、(a)は本発明の誘導加熱コイルの場合の概略を示す側壁図、(b)は従来の誘導加熱コイルの場合の概略を示す側壁図であり、渦電流が二点鎖線で模式的に示されている。
【図5】長尺材に発生した渦電流を模式的に示す、(a)は本発明の誘導加熱コイルを用いたときの斜視図、(b)は従来の誘導加熱コイルを用いたときの斜視図であり、渦電流が二点鎖線で模式的に示されている。
【図6】長尺材の長手方向端部の焼入パターンを模式的に示す、(a)は、本発明の誘導加熱コイルを用いたときの焼入パターンを示す模式図、(b)は、従来の誘導加熱コイルを用いたときの焼入パターンを示す模式図である。
【図7】図6におけるc,d,e,f方向の硬さ分布を示すグラフであり、(a)は、本発明の誘導加熱コイルを用いたときのグラフ、(b)は、従来の誘導加熱コイルを用いたときのグラフである。
【符号の説明】
10 誘導加熱コイル
20,120 第1導体部
30,130 第2導体部
40,140 第3導体部
80,180 第4導体部
200 長尺材
202 長尺材の上壁
202a 上壁の両端部
204 長尺材の側壁
206 溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction heating coil that induction-heats a long material while relatively moving along the longitudinal direction of the long material.
[0002]
[Prior art]
Conventionally, induction hardening that hardens a surface layer of a workpiece (workpiece) such as steel using induction heating has been widely used. In this induction hardening, an induction heating coil is used when heating the workpiece. For example, when induction-hardening a plurality of long materials as an object to be processed, the induction heating coil is fixed, and the plurality of long materials are sequentially moved in the longitudinal direction with the induction heating coil. Heat, then quench and cure.
[0003]
When a plurality of long materials are continuously heated in this way, an induced current (eddy current) flows also on the end surfaces of the long material at both ends in the longitudinal direction among the side walls of the long material. For this reason, the induced current flowing in the surface layer of the side wall at both ends in the longitudinal direction is reduced by the amount of the induced current flowing in the end face, and this surface layer is hardly heated to the quenching temperature. In this case, the surface layer on the side wall in the vicinity of both ends in the longitudinal direction is not sufficiently cured, and so-called “burn-out” occurs at both ends in the longitudinal direction.
[0004]
Such “burn-out” is prominently generated at the end of the long material on the heating start side. In addition, “quenching” occurs not only when a plurality of long materials are continuously induction-hardened, but also at both ends when a single long material is induction-hardened. Furthermore, it may occur at both ends of the tooth tip when the gear tooth tip is induction-hardened.
[0005]
By the way, when the long material is induction-hardened, this part is usually heated to the quenching temperature by using an induction heating coil that generates an induction current in the part to be hardened. In this case, not only the part to be cured but also other parts are heated to the quenching temperature, and this other part may be cured.
[0006]
[Problems to be solved by the invention]
When a plurality of long materials with the above-mentioned “burn-out” are connected to each other and used longer, the longitudinal direction of each long material is used to remove the uncured portion (burn-out portion). Cut both ends. Therefore, there is a problem that the cost for the cutting work is required, and the material corresponding to both ends in the longitudinal direction is wasted.
[0007]
In addition, when the gear tip is induction hardened, if "burn-out" occurs at both ends of the tooth tip, the gear life is shortened due to pitching at both ends of the tooth tip during use of the gear. There's a problem.
[0008]
By the way, as described above, when the long material is induction-quenched, not only the portion to be cured but also other portions may be heated to the quenching temperature and cured. In this case, processing such as drilling may be applied to the other cured part. However, there is a problem in that the hardened other part is difficult to process, and the processing work is troublesome.
[0009]
In view of the above circumstances, the present invention is an induction heating coil that can sufficiently heat only one end of a long material side wall from one end to the other end to prevent “burn-out” and heat only a desired portion. The purpose is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an induction heating coil according to the present invention induction-heats a long material while relatively moving along the longitudinal direction of the long material in which a groove extending in the longitudinal direction is formed on a side wall. In induction heating coil,
(1) a first conductor portion extending in a predetermined direction;
(2) a second conductor portion extending in parallel with the first conductor portion;
(3) A "<"-shaped third conductor extending in a direction substantially orthogonal to the first and second conductor portions, electrically connecting one end of the first conductor portion and one end of the second conductor portion. And a section.
[0011]
here,
(4) The first conductor portion extends in the longitudinal direction along the end portion in the vicinity of the end portion in the width direction orthogonal to the longitudinal direction, of the upper wall of the long material.
(5) The second conductor portion extends in the vicinity of the groove along the groove,
(6) The third conductor portion may be disposed away from the long material.
[0012]
The induction heating coil
(7) You may provide the 4th conductor part electrically connected to the said 2nd conductor part located in the vicinity of the lower wall of the said elongate material.
[0013]
further,
(8) The long material has grooves extending in the longitudinal direction formed on the left and right side walls of the long material,
(9) Each of the first, second, and third conductor portions may be a pair of facing each other.
[0014]
Furthermore,
(10) The fourth conductor portion may be composed of a pair of conductors arranged in the vicinity of both ends in the width direction orthogonal to the longitudinal direction, of the lower wall of the long material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The induction heating coil of the present invention will be described below with reference to the drawings.
[0016]
An embodiment of the induction heating coil according to the present invention will be described with reference to FIGS.
[0017]
FIG. 1 is a perspective view showing an embodiment of the induction heating coil, and FIG. 2 is a perspective view schematically showing the induction heating coil of FIG.
[0018]
The induction heating coil 10 includes a first conductor portion 20 extending in a predetermined direction (here, the longitudinal direction of the long material and also the conveying direction of the long material as will be described later), and the first conductor portion. 20 and a second conductor portion 30 extending in parallel. One end 20 a of the first conductor portion 20 and one end 30 a of the second conductor portion 30 are electrically connected via a “<”-shaped third conductor portion 40. The “<”-shaped third conductor part 40 is disposed on a plane orthogonal to the first and second conductor parts 20, 30. The other end 20b of the first conductor portion 20 is connected to a high frequency power source (not shown).
[0019]
The other end 30b of the second conductor portion 30 is electrically connected to one end 50a of the conductor portion 50 that extends perpendicularly to the first and second conductor portions 20 and 30 and away from them. The other end 50 b of the conductor portion 50 is electrically connected to the other end 60 b of the conductor portion 60 that is bent at a right angle therefrom and extends in parallel to the second conductor portion 30. One end 60 a of the conductor portion 60 is electrically connected to one end 70 a of the conductor portion 70 extending in a direction orthogonal to both the conductor portions 50 and 60.
[0020]
The other end 70 b of the conductor part 70 is electrically connected to one end 80 a of the fourth conductor part 80, and the fourth conductor part 80 extends in parallel to the first and second conductor parts 20 and 30. The above-described four conductor portions 20, 30, 60, 80 have substantially the same length. The other end 80 b of the fourth conductor part 80 is electrically connected to one end 90 a of the conductor part 90 extending in parallel with the conductor part 70. When the plane passing through the center of the conductor part 90 (the center of the one end 90a and the other end 90b) is made symmetrical, the induction heating coil 10 includes the first conductor part 20, the second conductor part 30, The first conductor part 120, the second conductor part 130, the third conductor part 140, and the conductor part that are symmetrical with the third conductor part 40, the conductor part 50, the conductor part 60, the conductor part 70, and the fourth conductor part 80. 150, the conductor part 160, the conductor part 170, and the 4th conductor part 180 are formed. These conductor portions 120, 130, 140, 150, 160, 170, 180 face the corresponding conductor portions 20, 30, 40, 50, 60, 70, 80, respectively.
[0021]
The induction heating coil 10 is fixed to an insulating plate (baking material) 100. A rectangular hole 102 is formed in the central portion of the insulating plate 100, and a long material (object to be processed) 200 (see FIG. 5 and the like) passes through the hole 102. As shown in FIG. 3A, when the long material 200 passes through the hole 102 and is conveyed in the direction of arrow A (see FIG. 5), the long material 200 in the upper wall 202 of the long material 200. First conductor portions 20 and 120 extend in the longitudinal direction along both end portions 202a in the vicinity of both end portions 202a in the width direction orthogonal to the longitudinal direction (arrow A direction), and eddy currents are generated in both end portions 202a. It will be.
[0022]
As shown in FIG. 5, a groove 206 extending in the longitudinal direction is formed on the side wall 204 of the long material 200. When the long material 200 passes through the hole 102 and is conveyed in the direction of arrow A (see FIG. 5), the second conductor portions 30 and 130 extend along the groove 206 as shown in FIG. An eddy current is generated on the side surface of the groove 206. In addition, since the 3rd conductor parts 40 and 140 are arrange | positioned so that it may distance from the elongate material 200, an eddy current hardly arises in the elongate material 200 by the alternating current which flows through this 3rd conductor parts 40 and 140. FIG.
[0023]
With reference to FIGS. 3 to 5, the eddy current generated in the long material 200 by the induction heating coil 10 will be described in comparison with a conventional induction heating coil.
[0024]
FIG. 3 shows the induction heating coil arranged facing the side wall of the long material, (a) is a transverse sectional view showing the case of the induction heating coil of the present invention, and (b) is the case of the conventional induction heating coil. FIG. FIG. 4 shows the position of the side wall of the long material and the induction heating coil, (a) is a side view showing the outline in the case of the induction heating coil of the present invention, and (b) is the outline in the case of the conventional induction heating coil. The eddy current is schematically shown by a two-dot chain line. FIG. 5 schematically shows eddy currents generated in a long material, (a) is a perspective view when the induction heating coil of the present invention is used, and (b) is a case when a conventional induction heating coil is used. It is a perspective view, and an eddy current is typically shown by a two-dot chain line.
[0025]
As described above, a groove 206 extending in the longitudinal direction (arrow A direction) of the long material 200 is formed on the side wall 204 of the long material 200 that is a workpiece (not shown in FIG. 4). . When the side wall 204 of the long material 200 is heated using the induction heating coil 10 of the present invention, the first conductor portions 20 and 120 of the induction heating coil 10 have the width of the upper wall 202 as shown in FIG. It is located in the vicinity of both ends 202a in the direction. Further, the second conductor portions 30 and 130 of the induction heating coil 10 are located in the vicinity of the groove 206. Further, the fourth conductor portions 80 and 180 are located in the vicinity of both end portions 208 a in the width direction of the lower wall 208. Note that the third conductor portions 40 and 140 are separated from the side wall 204.
[0026]
While maintaining the positional relationship between the long material 200 and the induction heating coil 10 as described above, the long material 200 is transported at a predetermined speed in the longitudinal direction (direction perpendicular to the paper surface of FIG. 3). During this conveyance, the induction heating coil 10 is supplied with, for example, a high-frequency power of 75 kW having a voltage of 360 V and a frequency of 5.8 kHz.
[0027]
On the other hand, as shown in FIG. 3B, the conventional induction heating coil 300 includes a pair of “L” -shaped conductor portions 302 and 304 facing each other, and each of the conductor portions 302 and 304 is electrically connected. It is connected. When the side wall 204 of the long material 200 is heated using the conventional induction heating coil 300, the conductor portion 30 is separated from the groove 206 of the long material 200 by a predetermined interval as shown in FIG. The long material 200 is transported at a predetermined speed in the longitudinal direction. During this conveyance, the induction heating coil 300 is supplied with, for example, a high-frequency power of 75 kW having a voltage of 360 V and a frequency of 5.8 kHz.
[0028]
When the long material 200 is induction-heated using the induction heating coil 10 of the present invention as described above, the eddy current 12 generated in the long material 200 and the long material 200 using the conventional induction heating coil 300 are used. FIG. 4 and FIG. 5 show a comparison with the eddy current 14 generated in the long material 200 when induction heating is performed.
[0029]
When the induction heating coil 10 of the present invention is used, as shown in FIGS. 4A and 5A, the long material 200 is dispersed on both ends 202a of the upper wall 202 and the side surfaces of the grooves 206. Eddy current 12 is generated. Thus, since the eddy current 12 is dispersed so as to be generated only in the heated portion, and no eddy current is generated in the portion that is not desired to be cured, this portion is hardly heated. Further, such dispersed eddy current 12 has good heating efficiency in the longitudinal direction. For this reason, even the longitudinal end portion 209 of the long material 200 is sufficiently heated to the same extent as the longitudinal central portion 207.
[0030]
That is, the side wall 204 of the long material 200 can be sufficiently heated from one end to the other end in the longitudinal direction. Therefore, when the power condition is set so that both end portions 202a of the long material 200 and the side surfaces of the grooves 206 are heated to the quenching temperature, the corresponding portions of the longitudinal end portions 209 are also heated to the quenching temperature. Is done. For this reason, when the heated portion is rapidly cooled immediately after heating, both the end portions 202a of the long material 200 and the side surfaces of the grooves 206 and the portions of the longitudinal end portions 209 corresponding thereto are uniformly cured, and "burn-out" is caused. It can be lost.
[0031]
Moreover, the eddy current 13 is generated in the width direction both ends 208a of the lower wall 208 of the long material 200 by the alternating current flowing in the fourth conductor portions 80 and 180, and this portion is heated to the quenching temperature. If this part is cooled immediately after heating, it hardens. Although deformation may occur due to this hardening, this deformation also occurs due to the hardening of the side surfaces of both end portions 202 a and the groove 206. Both deformations cancel each other out, and the deformation of the long material 200 as a whole is reduced as compared with the case where the both ends 208a in the width direction are not cured.
[0032]
On the other hand, when the conventional induction heating coil 300 is used, as shown in FIGS. 4B and 5B, the side wall 204 of the long material 200 has an eddy current 14 spreading over the entire side wall 204. Arise. Such an eddy current 14 has poor heating efficiency. For this reason, the longitudinal direction end portion 209 of the long material 200 is not heated as much as the longitudinal direction central portion 207. That is, the heating temperature is different between the longitudinal end portion 209 of the side wall 204 of the long material 200 and the other portions. Accordingly, when the power condition is set so that the longitudinal center portion 207 is heated to the quenching temperature, the longitudinal end portion 209 is not easily heated to the quenching temperature. For this reason, even if the heated portion is rapidly cooled immediately after heating, there is a possibility that “burn-out” may occur at the longitudinal end portion 209.
[0033]
Referring to FIGS. 6 and 7, when a long material is induction-quenched using the induction heating coil of the present invention and the conventional induction heating coil, the hardness distribution at the longitudinal center and the hardness at the longitudinal end are as follows. Compare the distribution.
[0034]
FIG. 6 schematically shows a quenching pattern of the longitudinal end portion of the long material 200, (a) is a schematic diagram showing a quenching pattern when the induction heating coil of the present invention is used, and (b). These are the schematic diagrams which show a quenching pattern when the conventional induction heating coil is used. FIG. 7 is a graph showing the hardness distribution in the c, d, e, and f directions in FIG. 6, (a) is a graph when the induction heating coil of the present invention is used, and (b) is a conventional graph. It is a graph when an induction heating coil is used.
[0035]
The material of the long material 200 is equivalent to S55C (JIS standard), and has a length of 900 mm and a side wall width W of 70 mm. The heating conditions were a voltage of 360 V, a frequency of 5.8 kHz, and a high frequency power of 75 kW. Moreover, the conveyance speed (feeding speed) of the long material 200 was 6.5 mm / second. The long material 200 may be fixed and the induction heating coils 10 and 300 may be moved. The long material 200 and the induction heating coils 10 and 300 may be relatively moved. do it.
[0036]
When the induction heating coil 10 of the present invention is used, the quenching pattern of the longitudinal end portion 209 of the long material 200 is as shown in FIG. This quenching pattern was also the same in the longitudinal center portion 207 of the long material 200 (see FIG. 4A). Further, a uniform hardness distribution as shown in FIG. 7A was obtained at both the longitudinal end portion 209 and the longitudinal center portion 207 of the long material 200. That is, when the induction heating coil 10 of the present invention was used, a uniform quenching pattern and a uniform hardness distribution were obtained at both the longitudinal end 209 and the longitudinal center 207 of the long material 200. .
[0037]
On the other hand, when the conventional induction heating coil 300 is used, the quenching pattern of the longitudinal end portion 209 of the long material 200 is as shown in FIG. 6B, and the quenching pattern of the longitudinal center portion 207 is illustrated in FIG. 6 (a). Further, the hardness distribution at the longitudinal end portion 209 of the long material 200 is as shown in FIG. 7B, and the hardness distribution at the longitudinal center portion 207 is as shown in FIG. 7A. It was. That is, when the conventional induction heating coil 300 is used, the quenching pattern and the hardness distribution are different between the longitudinal end portion 209 and the longitudinal center portion 207 of the long material 200, and "burning out" occurs. did.
[0038]
【The invention's effect】
As described above, when a long material is heated using the induction heating coil of the present invention, for example, the first conductor portion is located near the end in the width direction orthogonal to the longitudinal direction on the upper wall of the long material. Is disposed so as to extend along the longitudinal direction, and the second conductor portion is disposed so as to extend in the vicinity of the groove along the groove. Further, the “<”-shaped third conductor portion is arranged so as to be away from the long material. When the first, second, and third conductor portions are arranged in such a state and an alternating current is passed through them, the first conductor portion is located near the end portion in the width direction of the upper wall. A strong eddy current flows through this end. In addition, since the second conductor portion extends along the groove, a strong eddy current flows also in the vicinity of the groove. On the other hand, since the third conductor portion is disposed away from the long material, an eddy current hardly occurs in the long material due to the alternating current flowing through the third conductor portion. As a result, the eddy current flows in a distributed manner in the vicinity of the end portion in the width direction of the upper wall and in the vicinity of the groove, and these portions are intensively heated. For this reason, only these portions can be accurately heated to the quenching temperature. That is, only a desired part can be heated to the quenching temperature accurately, and “burn-out” can be prevented.
[0039]
Here, the first conductor portion extends in the longitudinal direction along the end portion of the upper wall of the elongated material in the vicinity of the end portion in the width direction orthogonal to the longitudinal direction, and When the second conductor portion extends in the vicinity of the groove along the groove, and the third conductor portion extends away from the elongated material, the first conductor The portion extends along the longitudinal direction in the vicinity of the end portion in the width direction orthogonal to the longitudinal direction of the upper wall of the long material, and the second conductor portion extends in the vicinity of the groove along the groove. In addition, the “<”-shaped third conductor portion extends away from the long material. Therefore, when an alternating current is passed through the first, second, and third conductor portions, the first conductor portion is located near the end portion in the width direction of the upper wall. Current flows. In addition, since the second conductor portion extends along the groove, a strong eddy current flows also in the vicinity of the groove. On the other hand, since the third conductor portion is disposed away from the long material, an eddy current hardly occurs in the long material due to the alternating current flowing through the third conductor portion. As a result, the eddy current flows in a distributed manner in the vicinity of the end portion in the width direction of the upper wall and in the vicinity of the groove, and these portions are intensively heated. For this reason, only these portions can be accurately heated to the quenching temperature. That is, only a desired part can be heated to the quenching temperature accurately, and “burn-out” can be prevented.
[0040]
In addition, when the induction heating coil includes a fourth conductor portion that is located in the vicinity of the lower wall of the long material and is electrically connected to the second conductor portion, the first and second conductor portions When the long material is cured by quenching after heating the long material, the eddy currents due to the first and second conductor portions are dispersed, so the long material is partially heated and heated. Only the part is cured. For this reason, there exists a possibility that a long material may deform | transform. However, when the lower wall is heated by the fourth conductor portion and rapidly cooled and hardened, the deformation caused by this hardening counteracts with the deformation caused by the portions heated and hardened by the first and second conductor portions. The deformation of the entire long material can be reduced.
[0041]
Further, the long material has grooves extending in the longitudinal direction formed on the left and right side walls of the long material, and the first, second, and third conductor portions face each other. In the case of a pair, the pair of first, second and third conductor portions accurately heat the vicinity of the left and right end portions in the width direction of the upper wall and the vicinity of the two grooves to the quenching temperature. Only the desired part can be heated accurately.
[0042]
Furthermore, when the fourth conductor portion is composed of a pair of conductors respectively disposed in the vicinity of both ends in the width direction orthogonal to the longitudinal direction among the lower walls of the long material, And the deformation caused by the portion heated and cured by the second conductor portion is more reliably canceled by the deformation caused by the portion cured by the fourth conductor portion consisting of a pair of conductors. Is further reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of an induction heating coil according to the present invention.
FIG. 2 is a perspective view schematically showing the induction heating coil of FIG.
FIG. 3 shows an induction heating coil arranged facing the side wall of a long material, (a) is a cross-sectional view showing the case of the induction heating coil of the present invention, and (b) is a case of a conventional induction heating coil. FIG.
4A and 4B show a side wall of a long material and positions of induction heating coils, FIG. 4A is a side wall diagram showing an outline of the induction heating coil of the present invention, and FIG. 4B is an outline of a conventional induction heating coil. The eddy current is schematically shown by a two-dot chain line.
5A and 5B schematically show eddy currents generated in a long material, FIG. 5A is a perspective view when the induction heating coil of the present invention is used, and FIG. 5B is a view when a conventional induction heating coil is used. It is a perspective view, and an eddy current is typically shown by a two-dot chain line.
6A and 6B schematically show a quenching pattern of a longitudinal end portion of a long material, FIG. 6A is a schematic diagram showing a quenching pattern when the induction heating coil of the present invention is used, and FIG. It is a schematic diagram which shows a hardening pattern when using the conventional induction heating coil.
7 is a graph showing the hardness distribution in the c, d, e, and f directions in FIG. 6, (a) is a graph when the induction heating coil of the present invention is used, and (b) is a conventional graph. It is a graph when an induction heating coil is used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Induction heating coil 20,120 1st conductor part 30,130 2nd conductor part 40,140 3rd conductor part 80,180 4th conductor part 200 Long material 202 Long wall upper wall 202a Both ends 204 of an upper wall Long side wall 206 groove

Claims (1)

長手方向に延びる下壁、前記下壁の幅方向両端から立ち上がって前記長手方向に延びると共に該長手方向に延びる一つの溝がそれぞれに形成された一対の側壁、及び前記下壁に対向して前記長手方向に延びる上壁を有する、横断面が矩形状の長尺材の前記長手方向に沿って相対的に移動しながら該長尺材の前記側壁を誘導加熱する誘導加熱コイルにおいて、
前記一対の側壁と前記上壁の境界の角部の近傍を前記長手方向に延びる第1導体部と、
前記溝の近傍を前記長手方向に延びる第2導体部と、
前記第1導体部の一端と前記第2導体部の一端とを電気的に接続すると共に、これら第1及び第2導体部に略直交する方向に延びて前記長尺材から遠ざかるように配置される「く」字状の第3導体部と、
前記一対の側壁と前記下壁の境界の角部の近傍を前記長手方向に延びる第4導体部とを備え、
前記第1、第2、第3、及び第4導体部それぞれは、互いに向き合う一対のものであることを特徴とする誘導加熱コイル。
A lower wall extending in the longitudinal direction, a pair of side walls each rising with a groove extending from the both ends in the width direction of the lower wall and extending in the longitudinal direction and extending in the longitudinal direction, and facing the lower wall In an induction heating coil having an upper wall extending in the longitudinal direction and induction-heating the side wall of the long material while relatively moving along the longitudinal direction of the long material having a rectangular cross section ,
A first conductor portion extending in the longitudinal direction near a corner of the boundary between the pair of side walls and the upper wall ;
A second conductor portion extending in the longitudinal direction in the vicinity of the groove ;
The one end of the first conductor portion and the one end of the second conductor portion are electrically connected , and are arranged so as to extend in a direction substantially orthogonal to the first and second conductor portions and away from the long material. A " ""shaped third conductor portion;
A fourth conductor portion extending in the longitudinal direction near the corner of the boundary between the pair of side walls and the lower wall ;
The induction heating coil , wherein each of the first, second, third, and fourth conductor portions is a pair facing each other .
JP03115899A 1999-02-09 1999-02-09 Induction heating coil Expired - Fee Related JP3868651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03115899A JP3868651B2 (en) 1999-02-09 1999-02-09 Induction heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03115899A JP3868651B2 (en) 1999-02-09 1999-02-09 Induction heating coil

Publications (2)

Publication Number Publication Date
JP2000234122A JP2000234122A (en) 2000-08-29
JP3868651B2 true JP3868651B2 (en) 2007-01-17

Family

ID=12323649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03115899A Expired - Fee Related JP3868651B2 (en) 1999-02-09 1999-02-09 Induction heating coil

Country Status (1)

Country Link
JP (1) JP3868651B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4165856B2 (en) 2001-03-28 2008-10-15 高周波熱錬株式会社 Manufacturing method, heat treatment apparatus and heat treatment method for flanged parts
JP4658027B2 (en) * 2006-12-14 2011-03-23 電気興業株式会社 High frequency induction heating coil for heating shaft member
JP4933482B2 (en) * 2008-05-13 2012-05-16 電気興業株式会社 High frequency induction heating device for heating shaft-shaped members

Also Published As

Publication number Publication date
JP2000234122A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
KR940005462B1 (en) Induction heating apparatus
US7368689B2 (en) Device for heating by induction of metal strip
JPH0886313A (en) Guide rail device for linear guide device
JP3868651B2 (en) Induction heating coil
US7671307B2 (en) Transversal field heating installation for inductively heating flat objects
JP3924084B2 (en) Induction heating coil
JP4572039B2 (en) High frequency induction heating device
US3121780A (en) Inductor for heating a channel member
JP3761328B2 (en) Induction heating coil
JP3865451B2 (en) High frequency direct current quenching equipment for rack bar
JP5390868B2 (en) Induction heating coil
JP5096065B2 (en) High frequency induction heating coil and high frequency induction heating method
JPH07169561A (en) Induction heating device
JP6726472B2 (en) Induction heating coil
JP2779763B2 (en) Semi-open induction hardened coil
JPH07101632B2 (en) Induction heating method for flat plate
JPH0616470Y2 (en) Flat plate induction heating coil device
JP4557240B2 (en) Induction hardening method and gear
CA1276244C (en) Induction heating apparatus
JPS6132374B2 (en)
JP2511335Y2 (en) Induction hardening coil for steering rack shaft
GB2104106A (en) Heat treatment of weld seams
JP3824779B2 (en) Induction hardening method and induction heating coil
JPH02155193A (en) Coil device for induction heating
JP4477842B2 (en) High frequency induction heating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees