JP3868337B2 - Method and apparatus for detecting a trajectory of a carriage on a rail - Google Patents

Method and apparatus for detecting a trajectory of a carriage on a rail Download PDF

Info

Publication number
JP3868337B2
JP3868337B2 JP2002178308A JP2002178308A JP3868337B2 JP 3868337 B2 JP3868337 B2 JP 3868337B2 JP 2002178308 A JP2002178308 A JP 2002178308A JP 2002178308 A JP2002178308 A JP 2002178308A JP 3868337 B2 JP3868337 B2 JP 3868337B2
Authority
JP
Japan
Prior art keywords
carriage
rail
measured value
meter
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002178308A
Other languages
Japanese (ja)
Other versions
JP2004020471A (en
Inventor
幸信 佐々木
裕一 杉山
敏和 颯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002178308A priority Critical patent/JP3868337B2/en
Publication of JP2004020471A publication Critical patent/JP2004020471A/en
Application granted granted Critical
Publication of JP3868337B2 publication Critical patent/JP3868337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)

Description

【0001】
【発明が属する技術分野】
本発明はレール上台車の走行軌跡検出方法及び装置に関し、とくに一対のレール上を走行する台車の走行軌跡をレール対の軌条狂いを検測しながら検出する方法及び装置に関する。
【0002】
【従来の技術】
シールド機によるトンネル構築では、予め設計された経路に沿ってシールド機を案内するためにシールド機の測量が必要となる。従来、大口径(例えば、口径が4m以上)のトンネルを構築する場合は、光学式測量機(トータルステーション等)を用いてシールド機の位置を測量している。例えば、自動視準式又は自動追尾式のトータルステーションを用い、シールド機に取り付けたターゲットの位置をリアルタイムで自動的に測量する技術が開発されている。
【0003】
しかし、光学式測量機でシールド機を測量する方法は、シールド機上に設けたターゲットと坑内に設けた測量基準点とを視準する必要があるため、坑内が広い大口径のトンネルには適用可能であるものの、トンネルが小口径(例えば、口径が4m未満)である場合は適用が難しい。小口径のトンネルでは、シールド機の後方の電力・油圧供給設備(以下、後方設備という。)や掘削土砂搬出・セグメント搬入用の搬送台車(例えば、バッテリーロコ)等により、光学式測量機の視準を可能とする空間が確保できないからである。
【0004】
特開平8-114448号公報は、図5に示すように、小口径トンネルの構築に適用できるシールド機の測量システムとして、トンネル8の頂面のセグメント3上に固定した軌道40に沿って始点から終点まで軌跡検出装置41を移動させ、軌跡検出装置41により軌道40の三次元的な変位を計測して始点に対する終点の座標を測量し、軌跡検出装置41上に一体に設けた光波距離計43を終点座標に位置決めし、その光波距離計43により終点座標を視準点としてシールド機1の位置・姿勢を測量する測量システムを提案している。
【0005】
【発明が解決しようとする課題】
しかし、前記公報の測量システムは、トンネル坑路の全長に亘って軌道40を設置する必要があり、軌道40の設置・保守点検・解体等に手間がかかる問題点がある。また、掘進と共に移動する後方設備等との干渉が生じた場合は軌道40の解体(取り外し)と再設置(取り付け)とを繰り返す必要が生じるので、トンネル掘削工事の効率を低下させる要因となり得る。
【0006】
本発明者は、シールドトンネル坑内を発進立坑から切羽近傍まで走行する搬送台車に注目した。搬送台車の走行軌跡を検出すれば、坑内に付加的設備を設置せずに、その走行軌跡に基づきシールド機の位置を測量することが可能となる。但し、搬送台車が走行するレールや枕木は、台車の通過のたびに大きな荷重を受けるために正規位置から移動し「軌条狂い」と呼ばれる正規位置とのズレが生じる。搬送台車の走行軌跡を精確に検出するためには、軌条狂いに起因する誤差を補正する必要がある。
【0007】
そこで本発明の目的は、軌条狂いに拘わらずレール上台車の走行軌跡を精確に検出する方法及び装置を提供することにある。
【0008】
【課題を解決するための手段】
図1及び図2の実施例を参照するに、本発明のレール上台車の走行軌跡検出方法は、シールドトンネル坑4内の一対のレール6L、6R上を走行する台車10の始点Aからの走行距離Lと方位角α・ピッチング角βと車台・レール対間の間隔dL、dRとを継続的に計測し、車台・レール対間の間隔dL、dRの計測値に基づきレール対6L、6Rの通り狂い又は間隔が広く若しくは狭くなる軌条狂いを検測し、車台・レール対間の間隔 dL dR の計測値に基づき走行距離Lを補正すると共に通り狂い又は軌条狂いに起因して発生した方位角α及びピッチング角βの変化量をカットすることにより方位角α及びピッチング角βを補正し、走行距離Lの補正後の計測値と方位角α・ピッチング角βの補正後の計測値とから始点Aに対する台車10の走行軌跡を算出してなるものである。
【0009】
好ましくは、台車10の鉛直加速度を継続的に計測し、台車10の鉛直加速度の計測値に基づきレール対6L、6Rの高低狂いを検測し、台車 10 の鉛直加速度の計測値に基づき走行距離Lを補正すると共に高低狂いに起因して発生した方位角α及びピッチング角βの変化量をカットすることにより方位角α及びピッチング角βを補正する。
【0010】
また、図1及び図2の実施例を参照するに、本発明のレール上台車の走行軌跡検出装置は、シールドトンネル坑4内の一対のレール6L、6R上を走行する台車10に搭載した走行距離計11と方位計12とピッチング計13と車台・レール対間の間隔dL、dRを計測するクリアランス計15、クリアランス計15の計測値に基づきレール対6L、6Rの通り狂い又は間隔が広く若しくは狭くなる軌条狂いを検測する検測手段24、クリアランス計 15 の計測値に基づき走行距離計 11 の計測値を補正すると共に通り狂い又は軌条狂いに起因して発生した方位角α及びピッチング角βの変化量をカットすることにより方位計12及びピッチング計13の計測値を補正する補正手段23、及び走行距離計11の補正後の計測値と補正手段23による補正後の計測値とから始点Aに対する台車10の走行軌跡を算出する算出手段21を備えてなるものである。
【0011】
好ましくは、台車10に鉛直加速度計16を搭載し、検測手段24により鉛直加速度計16の計測値に基づきレール対6L、6Rの高低狂いを検測し、補正手段により鉛直加速度計 16 の計測値に基づき走行距離計 11 の計測値を補正すると共に高低狂いに起因して発生した方位角α及びピッチング角βの変化量をカットすることにより方位計12及びピッチング計13の計測値を補正する。
【0012】
【発明の実施の形態】
図1は、小口径のシールド坑内4を走行する台車10の走行軌跡の検出に本発明を適用した実施例を示す。シールド工法では、発進立坑2からシールド機1の近傍までシールド坑内4に敷設した一対のレール6L、6R上に台車10を走行させ、掘削後の土砂(ズリ)を立坑2まで搬出し、セグメント3を立坑2からシールド機1まで搬入する。本発明は、レール対6L、6R上を走行する台車10に、図2のブロック図に示すように、走行位置を計測するための計器とレール対6L、6Rの軌条狂いを計測するための計器とを搭載する。
【0013】
図2の台車10は、走行位置を計測するための計器として、走行距離計11と方位計12とピッチング計13とを有する。走行距離計11は、例えば台車10の車輪22の回転数と周長とから走行距離Lを計測する。方位計12の一例はジャイロであり、ピッチング計13の一例は傾斜計である。発進立坑2のシールド始点Aを走行開始位置とし、始点Aにおける方位計12及びピッチング計13の計測値を方位角及びピッチング角の基準値とする。
【0014】
図6に示すように、始点Aからレール対6L、6R上の位置Pまで台車10が揺動せずに走行したと仮定すれば、位置Pにおける走行距離計11の計測値(走行距離)Lと、方位計12の計測値(方位角)αと、ピッチング計13の計測値(ピッチング角)βとから、始点Aに対する位置Pの位置ベクトル(Lcosβ・cosα、Lcosβ・sinα、Lsinβ)を算出することができる。更に台車10がレール対6L、6R上の位置Q(図示せず)まで移動した場合は、位置Pから位置Qまでの走行距離Lと方位角αとピッチング角βの変化量から同様にして、位置Pに対する位置Qの位置ベクトルを算出できる。この位置ベクトルの算出の反覆により始点Aに対する台車10の走行軌跡を算出できる。
【0015】
また図2の台車10は、レール対6L、6Rの軌条狂いを計測するための計器として、車台・レール対間の間隔dL、dRを計測するクリアランス計15を有する。クリアランス計15の一例は、光波や超音波による波動距離計である。クリアランス計15は車輪22の面と台車10の表面との交線上に取り付けられ、車輪22の面上における車台・レール対間の間隔dL、dRを計測する。一般に台車 10 の車輪 22L 22R は傾斜部分を有し、その傾斜部分でレール対 6L 6R と接触しているので、車輪 22L 22R 上のレール対 6L 6R との接触位置は変動する。クリアランス計 15 により間隔 dL dR を計測すれば、車輪 22L 22R 上のレール対 6L 6R との接触位置を検出することができ、接触位置により車輪 22 の周長及び走行距離Lを補正することができる。
【0016】
クリアランス計15による車台・レール対間の間隔dL、dRの計測値に基づき、レール対6L、6Rの軌条狂いを検測することができる。図3(A1)及び(A2)に示すようにレール対6L、6Rが正規位置にある直線部位では車台・レール対間の左右の間隔dL、dRは実質上同一であるのに対し、例えば同図(B2)のようなレール対6L、6Rの左右方向の湾曲(以下、通り狂いという。)が発生していると、同図(B1)のように左右の間隔dL、dRに相異が生じて台車10がローリングする。クリアランス計15により、この軌条狂いによる左右の間隔dL、dRの相異を検出することができる。
【0017】
クリアランス計15による左右の車台・レール対間の間隔dL、dRの相異は同図(C1)及び(C2)に示すようにレール対6L、6Rのカーブ部位においても発生し得るが、カーブ部位では左右の車輪22L、22Rの移動距離が相異するのに対し、通り狂いの部位では左右の車輪22L、22Rの移動距離は実質上同一である。本発明では、上述したように間隔 dL dR の計測値に基づき車輪 22L 22R の走行距離Lを補正できるので、左右の車輪22L、22Rの補正後の移動距離Lに基づきカーブ部位と軌条狂いとを識別できる。左右の車台・レール対間の間隔dL、dRと左右の車輪22L、22Rの移動距離Lとの両者に基づけば、例えば台車10上に搭載した検測手段24によってレール対6L、6Rの通り狂い等の軌条狂いを検測できる。
【0018】
また、クリアランス計15による車台・レール対間の間隔dL、dRの計測値によれば、通り狂いだけでなく、軌条の他の狂いも検測できる。例えば、2本のレール6L、6Rの頂端の内側又は外側端部付近をクリアランス計15で計測し、クリアランス計15からの波動がレール端部を外れてクリアランスが大きくなることから、レール対6L、6Rの間隔(レールゲージ)が広く又は狭くなる軌条狂いを検測することが可能である。
【0019】
更に本発明では、レール対6L、6Rの軌条狂いの検測値に基づき、台車10の方位角α及びピッチング角βを補正する。同図(B1)のように軌条狂いにより台車10がローリングすると、車輪22の走行距離に誤差が発生するだけでなく、方位角αやピッチング角βにも誤差が生じ得る。例えば台車10上に搭載した補正手段23により、軌条狂いに起因して発生した方位角α及びピッチング角βの変化量をカットすることにより、方位角α及びピッチング角βを補正する。
【0020】
補正した走行距離L、方位角α、ピッチング角βに基づき、上述した位置ベクトル(Lcosβ・cosα、Lcosβ・sinα、Lsinβ)を算出すれば、始点Aに対する台車10の走行軌跡を精確に算出することができる。台車10の走行軌跡は、例えば台車10上の算出手段21で算出する。算出手段21、補正手段23、検測手段24の一例は、台車10上のコンピュータに内蔵のプログラムである。図示例の符号20は、コンピュータの記憶装置を示す。
【0021】
なお、図示例では、台車10にローリング計14を搭載し、台車10のローリング角θ(図3参照)を計測している。例えば、クリアランス計15による車台・レール対間の間隔dL、dRの計測値と、走行距離計11による左右の車輪22L、22Rの移動距離Lの計測値と、ローリング計14によるローリング角θの計測値とに基づき、レール対6L、6Rの軌条狂いを検測してもよい。また、台車10のローリング角θの計測値を利用して、台車10の方位角α及びピッチング角βを補正してもよい。但し、ローリング計14は本発明に必須のものではない。
【0022】
本発明は、レール対上を走行する台車の走行距離Lとレール対の軌条狂いの検測値に基づき補正した台車の方位角α及びピッチング角βとを用いるので、レール対の始点に対する台車の走行軌跡を精確に算出することができる。走行軌跡の検出に必要な計器類は台車上に搭載できるので、レールに沿って付加的な設備スペース等を設ける必要はない。また、走行軌跡の検出と共にレール対の軌条狂いを併せて検測するので、軌条狂いに起因する台車事故を防止し、トンネル工事等における労働安全衛生面の向上に寄与できる。
【0023】
こうして本発明の目的である「軌条狂いに拘わらずレール上台車の走行軌跡を精確に検出する方法及び装置」の提供が達成できる。
【0024】
好ましくは、台車10に鉛直加速度計16を搭載し、図4(B)のようなレール対6L、6Rの上下方向の凹凸(以下、高低狂いという。)の発生を検測する。同図(A)の正規位置に対し同図(B)のような高低狂いが発生すると、台車10にピッチングが生じると共に、前述した台車10の走行距離L、方位角α、ピッチング角βにも誤差が生じる。例えば鉛直加速度計 16 で計測した加速度を2回積分することにより高低狂いの大きさを算出し、高低狂いの大きさに基づき車輪 22 の走行距離Lを補正できる。また、高低狂いに起因して発生した方位角α及び/又はピッチング角βの変化量をカットすることにより、方位角α及びピッチング角βを補正できる。クリアランス計15による車台・レール対間の間隔dL、dRの計測値と共に鉛直加速度計16の計測値に基づきレール対6L、6Rの軌条狂いを検測し、その検測値により走行距離L、方位角α、ピッチング角βを補正すれば、台車10の走行軌跡の一層精確な検出が期待できる。
【0025】
【実施例】
図2の実施例では、台車10に高度計17を搭載し、補正手段23により高度計17の計測値に基づき始点Aに対する台車10の走行軌跡を補正している。高度計17の一例は、坑内4の気圧等の絶対圧力(例えば、真空に対する圧力)に基づき台車10の絶対高度(例えば、地表面からの深さ)を求めるものである。また、図1に示すようにレール対6L、6Rに沿って始点Aに対する座標が既知の基準点Ci、Ci+1、……に位置信号の発信器7i、7i+1、……を設け、台車10に位置信号の受信器19を搭載し、受信器19で受信した位置信号に基づき始点Aに対する台車10の走行軌跡を補正手段23により補正している。前述したように、本発明では走行距離L、方位角α及びピッチング角βを軌条狂いの検測値により補正しながら台車10の走行軌跡を算出するので、始点Aに対する台車10の走行軌跡を精度良く検出することが可能であるが、例えば絶対圧力から求めた台車10の絶対高度や視準測量等で定めた測量位置に基づいて台車10の走行軌跡を補正することにより、走行軌跡の更なる検出精度の向上が期待できる。
【0026】
また、図示例のように台車10に走行音センサ(又は騒音センサ)18を搭載し、検測手段24により走行音センサ18の計測音に基づきレール対6L、6Rの接続・固定状況、例えばレールと鋼製枕木の固定状況、レール同士の接続材(ベーシ、モール)の固定状況を検測することも可能である。台車10の走行軌跡を検出しつつレール対6L、6Rの接続・固定状況を検測することにより、始点からの距離に応じたレール対6L、6Rの健全度(レール上の各位置の健全度)を求めることができ、レール設備の予防保守への寄与が期待できる。
【0027】
本発明は、図1に示すように、小口径のシールド工法におけるシールド機1の測量に利用できる。シールド機1は立坑2から発進し、予め設計された経路に沿って地中を掘削しながら推進し、掘削後のトンネル内面をセグメント3のリングにより覆工する。また、セグメント3のリング毎に、枕木5及びレール対6L、6Rが坑内4に敷設される。本発明をシールド機1の測量に適用する場合は、発進立坑のシールド始点Aから切羽近傍の終点Bまでレール対6L、6R上を走行する搬送台車10に走行距離計11、方位計12、ピッチング計13、クリアランス計15を搭載し、クリアランス計15の計測値に基づきレール対6L、6Rの軌条狂いを検測し、その検測値により走行距離L、方位角α、ピッチング角βを補正する。好ましくは、搬送台車10に鉛直加速度計16を搭載し、クリアランス計 15 及び鉛直加速度計16の計測値によりレール対6L、6Rの高低狂いを検測し、その検測値により走行距離L、方位角α、ピッチング角βを補正する。走行距離Lの補正後の計測値と方位角α、ピッチング角βの補正後の計測値とに基づき台車10の走行軌跡を算出すれば、終点Bへ到達時の台車10の始点Aに対する位置を精確に求めることができる。
【0028】
また、終点Bに対するシールド機1の位置ベクトルを、シールド機1又は搬送台車10上の計測手段34により検出する。図示例の計測手段34は、所定長さの測定ロッド31と該測定ロッド31の方位角及び仰角を測定する測定手段32、33とを含む。測定ロッド31を介してシールド機1と後続台車30とを接続し、後続台車30上の所定部位に終点Bを設ける。例えば後続台車30上の終点Bに終点信号発信器7Bを取り付け、搬送台車10上に搭載した信号受信器19で発信器7Bからの終点信号を受信することにより、搬送台車10を終点Bに位置付ける。測定ロッド31はシールド機1上の所定部位Eと後方台車30上の所定部位Dとの間に揺動自在に支持されており、測定ロッド31の方位角及び仰角を例えば後続台車30上の方位角測定手段32及び仰角測定手段33で計測する。測定ロッド31の所定長さと測定手段32、33による方位角及び仰角とから、例えばシールド機1上に搭載した計測手段34により終点Bに対するシールド機1上のロッド支持部位Eの位置ベクトルを検出することができる。
【0029】
図示例では、シールド機1の後方に3台の後方台車30a、30b、30cを設け、シールド機1と後続台車30aとを測定ロッド31aで揺動可能に接続すると共に、後方台車30a及び30bを測定ロッド31bで揺動可能に接続し、後方台車30b及び30cを測定ロッド31cで揺動可能に接続している。この場合は、測定ロッド31a、31b、31cの方位角及び仰角を例えば後続台車30a、30b、30c上の測定手段32、33で計測し、各測定ロッド31a、31b、31cの所定長さと方位角及び仰角とを計測手段34に入力する。計測手段34により各測定ロッド31a、31b、31cの所定長さと方位角及び仰角とから終点Bに対する後方台車30c、30b、30aの位置を順次算出し、その算出結果に基づき終点Bに対するシールド機1の位置ベクトルを検出する。
【0030】
なお、図示例では計測手段34をシールド機1側に設けているが、計測手段34を搬送台車10上に搭載してもよい。例えば、終点Bに位置付けた搬送台車10から揺動可能な測定ロッドをシールド機1まで伸張し、その測定ロッドの方位角及び仰角を台車10上の計測手段で計測し、測定ロッドの伸張長さと方位角及び仰角とから終点Bに対するシールド機1の位置ベクトルを検出する。
【0031】
搬送台車10上の走行軌跡算出手段21で算出した終点B到達時の始点Aに対する台車10の位置と、計測手段34で検出した終点Bに対するシールド機1の位置ベクトルとから、例えばシールド機1上の測量手段35により、始点Aに対するシールド機1の位置を測量することができる。図示例では測量手段35をシールド機1上に設けているが、測量手段35を搬送台車10又は後続台車30上に搭載してもよい。また、図示例ではシールド機1上の1点のみを測量しているが、シールド機1上の複数位置を測量することによりシールド機1の姿勢を測量することも可能である。この場合は、必要に応じてシールド機1又は搬送台車10上に複数の計測手段34を設けることができる。
【0032】
図示例のシールド機1の測量方法は、測量に必要な計器類を搬送台車10又はシールド機1上に搭載できるので、坑内4に付加的な設備スペース等を必要としない。従って、搬送台車10の走行レール6が敷設されていれば小口径のトンネルにも容易に適用可能であり、しかも走行レール6の軌条狂いに拘わらず搬送台車の始点Aに対する位置を精確に算出できるので、小口径のトンネル構築におけるシールド機1の位置・姿勢の測量に有効に利用できる。
【0033】
【発明の効果】
以上説明したように、本発明のレール上台車の走行軌跡検出方法及び装置は、シールドトンネル坑内の一対のレール上を走行する台車の始点からの走行距離と方位角・ピッチング角と車台・レール対間の間隔とを継続的に計測し、車台・レール対間の間隔の計測値に基づき走行距離を補正すると共にレール対の通り狂い又は間隔が広く若しくは狭くなる軌条狂いを検測して方位角及びピッチング角を補正し、走行距離の補正後の計測値と方位角・ピッチング角の補正後の計測値とから始点に対する台車の走行軌跡を算出するので、次の顕著な効果を奏する。
【0034】
(イ)レールの軌条狂いの検測値に基づきレール上を走行する台車の走行軌跡を補正するので、軌条狂いに拘わらず台車の走行軌跡を精確に検出できる。
(ロ)走行レールが敷設されていれば足り、必要な計器類は台車上に搭載できるので、レールに沿って付加的な設備スペース等を設ける必要がない。
(ハ)従って、小口径トンネル等のように狭い空間においても台車の走行軌跡を精確に検出できる。
(ニ)レールに対する位置が既知である構造物の測量等に有効に利用できる。
(ホ)小口径シールド工法等におけるシールド機のレールに対する位置を計測すれば、シールド機の測量にも有効に利用できる。
(ヘ)走行軌跡の検出と共に軌条狂いを併せて検測するので、軌条狂いに起因する台車事故を防止し、トンネル工事等における労働安全衛生面の向上が図れる。
【図面の簡単な説明】
【図1】は、本発明の一実施例の説明図である。
【図2】は、本発明で用いる搬送台車の説明図である。
【図3】は、車台・レール対間の間隔に基づく軌条狂いの検測方法の説明図である。
【図4】は、鉛直加速度に基づく軌条狂いの検測方法の説明図である。
【図5】は、従来のシールド機の測量方法の説明図である。
【図6】は、台車の走行軌跡の算出方法の説明図である。
【符号の説明】
1…シールド機 2…発進立坑
3…セグメント 4…坑内
5…枕木 6…レール
7…位置信号発信器
10…搬送台車 11…距離計
12…方位計 13…ピッチング計
14…ローリング計 15…クリアランス計
16…鉛直加速度計 17…高度計
19…位置信号受信器 20…記憶装置
21…走行位置算出手段 22…車輪
23…補正手段 24…検測手段
30…後続台車 31…測定ロッド
32…方位角測定手段 33…仰角測定手段
34…計測手段 35…測量手段
40…軌道 41…軌跡検出装置
42…レーザ光源 43…光波距離計
44…駆動装置 45…計測ターゲット
46…信号処理部 47…走行制御装置
48…統計処理装置 49…軌道計測装置
50…データ処理装置 51…姿勢計測装置
[0001]
[Technical field to which the invention belongs]
The present invention relates to a method and an apparatus for detecting a trajectory of a carriage on a rail, and more particularly, to a method and an apparatus for detecting a trajectory of a carriage traveling on a pair of rails while measuring an error in a rail pair.
[0002]
[Prior art]
In tunnel construction by a shield machine, surveying of the shield machine is required to guide the shield machine along a route designed in advance. Conventionally, when a tunnel having a large diameter (for example, a diameter of 4 m or more) is constructed, the position of the shield machine is measured using an optical surveying instrument (such as a total station). For example, a technique has been developed in which an automatic collimation type or automatic tracking type total station is used to automatically measure the position of a target attached to a shield machine in real time.
[0003]
However, the method of surveying a shield machine with an optical surveying instrument needs to collimate the target provided on the shield machine and the survey reference point provided in the mine, so it is applicable to large-diameter tunnels with a wide mine. Although possible, application is difficult when the tunnel has a small diameter (for example, the diameter is less than 4 m). In a small-diameter tunnel, the optical surveying instrument can be viewed by using a power / hydraulic supply facility (hereinafter referred to as the “rear facility”) behind the shield machine and a transport cart (eg, battery loco) for excavating earth and sand. This is because it is not possible to secure a space that enables quasi.
[0004]
As shown in FIG. 5, Japanese Patent Laid-Open No. 8-114448 discloses a survey system for a shield machine that can be applied to the construction of a small-diameter tunnel, from a starting point along a track 40 fixed on a segment 3 on the top surface of the tunnel 8. The trajectory detection device 41 is moved to the end point, the three-dimensional displacement of the trajectory 40 is measured by the trajectory detection device 41, the coordinates of the end point with respect to the start point are measured, and the lightwave distance meter 43 provided integrally on the trajectory detection device 41 Has been proposed to measure the position / orientation of the shield machine 1 using the optical wave distance meter 43 as a collimation point.
[0005]
[Problems to be solved by the invention]
However, the surveying system of the above publication requires the installation of the track 40 over the entire length of the tunnel tunnel, and there is a problem that it takes time to install, maintain, and dismantle the track 40. Further, when there is interference with the rear equipment that moves along with the excavation, it is necessary to repeat disassembly (removal) and re-installation (attachment) of the track 40, which may reduce the efficiency of tunnel excavation work.
[0006]
The inventor of the present invention paid attention to a transport cart that travels from the starting vertical shaft to the vicinity of the face in the shield tunnel. If the traveling locus of the transport carriage is detected, the position of the shield machine can be measured based on the traveling locus without installing additional equipment in the mine. However, the rails and sleepers on which the transport carriage runs are subjected to a large load every time the carriage passes, so that the rails and sleepers move from the normal position and cause a deviation from the normal position, which is referred to as “railway deviation”. In order to accurately detect the travel locus of the transport carriage, it is necessary to correct an error caused by the track error.
[0007]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method and apparatus for accurately detecting a traveling locus of a rail-mounted carriage regardless of a track error.
[0008]
[Means for Solving the Problems]
With reference to the embodiment of FIGS. 1 and 2, the method for detecting the trajectory of a rail-mounted carriage according to the present invention travels from the starting point A of the carriage 10 that travels on a pair of rails 6 </ b> L and 6 </ b> R in the shield tunnel 4. The distance L, the azimuth angle α, the pitching angle β, and the distances dL and dR between the chassis and rail pair are continuously measured. Based on the measured values of the distances dL and dR between the chassis and rail pair, the rail pairs 6L and 6R Detecting a run-off or a track run-off with a wide or narrow interval , and correcting the travel distance L based on the measured distance dL and dR between the chassis / rail pair, and a direction caused by a run-off or run- out By correcting the azimuth angle α and the pitching angle β by cutting the amount of change of the angle α and the pitching angle β, from the measured value after the correction of the travel distance L and the measured value after the correction of the azimuth angle α and the pitching angle β It is calculated by calculating the trajectory of the carriage 10 relative to the starting point A. .
[0009]
Preferably, the vertical acceleration of the carriage 10 is continuously measured, the level deviation of the rail pair 6L, 6R is measured based on the measurement value of the vertical acceleration of the carriage 10 , and the mileage is calculated based on the measurement value of the vertical acceleration of the carriage 10. The azimuth angle α and the pitching angle β are corrected by correcting the L and cutting the amount of change in the azimuth angle α and the pitching angle β caused by the height deviation.
[0010]
1 and FIG. 2, the traveling track detection device for a rail-top carriage of the present invention is mounted on a carriage 10 that travels on a pair of rails 6L and 6R in a shield tunnel mine 4. Distance meter 11, bearing meter 12, pitching meter 13, clearance meter 15 that measures distance dL, dR between chassis / rail pair, rail pair 6L, 6R based on the measured value of clearance meter 15 The measuring means 24 for detecting the narrowing of the gauge deviation, the measurement value of the odometer 11 is corrected based on the measurement value of the clearance meter 15 , and the azimuth angle α and the pitching angle β generated due to the passing deviation or the deviation of the gauge. the starting point a and a measurement value after correction by the correction means 23, and the odometer 11 of the corrected measured value and the correction means 23 by cutting the amount of change for correcting the measured value of the azimuth meter 12 and pitching meter 13 Trajectory of bogie 10 against Is provided with calculation means 21 for calculating.
[0011]
Preferably, mounting the vertical accelerometer 16 to carriage 10, and gage the rail pair 6L, height of 6R deviation based on the measurement value of the vertical accelerometer 16 by gage means 24, measurement of the vertical accelerometer 16 by the correction means The measurement value of the odometer 12 and the pitching meter 13 is corrected by correcting the measurement value of the odometer 11 based on the value and cutting the amount of change of the azimuth angle α and the pitching angle β caused by the height deviation. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment in which the present invention is applied to detection of a traveling locus of a carriage 10 traveling in a shield bore 4 having a small diameter. In the shield method, the carriage 10 is run on a pair of rails 6L, 6R laid in the shield mine 4 from the start shaft 2 to the vicinity of the shield machine 1, and the excavated earth and sand (sludge) is transported to the shaft 2 to segment 3. Is carried from the shaft 2 to the shield machine 1. As shown in the block diagram of FIG. 2, the present invention provides an instrument for measuring the running position and an instrument for measuring the rail misalignment of the rail pair 6L, 6R. And with.
[0013]
The cart 10 in FIG. 2 includes a odometer 11, an azimuth meter 12, and a pitching meter 13 as instruments for measuring a traveling position. The odometer 11 measures the mileage L from, for example, the rotational speed and circumference of the wheel 22 of the carriage 10. An example of the azimuth meter 12 is a gyro, and an example of the pitching meter 13 is an inclinometer. The shield start point A of the start shaft 2 is set as the travel start position, and the measured values of the azimuth meter 12 and the pitching meter 13 at the start point A are set as reference values for the azimuth angle and the pitching angle.
[0014]
As shown in FIG. 6, if it is assumed that the carriage 10 has traveled without swinging from the starting point A to a position P on the rail pair 6L, 6R, the measured value (travel distance) L of the odometer 11 at the position P is assumed. The position vector of the position P relative to the starting point A (Lcosβ · cosα, Lcosβ · sinα, Lsinβ) is calculated from the measured value (azimuth angle) α of the compass 12 and the measured value (pitching angle) β of the pitching meter 13. can do. Further, when the carriage 10 moves to a position Q (not shown) on the rail pair 6L, 6R, similarly, from the travel distance L from the position P to the position Q, the amount of change in the azimuth angle α, and the pitching angle β, A position vector of the position Q with respect to the position P can be calculated. By reversing the calculation of the position vector, the traveling locus of the carriage 10 relative to the starting point A can be calculated.
[0015]
2 has a clearance meter 15 that measures the distances dL and dR between the chassis and the rail pair as an instrument for measuring the rail misalignment between the rail pair 6L and 6R. An example of the clearance meter 15 is a wave distance meter using light waves or ultrasonic waves. The clearance meter 15 is attached on the intersection line between the surface of the wheel 22 and the surface of the carriage 10 and measures the distances dL and dR between the chassis / rail pair on the surface of the wheel 22. Generally the carriage 10 wheel 22L, the 22R has an inclined portion, rail pair 6L in the inclined portion, since the contact with the 6R, the contact position between the wheel 22L, the rail-to-6L, 6R on 22R varies. If the distances dL and dR are measured by the clearance meter 15 , the contact position with the rail pair 6L and 6R on the wheels 22L and 22R can be detected, and the circumference of the wheel 22 and the travel distance L are corrected by the contact position. be able to.
[0016]
Based on the measurement values of the distances dL and dR between the chassis / rail pair by the clearance meter 15, it is possible to detect the rail misalignment of the rail pairs 6L and 6R. As shown in FIG. 3 (A1) and (A2), the left and right distances dL and dR between the chassis and the rail pair are substantially the same in the straight part where the rail pair 6L and 6R are in the normal position. If the rails 6L and 6R are bent in the left and right direction (hereinafter referred to as “passing”) as shown in the figure (B2), the left and right distances dL and dR are different as shown in the figure (B1). As a result, the carriage 10 rolls. The clearance meter 15 can detect the difference between the left and right distances dL and dR due to the track error.
[0017]
Differences in the distance dL, dR between the left and right chassis / rail pair by clearance meter 15 can also occur in the curved part of rail pair 6L, 6R as shown in the figure (C1) and (C2). Then, while the moving distances of the left and right wheels 22L and 22R are different, the moving distances of the left and right wheels 22L and 22R are substantially the same in the part that is out of order. In the present invention, distance dL as described above, measured values on the basis of the wheel 22L of dR, it is possible to correct the travel distance L 22R, left and right wheels 22L, curve portion based on the moving distance L after correction 22R and rail deviation Can be identified. Based on both the distance dL, dR between the left and right chassis / rail pair and the movement distance L of the left and right wheels 22L, 22R, for example, the inspection means 24 mounted on the carriage 10 causes the rail pair 6L, 6R to go wrong. It is possible to measure the trajectory error.
[0018]
Further, according to the measured values of the distances dL and dR between the chassis / rail pair by the clearance meter 15, not only the passing error but also other errors of the rail can be measured. For example, since the clearance meter 15 measures the inside or near the outer end of the top ends of the two rails 6L and 6R, and the wave from the clearance meter 15 disengages the rail ends and the clearance increases, the rail pair 6L, It is possible to inspect the irregularity in which the 6R interval (rail gauge) becomes wider or narrower.
[0019]
Further, in the present invention, the azimuth angle α and the pitching angle β of the carriage 10 are corrected based on the measured values of the rail misalignment of the rail pairs 6L and 6R. When the carriage 10 rolls due to a trajectory error as shown in FIG. 5B1, not only an error occurs in the traveling distance of the wheel 22, but also an error may occur in the azimuth angle α and the pitching angle β. For example, the correction means 23 mounted on the carriage 10 corrects the azimuth angle α and the pitching angle β by cutting the amount of change in the azimuth angle α and the pitching angle β caused by the track error.
[0020]
If the position vector (Lcosβ · cosα, Lcosβ · sinα, Lsinβ) described above is calculated based on the corrected travel distance L, azimuth angle α, and pitching angle β, the travel locus of the carriage 10 relative to the starting point A can be accurately calculated. Can do. The travel locus of the carriage 10 is calculated by the calculation means 21 on the carriage 10, for example. An example of the calculating means 21, the correcting means 23, and the measuring means 24 is a program built in the computer on the carriage 10. Reference numeral 20 in the illustrated example indicates a storage device of a computer.
[0021]
In the illustrated example, a rolling meter 14 is mounted on the carriage 10 and the rolling angle θ (see FIG. 3) of the carriage 10 is measured. For example, measured values of the distance dL, dR between the chassis / rail pair by the clearance meter 15, measured values of the movement distance L of the left and right wheels 22L, 22R by the odometer 11, and measurement of the rolling angle θ by the rolling meter 14 Based on the value, the rail misalignment of the rail pair 6L, 6R may be measured. Further, the azimuth angle α and the pitching angle β of the carriage 10 may be corrected using the measured value of the rolling angle θ of the carriage 10. However, the rolling meter 14 is not essential for the present invention.
[0022]
The present invention, carriage Runode, for the starting point of the rail pair with the azimuth angle α and the pitching angle β of the truck which corrected based on the running distance L and the test measurement value of rail deviation of the rail pair of carriages traveling on the rail pair It is possible to accurately calculate the travel locus. Since the instruments necessary for detecting the traveling locus can be mounted on the carriage, it is not necessary to provide additional equipment space along the rail. In addition, since the track misalignment of the pair of rails is detected together with the detection of the traveling locus, a cart accident caused by the track misalignment can be prevented, and it can contribute to the improvement of occupational safety and health in tunnel construction and the like.
[0023]
Thus, the provision of the “method and apparatus for accurately detecting the traveling locus of the rail-mounted carriage regardless of the track error”, which is the object of the present invention, can be achieved.
[0024]
Preferably, the vertical accelerometer 16 is mounted on the carriage 10, and the occurrence of unevenness in the vertical direction (hereinafter referred to as high / low deviation) of the rail pair 6L, 6R as shown in FIG. When the height deviation as shown in FIG. 5B occurs with respect to the normal position in FIG. 6A, pitching occurs in the carriage 10, and the travel distance L, azimuth angle α, and pitching angle β of the carriage 10 are also described. An error occurs. For example, by integrating the acceleration measured by the vertical accelerometer 16 twice, the magnitude of the elevation deviation can be calculated, and the travel distance L of the wheel 22 can be corrected based on the magnitude of the elevation deviation . Further, the azimuth angle α and / or the pitching angle β can be corrected by cutting the amount of change in the azimuth angle α and / or the pitching angle β caused by the height deviation. Distance dL between undercarriage rail pair according clearance gauge 15, and gage rail pair 6L, a rail deviation of 6R based on the measurement values of the vertical accelerometer 16 with measurement values of dR, running distance L by the detection measurement value, the azimuth If the angle α and the pitching angle β are corrected, more accurate detection of the traveling locus of the carriage 10 can be expected.
[0025]
【Example】
In the embodiment shown in FIG. 2, the altimeter 17 is mounted on the carriage 10, and the traveling locus of the carriage 10 relative to the starting point A is corrected by the correcting means 23 based on the measurement value of the altimeter 17. An example of the altimeter 17 is to obtain an absolute altitude (for example, a depth from the ground surface) of the carriage 10 based on an absolute pressure (for example, a pressure against a vacuum) such as an atmospheric pressure in the mine 4. Further, as shown in FIG. 1, position signal transmitters 7i, 7i + 1,... Are provided at reference points Ci, Ci + 1,. A position signal receiver 19 is mounted on the carriage 10, and the traveling locus of the carriage 10 relative to the starting point A is corrected by the correcting means 23 based on the position signal received by the receiver 19. As described above, in the present invention, the traveling locus of the carriage 10 is calculated while correcting the traveling distance L, the azimuth angle α , and the pitching angle β with the measured values of the erratic deviation. Although it is possible to detect with high accuracy, for example, by correcting the traveling locus of the carriage 10 based on the survey position determined by the absolute altitude, collimation survey, etc. An improvement in detection accuracy can be expected.
[0026]
Further, as shown in the illustrated example, a traveling sound sensor (or noise sensor) 18 is mounted on the carriage 10, and the connection / fixed state of the rail pairs 6L and 6R based on the measurement sound of the traveling sound sensor 18 by the inspection means 24, for example, the rail It is also possible to check the fixing status of steel sleepers and the connection status of rail-to-rail connecting materials (basis, molding). By detecting the travel trajectory of the carriage 10 and detecting the connection / fixed state of the rail pair 6L, 6R, the soundness of the rail pair 6L, 6R according to the distance from the starting point (health of each position on the rail) ) And can be expected to contribute to preventive maintenance of rail equipment.
[0027]
As shown in FIG. 1, the present invention can be used for surveying the shield machine 1 in a small-diameter shield method. The shield machine 1 starts from the shaft 2 and is propelled while excavating in the ground along a path designed in advance, and the tunnel inner surface after excavation is covered with the ring of the segment 3. In addition, for each ring of the segment 3, a sleeper 5 and a pair of rails 6L and 6R are laid in the underground mine 4. When the present invention is applied to the surveying of the shield machine 1, the odometer 11, the azimuth meter 12, and the pitching are applied to the carriage 10 that runs on the rail pairs 6L and 6R from the shield start point A of the start shaft to the end point B near the face. Equipped with a total of 13 and clearance meter 15, based on the measured value of clearance meter 15, the rails 6L and 6R are measured for irregularity, and the measured distance L, azimuth angle α, and pitching angle β are corrected. . Preferably, a vertical accelerometer 16 is mounted on the transport carriage 10, and the height deviation of the rail pair 6L, 6R is measured by the measured values of the clearance meter 15 and the vertical accelerometer 16, and the travel distance L and direction are determined by the measured values. The angle α and the pitching angle β are corrected. If the travel locus of the carriage 10 is calculated based on the corrected measurement value of the travel distance L and the corrected measurement values of the azimuth angle α and the pitching angle β, the position of the carriage 10 relative to the start point A when reaching the end point B is determined. It can be determined accurately.
[0028]
Further, the position vector of the shield machine 1 with respect to the end point B is detected by the measuring means 34 on the shield machine 1 or the transport carriage 10. The measuring means 34 in the illustrated example includes a measuring rod 31 having a predetermined length and measuring means 32 and 33 that measure the azimuth and elevation angles of the measuring rod 31. The shield machine 1 and the subsequent carriage 30 are connected via the measuring rod 31, and an end point B is provided at a predetermined portion on the subsequent carriage 30. For example, the end point signal transmitter 7B is attached to the end point B on the subsequent carriage 30, and the end point signal from the transmitter 7B is received by the signal receiver 19 mounted on the transfer carriage 10, thereby positioning the transport carriage 10 at the end point B. . The measuring rod 31 is supported in a swingable manner between a predetermined part E on the shield machine 1 and a predetermined part D on the rear carriage 30, and the azimuth angle and elevation angle of the measuring rod 31 are, for example, the azimuth direction on the subsequent carriage 30. Measurement is performed by the angle measuring means 32 and the elevation measuring means 33. From the predetermined length of the measuring rod 31 and the azimuth and elevation angles of the measuring means 32, 33, for example, the measuring means 34 mounted on the shield machine 1 detects the position vector of the rod support part E on the shield machine 1 relative to the end point B. be able to.
[0029]
In the illustrated example, three rear carriages 30a, 30b, and 30c are provided behind the shield machine 1, and the shield machine 1 and the following carriage 30a are slidably connected by a measuring rod 31a, and the rear carriages 30a and 30b are connected to each other. The measurement rod 31b is swingably connected, and the rear carriages 30b and 30c are swingably connected by the measurement rod 31c. In this case, the azimuth and elevation angles of the measuring rods 31a, 31b, 31c are measured by the measuring means 32, 33 on the subsequent carriages 30a, 30b, 30c, for example, and the predetermined lengths and azimuths of the measuring rods 31a, 31b, 31c are measured. And the elevation angle are input to the measuring means 34. The position of the rear carriages 30c, 30b, 30a with respect to the end point B is sequentially calculated by the measuring means 34 from the predetermined length, azimuth and elevation angle of each measuring rod 31a, 31b, 31c, and the shield machine 1 with respect to the end point B based on the calculation result The position vector of is detected.
[0030]
In the illustrated example, the measuring unit 34 is provided on the shield machine 1 side, but the measuring unit 34 may be mounted on the transport carriage 10. For example, a swingable measuring rod is extended from the transport carriage 10 positioned at the end point B to the shield machine 1, and the azimuth and elevation angles of the measuring rod are measured by measuring means on the carriage 10. The position vector of the shield machine 1 with respect to the end point B is detected from the azimuth angle and the elevation angle.
[0031]
From the position of the carriage 10 with respect to the starting point A when the end point B arrives calculated by the travel locus calculating means 21 on the transport carriage 10 and the position vector of the shielding machine 1 with respect to the end point B detected by the measuring means 34, for example, on the shielding machine 1 Thus, the position of the shield machine 1 relative to the starting point A can be measured. In the illustrated example, the surveying means 35 is provided on the shield machine 1, but the surveying means 35 may be mounted on the transport carriage 10 or the subsequent carriage 30. In the illustrated example, only one point on the shield machine 1 is surveyed. However, the attitude of the shield machine 1 can be measured by surveying a plurality of positions on the shield machine 1. In this case, a plurality of measuring means 34 can be provided on the shield machine 1 or the transport carriage 10 as necessary.
[0032]
The surveying method of the shield machine 1 in the illustrated example does not require additional equipment space in the pit 4 because the instruments necessary for surveying can be mounted on the transport carriage 10 or the shield machine 1. Therefore, if the traveling rail 6 of the transport carriage 10 is laid, it can be easily applied to a small-diameter tunnel, and the position of the transport carriage relative to the starting point A can be accurately calculated regardless of the rail misalignment. Therefore, it can be effectively used for surveying the position and posture of the shield machine 1 in the construction of a small-diameter tunnel.
[0033]
【The invention's effect】
As described above, the method and apparatus for detecting the trajectory of a rail-top carriage according to the present invention includes the travel distance, azimuth / pitching angle, and base / rail pair from the starting point of a carriage traveling on a pair of rails in a shield tunnel. The distance between the two is continuously measured, the travel distance is corrected based on the measured value of the distance between the chassis and the rail pair, and the azimuth angle is detected by detecting the deviation of the rail pair or the deviation of the rail where the distance is wide or narrow. Further, the traveling locus of the carriage with respect to the starting point is calculated from the measured value after correcting the traveling distance and the measured value after correcting the azimuth angle / pitching angle, and the following remarkable effects are obtained.
[0034]
(A) Since the traveling locus of the carriage traveling on the rail is corrected based on the measured value of the rail deviation of the rail, the traveling locus of the carriage can be accurately detected regardless of the deviation of the rail.
(B) It is sufficient if a traveling rail is laid, and necessary instruments can be mounted on the carriage, so there is no need to provide additional equipment space along the rail.
(C) Therefore, the traveling locus of the carriage can be accurately detected even in a narrow space such as a small-diameter tunnel.
(D) It can be effectively used for surveying a structure whose position relative to the rail is known.
(E) If the position of the shield machine with respect to the rail in the small-diameter shield construction method or the like is measured, it can be effectively used for surveying the shield machine.
(F) Since the detection of the trajectory is also performed together with the detection of the trajectory, it is possible to prevent a bogie accident caused by the trajectory error and improve occupational safety and health in tunnel construction.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a transport carriage used in the present invention.
FIG. 3 is an explanatory diagram of a method for detecting a track error based on a distance between a chassis / rail pair.
FIG. 4 is an explanatory diagram of a method for detecting a track error based on vertical acceleration.
FIG. 5 is an explanatory diagram of a surveying method for a conventional shield machine.
FIG. 6 is an explanatory diagram of a method for calculating a traveling locus of a carriage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Shield machine 2 ... Start pit 3 ... Segment 4 ... Mine 5 ... Sleeper 6 ... Rail 7 ... Position signal transmitter
10 ... Carriage 11 ... Distance meter
12 ... Direction meter 13 ... Pitching meter
14 ... Rolling meter 15 ... Clearance meter
16 ... Vertical accelerometer 17 ... Altimeter
19 ... Position signal receiver 20 ... Storage device
21 ... Running position calculation means 22 ... Wheel
23 ... Correction means 24 ... Inspection means
30 ... Trailing car 31 ... Measuring rod
32 ... Azimuth measuring means 33 ... Elevation measuring means
34 ... Measurement means 35 ... Survey means
40 ... Track 41 ... Track detector
42 ... Laser light source 43 ... Light wave distance meter
44 ... Drive device 45 ... Measurement target
46 ... Signal processing unit 47 ... Running control device
48 ... Statistical processing device 49 ... Orbit measurement device
50 ... Data processing device 51 ... Attitude measurement device

Claims (16)

シールドトンネル坑内の一対のレール上を走行する台車の始点からの走行距離と方位角・ピッチング角と車台・レール対間の間隔とを継続的に計測し、前記車台・レール対間の間隔の計測値に基づき前記レール対の通り狂い又は間隔が広く若しくは狭くなる軌条狂いを検測し、前記車台・レール対間の間隔の計測値に基づき前記走行距離を補正すると共に前記通り狂い又は軌条狂いに起因して発生した方位角及びピッチング角の変化量をカットすることにより方位角及びピッチング角を補正し、前記走行距離の補正後の計測値と前記方位角・ピッチング角の補正後の計測値とから始点に対する台車の走行軌跡を算出してなるレール上台車の走行軌跡検出方法。Continuously measure the distance traveled from the starting point of the bogie that runs on a pair of rails in the shield tunnel mine, the azimuth and pitching angle, and the distance between the chassis and rail pair, and measure the distance between the chassis and rail pair. Based on the value, the deviation of the rail pair or the deviation of the rail where the interval is widened or narrowed is detected, and the travel distance is corrected based on the measured value of the distance between the chassis / rail pair, and the deviation or the deviation of the rail is corrected. By correcting the azimuth angle and the pitching angle by cutting the amount of change in the azimuth angle and the pitching angle generated due to the correction, the measurement value after the correction of the travel distance and the measurement value after the correction of the azimuth angle and the pitching angle A method for detecting a trajectory of a bogie on a rail obtained by calculating a trajectory of a cart with respect to a starting point. 請求項1の検出方法において、前記台車の鉛直加速度を継続的に計測し、前記台車の鉛直加速度の計測値に基づき前記レール対の高低狂いを検測し、前記台車の鉛直加速度の計測値に基づき前記走行距離を補正すると共に前記高低狂いに起因して発生した方位角及びピッチング角の変化量をカットすることにより方位角及びピッチング角を補正してなるレール上台車の走行軌跡検出方法。The detection method according to claim 1, wherein the vertical acceleration of the carriage is continuously measured, the level deviation of the rail pair is detected based on the measurement value of the vertical acceleration of the carriage, and the measurement value of the vertical acceleration of the carriage is obtained. A method for detecting a trajectory of a rail-mounted carriage that corrects the travel distance and corrects the azimuth angle and the pitching angle by cutting a change amount of the azimuth angle and the pitching angle caused by the height deviation. 請求項1又は2の検出方法において、前記台車の高度を継続的に計測し、前記高度の計測値により前記始点に対する台車の走行軌跡を補正してなるレール上台車の走行軌跡検出方法。The detection method according to claim 1 or 2, wherein the height of the carriage is continuously measured, and the carriage trace on the rail with respect to the starting point is corrected based on the measured value of the height. 請求項1から3の何れかの検出方法において、前記レール対に沿って座標既知の基準点を定め、前記台車の走行時に基準点を検出し、検出した基準点の既知座標により前記始点に対する台車の走行軌跡を補正してなるレール上台車の走行軌跡検出方法。4. The detection method according to claim 1, wherein a reference point whose coordinates are known is determined along the pair of rails, a reference point is detected when the carriage travels, and the carriage relative to the starting point is detected based on the known coordinates of the detected reference point. A traveling locus detection method for a rail-mounted carriage, which is obtained by correcting the traveling locus. 請求項1から4の何れかの検出方法において、前記台車の走行音を継続的に計測し、走行音に基づき前記レール対の接続・固定状況を検測してなるレール上台車の走行軌跡検出方法。5. The detection method of a track on a rail on a rail according to any one of claims 1 to 4, wherein the traveling sound of the carriage is continuously measured, and the connection / fixed state of the rail pair is measured based on the running sound. Method. シールドトンネル坑内の発進立坑のシールド始点から切羽近傍の終点まで一対のレール上を走行する搬送台車の始点からの走行距離と方位角・ピッチング角と車台・レール対間の間隔とを継続的に計測し、前記車台・レール対間の間隔の計測値に基づき前記レール対の通り狂い又は間隔が広く若しくは狭くなる軌条狂いを検測し、前記車台・レール対間の間隔の計測値に基づき前記走行距離を補正すると共に前記通り狂い又は軌条狂いに起因して発生した方位角及びピッチング角の変化量をカットすることにより方位角及びピッチング角を補正し、前記走行距離の補正後の計測値と前記方位角・ピッチング角の補正後の計測値とから始点に対する台車の走行軌跡を算出して終点到達時の台車位置を求め、前記シールド機又は台車上の計測手段により終点に対するシールド機の位置ベクトルを検出し、前記終点到達時の台車位置と前記位置ベクトルとから始点に対するシールド機の位置を測量してなるシールド機の測量方法。Continuously measure the travel distance, azimuth / pitching angle, and distance between the chassis / rail pair from the starting point of the transport carriage that runs on a pair of rails from the shield start point of the start shaft in the shield tunnel to the end point near the face. Then, based on the measured value of the distance between the chassis / rail pair, the deviation of the rail pair or the deviation of the rail where the distance is widened or narrowed is detected, and the traveling based on the measured value of the distance between the chassis / rail pair is detected. Correcting the azimuth angle and the pitching angle by correcting the distance and cutting the amount of change in the azimuth angle and the pitching angle caused by the deviation or the deviation of the trajectory, the measured value after the correction of the travel distance and the The travel position of the carriage with respect to the starting point is calculated from the measured values after correction of the azimuth angle and the pitching angle to obtain the position of the carriage when the end point is reached, and the measuring means on the shield machine or the carriage Detecting the position vector of the shield machine for more endpoints, survey methods of the shield machine made by surveying the position of the shield machine for starting from the carriage position at the endpoint-arrival and the position vector. 請求項6の測量方法において、前記台車の鉛直加速度を継続的に計測し、前記台車の鉛直加速度の計測値に基づき前記レール対の高低狂いを検測し、前記台車の鉛直加速度の計測値に基づき前記走行距離を補正すると共に前記高低狂いに起因して発生した方位角及びピッチング角の変化量をカットすることにより方位角及びピッチング角を補正してなるシールド機の測量方法。7. The surveying method according to claim 6, wherein the vertical acceleration of the carriage is continuously measured, the level deviation of the rail pair is detected based on the measurement value of the vertical acceleration of the carriage, and the measurement value of the vertical acceleration of the carriage is obtained. And a shield machine surveying method that corrects the azimuth angle and the pitching angle by correcting the travel distance and cutting the amount of change in the azimuth angle and the pitching angle caused by the height deviation. 請求項6又は7の測量方法において、前記計測手段にシールド機へ揺動自在に支持された所定長さの測定ロッドを含め、前記終点をシールド機に測定ロッドを介して接続された後続台車上の所定部位とし、測定ロッドの方位角と仰角と所定長さとにより前記終点に対するシールド機の位置ベクトルを検出してなるシールド機の測量方法。The surveying method according to claim 6 or 7, wherein the measuring means includes a measuring rod having a predetermined length swingably supported by the shielding machine, and the end point is connected to the shielding machine via the measuring rod. And a shield machine surveying method in which a position vector of the shield machine with respect to the end point is detected based on an azimuth angle, an elevation angle, and a predetermined length of the measurement rod. シールドトンネル坑内の一対のレール上を走行する台車に搭載した走行距離計と方位計とピッチング計と車台・レール対間の間隔を計測するクリアランス計、前記クリアランス計の計測値に基づき前記レール対の通り狂い又は間隔が広く若しくは狭くなる軌条狂いを検測する検測手段、前記クリアランス計の計測値に基づき走行距離計の計測値を補正すると共に前記通り狂い又は軌条狂いに起因して発生した方位角及びピッチング角の変化量をカットすることにより方位計及びピッチング計の計測値を補正する補正手段、及び前記走行距離計の補正後の計測値と前記補正手段による補正後の計測値とから始点に対する台車の走行軌跡を算出する算出手段を備えてなるレール上台車の走行軌跡検出装置。Odometer, bearing meter, pitching meter, clearance meter for measuring the distance between the chassis / rail pair, and the clearance meter based on the measured value of the clearance meter. Inspection means for detecting a trajectory error or a trajectory error where the interval is widened or narrowed, and corrects the measured value of the odometer based on the measured value of the clearance meter, and the direction generated due to the trajectory error or the trajectory error starting from the variation of the angular and pitching angle correction means for correcting the measured value of the azimuth meter and pitching meter by cutting, and from the measured value corrected by the correction means and the measured value after correction of the odometer A traveling track detection device for a carriage on a rail, comprising a calculating means for calculating a traveling track of a cart with respect to the vehicle. 請求項9の検出装置において、前記台車に鉛直加速度計を搭載し、前記検測手段により前記鉛直加速度計の計測値に基づき前記レール対の高低狂いを検測し、前記補正手段により前記鉛直加速度計の計測値に基づき前記走行距離計の計測値を補正すると共に前記高低狂いに起因して発生した方位角及びピッチング角の変化量をカットすることにより方位計及びピッチング計の計測値を補正してなるレール上台車の走行軌跡検出装置。In the detection apparatus according to claim 9, equipped with a vertical accelerometer the carriage, said to gage the height deviation of the rail pair on the basis of the measured value of the vertical accelerometer by said gage means, the vertical acceleration by the correction means The measured value of the odometer and the pitching meter is corrected by correcting the measured value of the odometer based on the measured value of the meter and cutting the amount of change in the azimuth angle and pitching angle caused by the height deviation. A track detection device for a rail-mounted carriage. 請求項9又は10の検出装置において、前記台車に高度計を搭載し、前記補正手段により前記高度の計測値に基づき前記始点に対する台車の走行軌跡を補正してなるレール上台車の走行軌跡検出装置。11. The detection device of a rail-top bogie according to claim 9, wherein an altimeter is mounted on the bogie, and the running locus of the bogie relative to the starting point is corrected by the correction means based on the measured value of the altitude. 請求項9から11の何れかの検出装置において、前記レール対に沿って座標既知の基準点に位置信号の発信器を設け、前記台車に位置信号受信器を搭載し、前記算出手段により前記受信器で受信した位置信号に基づき前記始点に対する台車の走行軌跡を補正してなるレール上台車の走行軌跡検出装置。12. The detection device according to claim 9, wherein a position signal transmitter is provided at a reference point whose coordinates are known along the rail pair, a position signal receiver is mounted on the carriage, and the reception is performed by the calculation means. A traveling locus detection device for a rail-mounted carriage, wherein the traveling locus of the carriage relative to the starting point is corrected based on a position signal received by the device. 請求項9から12の何れかの検出装置において、前記台車に走行音センサを搭載し、前記検測手段により前記センサの計測音に基づき前記レール対の接続・固定状況を検測してなるレール上台車の走行軌跡検出装置。The rail according to any one of claims 9 to 12, wherein a traveling sound sensor is mounted on the carriage, and the connection / fixed state of the rail pair is measured by the measurement means based on the measurement sound of the sensor. Upper bogie travel locus detection device. シールドトンネル坑内の発進立坑のシールド始点から切羽近傍の終点まで一対のレール上を走行する搬送台車に搭載した走行距離計と方位計とピッチング計と車台・レール対間の間隔を計測するクリアランス計、前記クリアランス計の計測値に基づき前記レール対の通り狂い又は間隔が広く若しくは狭くなる軌条狂いを検測する検測手段、前記クリアランス計の計測値に基づき走行距離計の計測値を補正すると共に前記通り狂い又は軌条狂いに起因して発生した方位角及びピッチング角の変化量をカットすることにより方位計及びピッチング計の計測値を補正する補正手段、前記走行距離計の補正後の計測値と前記補正手段による補正後の計測値とから始点に対する台車の走行軌跡を算出する算出手段、前記終点に対するシールド機の位置ベクトルを検出するシールド機又は台車上の計測手段、並びに前記算出手段による終点到達時の台車位置と前記計測手段による位置ベクトルとから始点に対するシールド機の位置を測量する測量手段を備えてなるシールド機の測量装置。A clearance meter that measures the distance between the odometer, direction meter, pitching meter, and chassis / rail pair mounted on a transport carriage that runs on a pair of rails from the shield start point of the start tunnel in the shield tunnel to the end point near the face, A measuring means for detecting a deviation of the rail pair based on a measured value of the clearance meter or a rail deviation where a distance is widened or narrowed, and corrects a measured value of the odometer based on the measured value of the clearance meter and correcting means for correcting the measured value of the azimuth meter and pitching meter by cutting the amount of change as deviation or azimuth and pitching angle generated due to rail deviation, the the measured value after correction of the odometer Calculating means for calculating a travel locus of the carriage relative to the start point from the measurement value after correction by the correction means; Shielding machine comprising a shielding machine for detecting a tor or measuring means on a carriage, and a surveying means for measuring the position of the shielding machine relative to the starting point from the position of the carriage when reaching the end point by the calculating means and the position vector by the measuring means Surveying equipment. 請求項14の測量装置において、前記台車に鉛直加速度計を搭載し、前記検測手段により前記鉛直加速度計の計測値に基づき前記レール対の高低狂いを検測し、前記補正手段により前記鉛直加速度計の計測値に基づき前記走行距離計の計測値を補正すると共に前記高低狂いに起因して発生した方位角及びピッチング角の変化量をカットすることにより方位計及びピッチング計の計測値を補正してなるシールド機の測量装置。In surveying device according to claim 14, equipped with a vertical accelerometer the carriage, said to gage the height deviation of the rail pair on the basis of the measured value of the vertical accelerometer by said gage means, the vertical acceleration by the correction means The measured value of the odometer and the pitching meter is corrected by correcting the measured value of the odometer based on the measured value of the meter and cutting the amount of change in the azimuth angle and pitching angle caused by the height deviation. Surveying device for shield machine. 請求項14又は15の測量装置において、前記計測手段にシールド機へ揺動自在に支持された所定長さの測定ロッドを含め、前記終点をシールド機に測定ロッドを介して接続された後続台車上の所定部位とし、前記計測手段により測定ロッドの方位角及び仰角を測定し且つ測定ロッドの方位角及び仰角と所定長さとにより前記終点に対するシールド機の位置ベクトルを検出してなるシールド機の測量装置。16. The surveying instrument according to claim 14 or 15, wherein the measuring means includes a measuring rod having a predetermined length swingably supported by the shielding machine, and the end point is connected to the shielding machine via the measuring rod. A surveying device for a shield machine, which measures the azimuth angle and elevation angle of the measuring rod by the measuring means, and detects the position vector of the shield machine with respect to the end point from the azimuth angle and elevation angle of the measurement rod and a predetermined length .
JP2002178308A 2002-06-19 2002-06-19 Method and apparatus for detecting a trajectory of a carriage on a rail Expired - Fee Related JP3868337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178308A JP3868337B2 (en) 2002-06-19 2002-06-19 Method and apparatus for detecting a trajectory of a carriage on a rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178308A JP3868337B2 (en) 2002-06-19 2002-06-19 Method and apparatus for detecting a trajectory of a carriage on a rail

Publications (2)

Publication Number Publication Date
JP2004020471A JP2004020471A (en) 2004-01-22
JP3868337B2 true JP3868337B2 (en) 2007-01-17

Family

ID=31176067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178308A Expired - Fee Related JP3868337B2 (en) 2002-06-19 2002-06-19 Method and apparatus for detecting a trajectory of a carriage on a rail

Country Status (1)

Country Link
JP (1) JP3868337B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103385A1 (en) * 2004-04-21 2005-11-03 J. Müller AG Method for measuring tracks
JP4619890B2 (en) * 2005-08-02 2011-01-26 株式会社日立製作所 Track maintenance facility data detection and inspection equipment
JP4914785B2 (en) * 2006-08-31 2012-04-11 北海道旅客鉄道株式会社 Vehicle running shake / noise analysis system, vehicle running shake / noise analysis method, and vehicle running noise analysis method
JP5382991B2 (en) * 2006-12-11 2014-01-08 三菱重工業株式会社 Abnormality diagnosis method and abnormality diagnosis system for track system
KR101026350B1 (en) * 2008-12-15 2011-04-04 한국철도기술연구원 System for measuring cross-level irregularity of track using inertial sensor, and method thereof
KR101250228B1 (en) * 2010-06-09 2013-04-03 한국철도기술연구원 Rail Irregularity Measurement System Using Accelerometers and Method Thereof
CN111270574B (en) * 2020-01-16 2022-02-25 中国人民解放军国防科技大学 Method and system for inhibiting irregularity of magnetic-levitation train track

Also Published As

Publication number Publication date
JP2004020471A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US7278305B2 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
CA2545154C (en) Railroad surveying and monitoring system
JP2007533878A (en) Measuring method of road
AU2017315963B2 (en) Inertial track measurement system and methods
Boronakhin et al. MEMS-based inertial system for railway track diagnostics
CN115597535B (en) High-speed magnetic levitation track irregularity detection system and method based on inertial navigation
CN115768952A (en) Method for measuring the position of a track
CN209479681U (en) Realize the measurement trolley that track quickly detects
JP3868337B2 (en) Method and apparatus for detecting a trajectory of a carriage on a rail
CN111895996A (en) High-speed track detection system and method
Wilk et al. Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle
CN106476851A (en) Train running speed detection method based on non-fragment orbit and system
CN212300369U (en) High-speed track detection system
CN111778791A (en) Low-speed track detection system and method
JP6279425B2 (en) Program and data generation device
JP3124780B2 (en) Shield surveying method
JP2515424B2 (en) Shield survey method
CN111795698A (en) High-speed track detection and installation device
JP4866989B2 (en) Hole measurement method and apparatus
CN113819902B (en) Three-dimensional measurement method and application of travelling path line based on single-axis gyroscope
JP2644155B2 (en) Automatic surveying method for position of trailing bogie of shield machine
JP2644151B2 (en) Automatic surveying method of shield machine
JP3075785B2 (en) Tunnel position measurement method
JPH09243365A (en) Position detecting device, surveying method, and digging-direction control system
JP2726614B2 (en) Automatic surveying method for the position of the trailing bogie

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees