JP3868172B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP3868172B2
JP3868172B2 JP34965999A JP34965999A JP3868172B2 JP 3868172 B2 JP3868172 B2 JP 3868172B2 JP 34965999 A JP34965999 A JP 34965999A JP 34965999 A JP34965999 A JP 34965999A JP 3868172 B2 JP3868172 B2 JP 3868172B2
Authority
JP
Japan
Prior art keywords
knock
combustion engine
internal combustion
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34965999A
Other languages
Japanese (ja)
Other versions
JP2001164962A (en
Inventor
栄司 高桑
小久保  直樹
裕彦 山田
健司 笠島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP34965999A priority Critical patent/JP3868172B2/en
Publication of JP2001164962A publication Critical patent/JP2001164962A/en
Application granted granted Critical
Publication of JP3868172B2 publication Critical patent/JP3868172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の運転状態をノック判定に基づき制御する内燃機関用制御装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関で発生する振動信号波形から抽出したノック信号に対してノック判定を行い点火時期・燃料噴射量等のノック制御要因を制御する内燃機関用制御装置が知られている。
【0003】
【発明が解決しようとする課題】
前述の内燃機関用制御装置におけるノック検出システムとしては、ノックセンサで検出した振動信号波形からノック信号をバンドパスフィルタで抽出し、このノック信号のピーク出力値を対数正規分布の出力分布特性として求め、所定のノック判定レベルとの比較によりノック発生の有無を判定するものであった。
【0004】
ところで、例えば、WOT(Wide Open Throttle:スロットルバルブ全開状態・全負荷),機関回転数2000〔rpm〕近傍でノック発生なしのような特定の運転条件において、更に点火時期を遅角させると、通常のノック発生時の図6(a)に示すノック信号と異なる図6(b)に示すような、燃焼に関わるノイズ信号(以下、これを『疑似ノック信号』という)が発生することがあった。これらノック信号と疑似ノック信号とを比較すると、ノック信号はピーク出力タイミングが早く信号発生時間が短いのに対し、疑似ノック信号は出力値がほぼ一定で信号発生時間が長いという特徴がある。しかし、これらノック信号と疑似ノック信号との周波数はほぼ同じである。
【0005】
この疑似ノック発生時にはノック発生時と同様の音がするため、ノック発生時と同様の違和感を運転者に与えることになるという不具合があった。
【0006】
そこで、この発明はかかる不具合を解決するためになされたもので、ノック信号と異なるノイズ信号である疑似ノック信号による疑似ノックの発生を回避しつつ内燃機関の運転状態を適切に制御可能な内燃機関用制御装置の提供を課題としている。
【0007】
【課題を解決するための手段】
請求項1の内燃機関用制御装置によれば、ノック検出手段により内燃機関で発生する振動信号波形に基づきノックが検出されたときにはノック制御手段で点火時期が遅角制御され、ノックが検出されないときには点火時期が進角復帰されるのであるが、このノック制御の際の遅角量が所定値より大きいときにはその遅角量に基づき補正制御手段で空燃比制御手段による空燃比がリーン側に補正制御される。これにより、疑似ノックの発生が未然に防止され内燃機関の運転状態が適切に制御される。
【0008】
請求項2の内燃機関用制御装置における補正制御手段では、空燃比の補正量が予め設定された気筒毎または気筒グループ毎に変えて設定される。これにより、諸条件により疑似ノックの発生し易い気筒または気筒グループが異なるときに対処することができ、疑似ノックの発生が適切に回避される。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0013】
図1は本発明の実施の形態の一実施例にかかる内燃機関用制御装置の全体構成を示すブロック図である。
【0014】
図1において、10は内燃機関のシリンダブロック(図示略)に取付けられ、内燃機関に発生する振動信号波形を検出する振動ピックアップとしてのノックセンサであり、11はノックセンサ10の振動信号波形からノックに関連した成分を抽出する帯域幅(Q値)が10〔dB〕のバンドパスフィルタ(Band Pass Filter:特定周波数帯域通過フィルタ;以下、『BPF』と記す)である。このBPF11で抽出されたノック信号は、ピークホールド回路12にてマイクロコンピュータ20からのピークホールド信号に対応してピークホールドされたのちA/D変換器21でA/D変換(アナログ−ディジタル変換)されピーク出力値Vとしてマイクロコンピュータ20に取込まれる。
【0015】
この他、マイクロコンピュータ20には内燃機関の例えば、クランク角センサ、吸気量センサ、水温センサ等からの各種センサ信号が取込まれる。これら取込まれた信号に基づきマイクロコンピュータ20にて点火時期、燃料噴射量等が演算される。そして、マイクロコンピュータ20からその演算結果がイグナイタ30、インジェクタ(燃料噴射弁)40、吸気側のカムシャフト(図示略)に設けられた周知の可変バルブタイミング制御機構(Variable Valve Timing Control Mechanism;以下、『VVT』と記す)50等に出力される。
【0016】
ここで、マイクロコンピュータ20は、周知の各種演算処理を実行する中央処理装置としてのCPU、制御プログラムを格納したROM、各種データを格納するRAM、B/U(バックアップ)RAM、入出力回路及びそれらを接続するバスライン等からなる論理演算回路として構成されている。
【0017】
次に、本発明の実施の形態の一実施例にかかる内燃機関用制御装置で使用されているマイクロコンピュータ20におけるノック判定終了に続く空燃比補正係数演算の処理手順を示す図2のフローチャートに基づき、図3及び図4を参照して説明する。ここで、図3は点火時期変動に対する疑似ノックの発生頻度〔%〕を示す特性図、図4はA/F変動に対する疑似ノックの発生頻度〔%〕を示す特性図である。なお、この空燃比補正係数演算ルーチンはノック判定終了に続きマイクロコンピュータ20にて実行される。
【0018】
図2において、ステップS101では、疑似ノックの発生し易いことが実験等にて前以って分かっているノック制御領域内の特定運転領域にあるかが判定される。ステップS101の判定条件が成立、即ち、特定運転領域にあるときにはステップS102に移行し、このときの点火時期における遅角量が読込まれる。次にステップS103に移行して、ステップS102で読込まれた遅角量がKNT値としてセットされる。次にステップS104に移行して、KNT値が予め設定された所定値K1を越えているかが判定される。ステップS104の判定条件が成立、即ち、KNT値が所定値K1を越え遅角側にあるときには疑似ノックが発生しているとしてステップS105に移行する。
【0019】
つまり、図3に太線にて示すように、このときには燃焼に関わるノイズである疑似ノックの発生頻度が高くなるのである。なお、図3に細線にて示す特性は点火時期の進角側で発生する通常のノックの発生頻度である。ステップS105では、空燃比補正係数ΔA/Fが図示しないテーブルによりf(KNT)に設定され、図4に示すように、A/Fが疑似ノックの発生し難い、即ち、疑似ノックの発生頻度の低いリーン側に空燃比補正係数ΔA/Fにて補正され、本ルーチンを終了する。
【0020】
一方、ステップS101の判定条件が成立せず、即ち、特定運転領域にないとき、またはステップS104の判定条件が成立せず、即ち、KNT値が所定値K1以下と小さいときには疑似ノックの発生ではなく、通常のノックが発生しているとしてステップS106に移行し、空燃比補正係数ΔA/Fが「0」とされたのち本ルーチンを終了する。
【0021】
このように、本実施例の内燃機関用制御装置は、内燃機関(図示略)で発生する振動信号波形に基づきノックを検出するノックセンサ10、BPF(バンドパスフィルタ)11、ピークホールド回路12、マイクロコンピュータ20にて達成されるノック検出手段と、前記ノック検出手段でノックを検出したときには点火時期を遅角させ、ノックを検出しないときには点火時期を進角復帰するマイクロコンピュータ20にて達成されるノック制御手段と、内燃機関のA/F(空燃比)を制御するマイクロコンピュータ20にて達成される空燃比制御手段と、前記ノック制御手段による遅角量が所定値より大きいときには、その遅角量に基づき前記空燃比制御手段によるA/Fがリーン側となるよう補正制御するマイクロコンピュータ20にて達成される補正制御手段とを具備するものである。
【0022】
つまり、内燃機関で発生する振動信号波形に基づきノックが検出されたときには点火時期が遅角制御され、ノックが検出されないときには点火時期が進角復帰されるのであるが、このノック制御の際の遅角量が所定値より大きいときにはその遅角量に基づきA/Fがリーン側に補正制御される。これにより、疑似ノックの発生が未然に防止され内燃機関の運転状態を適切に制御することができる。
【0023】
ところで、上記実施例では、点火時期が予め設定された所定値K1を越え遅角側となっているときには、空燃比補正係数ΔA/Fを変更しA/Fをリーン側に補正して疑似ノックを回避するようにしたが、本発明を実施する場合には、これに限定されるものではなく、吸気VVT50における開弁時期を遅らせる、即ち、吸気VVT変動に対する疑似ノックの発生頻度〔%〕を図5の特性図に示すように、吸気VVT50を遅角側に変動させると図示しない排気バルブと吸気バルブとのバルブオーバラップ量が少なくなり内部EGR量が減少され疑似ノックの発生を回避することもできる。
【0024】
このような内燃機関用制御装置は、内燃機関(図示略)で発生する振動信号波形に基づきノックを検出するノックセンサ10、BPF(バンドパスフィルタ)11、ピークホールド回路12、マイクロコンピュータ20にて達成されるノック検出手段と、前記ノック検出手段でノックを検出したときには点火時期を遅角させ、ノックを検出しないときには点火時期を進角復帰するマイクロコンピュータ20にて達成されるノック制御手段と、内燃機関の内部EGR量を変更自在な吸気VVT50、マイクロコンピュータ20等にて達成されるEGR制御手段と、前記ノック制御手段による遅角量が所定値より大きいときには、その遅角量に基づき前記EGR制御手段で外部EGR量または内部EGR量のうち少なくとも何れか1つを補正制御するマイクロコンピュータ20にて達成される補正制御手段とを具備するものであり、上述の実施例と同様の効果が期待できる。
【0025】
また、吸気VVT50に代えて排気VVTを用いることで内部EGR量を減少し疑似ノックの発生を回避してもよく、それらの組合せを用いてもよい。更に、吸気VVT50や排気VVTによる内部EGR量の変更に替えて、周知のEGRバルブを用い排気通路からの排気ガスを吸気通路側に再循環させ外部EGR量が変更自在なシステム構成であれば、外部EGR量を減少させることで疑似ノックの発生を回避することができる。
【0026】
そして、上記実施例では、ノック制御による遅角量が所定値より大きいとき、その遅角量に基づきA/Fがリーン側となるように補正制御したが、本発明を実施する場合には、これに限定されるものではなく、疑似ノックが発生し易い運転条件は、内燃機関のノック制御領域内の特定の運転条件として、例えば、WOT,機関回転数2000〔rpm〕近傍と予め分かっているため、このような運転条件となると補正制御が実施されるようにすれば疑似ノックの発生を未然に防止することができる。
【0027】
更に、上記実施例では、ノック遅角量の演算結果に基づき疑似ノックの発生を回避するようにしたが、本発明を実施する場合には、これに限定されるものではなく、プレミアム/レギュラの燃料性状を遅角量の大/小に基づき判定可能なものでは、遅角側の運転状態となるレギュラ判定時に空燃比補正係数ΔA/Fを変更しA/Fをリーン側に補正することで疑似ノックの発生を回避することができる。
【0028】
このような内燃機関用制御装置は、上述の実施例に更に、前記ノック制御手段による遅角量の大/小に基づきプレミアム/レギュラの燃料性状を判定するマイクロコンピュータ20にて達成される燃料性状判定手段を具備し、前記補正制御手段は前記燃料性状判定手段でレキュラの燃料性状と判定したとき補正制御を実施するものであり、上述の実施例と同様の効果が期待できる。
【0029】
また、内燃機関の各気筒毎の吸気量(吸入空気量)、A/F、熱引け(冷却水による各気筒の冷却)等の差により疑似ノックの発生し易い気筒または気筒グループが異なるときには、上記実施例における空燃比補正係数ΔA/Fに対して気筒毎または気筒グループ毎に重み付けを変えて実施してもよい。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の一実施例にかかる内燃機関用制御装置における全体構成を示すブロック図である。
【図2】 図2は本発明の実施の形態の一実施例にかかる内燃機関用制御装置で使用されているマイクロコンピュータにおけるノック判定終了に続く空燃比補正係数演算の処理手順を示すフローチャートである。
【図3】 図3は本発明の実施の形態の一実施例にかかる内燃機関用制御装置における点火時期変動に対する疑似ノックの発生頻度を示す特性図である。
【図4】 図4は本発明の実施の形態の一実施例にかかる内燃機関用制御装置におけるA/F変動に対する疑似ノックの発生頻度を示す特性図である。
【図5】 図5は本発明の実施の形態の一実施例にかかる内燃機関用制御装置における吸気VVT変動に対する疑似ノックの発生頻度を示す特性図である。
【図6】 図6はノック信号と特定の運転条件における疑似ノック信号との違いを示す図である。
【符号の説明】
10 ノックセンサ
11 BPF(バンドパスフィルタ)
12 ピークホールド回路
20 マイクロコンピュータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine control device that controls an operating state of an internal combustion engine based on knock determination.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a control device for an internal combustion engine that performs knock determination on a knock signal extracted from a vibration signal waveform generated in the internal combustion engine and controls knock control factors such as ignition timing and fuel injection amount is known.
[0003]
[Problems to be solved by the invention]
As a knock detection system in the control device for an internal combustion engine, a knock signal is extracted from a vibration signal waveform detected by a knock sensor by a band pass filter, and a peak output value of the knock signal is obtained as an output distribution characteristic of a lognormal distribution. The presence / absence of knock occurrence is determined by comparison with a predetermined knock determination level.
[0004]
By the way, for example, when the ignition timing is further retarded under specific operating conditions such as WOT (Wide Open Throttle: throttle valve fully open / full load), engine speed 2000 [rpm] and no knocking occurrence, A noise signal related to combustion (hereinafter referred to as a “pseudo knock signal”) as shown in FIG. 6B, which is different from the knock signal shown in FIG. . When these knock signals and the pseudo knock signal are compared, the knock signal has a feature that the peak output timing is early and the signal generation time is short, whereas the pseudo knock signal has a substantially constant output value and a long signal generation time. However, the frequencies of the knock signal and the pseudo knock signal are substantially the same.
[0005]
When this pseudo knock occurs, a sound similar to that at the time of knock occurs, so that the driver feels a sense of discomfort similar to that when the knock occurs.
[0006]
Accordingly, the present invention has been made to solve such a problem, and is an internal combustion engine capable of appropriately controlling the operating state of the internal combustion engine while avoiding the generation of a pseudo knock due to a pseudo knock signal that is a noise signal different from the knock signal. It is an issue to provide a control device for a vehicle.
[0007]
[Means for Solving the Problems]
According to the control apparatus for an internal combustion engine of claim 1, when knock is detected by the knock detection means based on the vibration signal waveform generated in the internal combustion engine, the ignition timing is retarded by the knock control means, and when knock is not detected The ignition timing is returned to the advanced angle. When the retard amount during the knock control is larger than a predetermined value, the air-fuel ratio by the air-fuel ratio control means is corrected to the lean side by the correction control means based on the retard amount. Is done. Thereby, generation | occurrence | production of a pseudo knock is prevented beforehand and the driving | running state of an internal combustion engine is controlled appropriately.
[0008]
In the correction control means in the control apparatus for an internal combustion engine according to the second aspect, the correction amount of the air-fuel ratio is set differently for each preset cylinder or each cylinder group. Accordingly, it is possible to cope with the case where the cylinder or the cylinder group in which the pseudo knock is likely to be generated varies depending on various conditions, and the generation of the pseudo knock is appropriately avoided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0013]
FIG. 1 is a block diagram showing the overall configuration of an internal combustion engine control apparatus according to an embodiment of the present invention.
[0014]
In FIG. 1, reference numeral 10 denotes a knock sensor which is attached to a cylinder block (not shown) of the internal combustion engine and detects a vibration signal waveform generated in the internal combustion engine, and 11 is a knock from the vibration signal waveform of the knock sensor 10. A band pass filter (Band Pass Filter: specific frequency band pass filter; hereinafter referred to as “BPF”) having a bandwidth (Q value) of 10 [dB] for extracting the components related to. The knock signal extracted by the BPF 11 is peak-held in accordance with the peak hold signal from the microcomputer 20 in the peak hold circuit 12, and then A / D converted (analog-digital conversion) by the A / D converter 21. The peak output value V is taken into the microcomputer 20.
[0015]
In addition, the microcomputer 20 receives various sensor signals from, for example, a crank angle sensor, an intake air amount sensor, a water temperature sensor, and the like of the internal combustion engine. Based on these captured signals, the microcomputer 20 calculates the ignition timing, fuel injection amount, and the like. Then, the calculation result from the microcomputer 20 is an igniter 30, an injector (fuel injection valve) 40, and a known variable valve timing control mechanism (Variable Valve Timing Control Mechanism; provided on the intake side camshaft (not shown)). (Denoted as “VVT”) and the like.
[0016]
Here, the microcomputer 20 includes a CPU as a central processing unit that executes various known arithmetic processes, a ROM that stores a control program, a RAM that stores various data, a B / U (backup) RAM, an input / output circuit, and the like. Is configured as a logical operation circuit including a bus line or the like for connecting the two.
[0017]
Next, based on the flowchart of FIG. 2 showing the processing procedure of the air-fuel ratio correction coefficient calculation following the end of the knock determination in the microcomputer 20 used in the control apparatus for an internal combustion engine according to an example of the embodiment of the present invention. This will be described with reference to FIGS. Here, FIG. 3 is a characteristic diagram showing the pseudo knock occurrence frequency [%] with respect to the ignition timing variation, and FIG. 4 is a characteristic diagram showing the pseudo knock occurrence frequency [%] with respect to the A / F variation. This air-fuel ratio correction coefficient calculation routine is executed by the microcomputer 20 following the end of the knock determination.
[0018]
In FIG. 2, in step S101, it is determined whether or not it is in a specific operation region within a knock control region that is known in advance through experiments or the like that a pseudo knock is likely to occur. When the determination condition of step S101 is satisfied, that is, when it is in the specific operation region, the process proceeds to step S102, and the retard amount at the ignition timing at this time is read. Next, the process proceeds to step S103, and the retardation amount read in step S102 is set as the KNT value. Next, the process proceeds to step S104, and it is determined whether the KNT value exceeds a predetermined value K1 set in advance. If the determination condition in step S104 is satisfied, that is, if the KNT value exceeds the predetermined value K1 and is on the retard side, the process proceeds to step S105 assuming that a pseudo knock has occurred.
[0019]
That is, as indicated by a thick line in FIG. 3, the frequency of occurrence of pseudo knock, which is noise related to combustion, increases at this time. The characteristic indicated by the thin line in FIG. 3 is the frequency of occurrence of normal knock occurring on the advance side of the ignition timing. In step S105, the air-fuel ratio correction coefficient ΔA / F is set to f (KNT) by a table (not shown), and as shown in FIG. 4, the A / F is unlikely to generate pseudo knock, that is, the frequency of occurrence of pseudo knock. The air-fuel ratio correction coefficient ΔA / F is corrected to the lower lean side, and this routine is finished.
[0020]
On the other hand, when the determination condition of step S101 is not satisfied, that is, when it is not in the specific operation region, or when the determination condition of step S104 is not satisfied, that is, when the KNT value is smaller than the predetermined value K1, occurrence of a pseudo knock is not generated. If it is determined that a normal knock has occurred, the routine proceeds to step S106, and after the air-fuel ratio correction coefficient ΔA / F is set to “0”, this routine is terminated.
[0021]
As described above, the control device for an internal combustion engine of the present embodiment includes a knock sensor 10 that detects knock based on a vibration signal waveform generated in the internal combustion engine (not shown), a BPF (bandpass filter) 11, a peak hold circuit 12, The knock detection means achieved by the microcomputer 20 and the microcomputer 20 that retards the ignition timing when a knock is detected by the knock detection means and advances the ignition timing when the knock is not detected are achieved. When the knock control means, the air / fuel ratio control means achieved by the microcomputer 20 for controlling the A / F (air / fuel ratio) of the internal combustion engine, and the retard amount by the knock control means are larger than a predetermined value, the retard angle A microcomputer 20 that performs correction control so that the A / F by the air-fuel ratio control means is on the lean side based on the amount It is intended to and a correction control means is made.
[0022]
In other words, when the knock is detected based on the vibration signal waveform generated in the internal combustion engine, the ignition timing is retarded, and when the knock is not detected, the ignition timing is returned to the advanced timing. When the angular amount is larger than a predetermined value, the A / F is corrected and controlled to the lean side based on the retardation amount. Thereby, generation | occurrence | production of a pseudo knock is prevented beforehand and the driving | running state of an internal combustion engine can be controlled appropriately.
[0023]
By the way, in the above embodiment, when the ignition timing exceeds the predetermined value K1 set in advance and is retarded, the air-fuel ratio correction coefficient ΔA / F is changed to correct the A / F to the lean side and pseudo knock However, the present invention is not limited to this, and the valve opening timing of the intake VVT 50 is delayed, that is, the occurrence frequency [%] of pseudo knock with respect to intake VVT fluctuations is reduced. As shown in the characteristic diagram of FIG. 5, when the intake VVT 50 is changed to the retard side, the valve overlap amount between an exhaust valve and an intake valve (not shown) is reduced, and the internal EGR amount is reduced to avoid the occurrence of a pseudo knock. You can also.
[0024]
Such a control device for an internal combustion engine includes a knock sensor 10 that detects a knock based on a vibration signal waveform generated in an internal combustion engine (not shown), a BPF (bandpass filter) 11, a peak hold circuit 12, and a microcomputer 20. Knock detection means achieved, and knock control means achieved by the microcomputer 20 that retards the ignition timing when the knock detection means detects a knock, and advances the ignition timing when the knock detection is not detected, When the internal combustion engine's internal EGR amount can be changed by the intake VVT 50, the microcomputer 20, etc., and when the retardation amount by the knocking control device is larger than a predetermined value, the EGR is based on the retardation amount. The control means corrects and controls at least one of the external EGR amount and the internal EGR amount. That is intended to and a correction control means which is achieved by the microcomputer 20, the same effect can be expected as in the above example.
[0025]
Further, by using the exhaust VVT instead of the intake VVT 50, the internal EGR amount may be reduced to avoid the occurrence of a pseudo knock, or a combination thereof may be used. Furthermore, instead of changing the internal EGR amount by the intake VVT 50 or the exhaust VVT, if the system configuration is such that the exhaust gas from the exhaust passage is recirculated to the intake passage side using a known EGR valve, the external EGR amount can be changed. By reducing the external EGR amount, the occurrence of pseudo knock can be avoided.
[0026]
In the above embodiment, when the retard amount by the knock control is larger than the predetermined value, the correction control is performed so that the A / F is on the lean side based on the retard amount. However, the present invention is not limited to this, and the operating condition in which pseudo knock is likely to occur is known in advance as a specific operating condition in the knock control region of the internal combustion engine, for example, near WOT, engine speed 2000 [rpm]. Therefore, if the correction control is performed under such operating conditions, the occurrence of pseudo knock can be prevented in advance.
[0027]
Furthermore, in the above embodiment, the generation of the pseudo knock is avoided based on the calculation result of the knock retardation amount. However, the present invention is not limited to this, and the premium / regular If the fuel property can be determined based on the amount of retarded amount, the air / fuel ratio correction coefficient ΔA / F is changed to correct the A / F to the lean side when determining the regular state of the retarded side operation. Generation | occurrence | production of a pseudo knock can be avoided.
[0028]
Such a control apparatus for an internal combustion engine further includes the fuel property achieved by the microcomputer 20 that determines the premium / regular fuel property based on the amount of retardation by the knock control means in addition to the above-described embodiment. A determination unit is provided, and the correction control unit performs correction control when the fuel property determination unit determines that the fuel property of the reticular is obtained, and the same effect as the above-described embodiment can be expected.
[0029]
Also, when the cylinders or cylinder groups that are likely to generate pseudo knocks due to differences in intake air amount (intake air amount), A / F, heat sink (cooling of each cylinder by cooling water), etc. for each cylinder of the internal combustion engine, The air-fuel ratio correction coefficient ΔA / F in the above embodiment may be implemented by changing the weight for each cylinder or each cylinder group.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of a control device for an internal combustion engine according to an example of an embodiment of the present invention.
FIG. 2 is a flowchart showing a processing procedure for calculating an air-fuel ratio correction coefficient following completion of knock determination in a microcomputer used in the control apparatus for an internal combustion engine according to an example of the embodiment of the present invention; .
FIG. 3 is a characteristic diagram showing the frequency of occurrence of pseudo knock with respect to ignition timing fluctuations in the control apparatus for an internal combustion engine according to an example of the embodiment of the present invention.
FIG. 4 is a characteristic diagram showing the frequency of occurrence of pseudo-knock with respect to A / F fluctuations in the control apparatus for an internal combustion engine according to an example of the embodiment of the present invention.
FIG. 5 is a characteristic diagram showing the frequency of occurrence of pseudo-knock with respect to intake VVT fluctuations in the control apparatus for an internal combustion engine according to an example of the embodiment of the present invention.
FIG. 6 is a diagram showing a difference between a knock signal and a pseudo knock signal under a specific operation condition.
[Explanation of symbols]
10 knock sensor 11 BPF (band pass filter)
12 Peak hold circuit 20 Microcomputer

Claims (2)

内燃機関で発生する振動信号波形に基づきノックを検出するノック検出手段と、前記ノック検出手段でノックを検出したときには点火時期を遅角させ、ノックを検出しないときには点火時期を進角復帰するノック制御手段と、前記内燃機関の空燃比を制御する空燃比制御手段と、前記ノック制御手段による遅角量が所定値より大きいときには、前記遅角量に基づき前記空燃比制御手段による前記空燃比がリーン側となるよう補正制御する補正制御手段とを具備することを特徴とする内燃機関用制御装置。  Knock detection means for detecting knock based on the vibration signal waveform generated in the internal combustion engine, and knock control for retarding the ignition timing when the knock detection means detects the knock and for returning the ignition timing to advance when no knock is detected And an air / fuel ratio control means for controlling the air / fuel ratio of the internal combustion engine, and when the retardation amount by the knock control means is larger than a predetermined value, the air / fuel ratio by the air / fuel ratio control means is lean based on the retardation amount. A control device for an internal combustion engine comprising correction control means for performing correction control so as to be on the side. 前記補正制御手段は、前記空燃比の補正量を予め設定した気筒毎または気筒グループ毎に変えて設定することを特徴とする請求項1に記載の内燃機関用制御装置。  2. The control apparatus for an internal combustion engine according to claim 1, wherein the correction control means sets the correction amount of the air-fuel ratio by changing it for each cylinder or cylinder group set in advance.
JP34965999A 1999-12-09 1999-12-09 Control device for internal combustion engine Expired - Fee Related JP3868172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34965999A JP3868172B2 (en) 1999-12-09 1999-12-09 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34965999A JP3868172B2 (en) 1999-12-09 1999-12-09 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001164962A JP2001164962A (en) 2001-06-19
JP3868172B2 true JP3868172B2 (en) 2007-01-17

Family

ID=18405238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34965999A Expired - Fee Related JP3868172B2 (en) 1999-12-09 1999-12-09 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3868172B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144251B2 (en) * 2002-05-09 2008-09-03 トヨタ自動車株式会社 Control of exhaust gas recirculation in internal combustion engines.
JP2008057487A (en) * 2006-09-01 2008-03-13 Toyota Motor Corp Control device for internal combustion engine
JP5049926B2 (en) * 2008-08-29 2012-10-17 ダイハツ工業株式会社 Exhaust gas recirculation control method for internal combustion engine
JP5056680B2 (en) * 2008-09-03 2012-10-24 トヨタ自動車株式会社 Fuel property determination device for internal combustion engine
JP5839972B2 (en) * 2011-12-12 2016-01-06 三菱電機株式会社 Control device for internal combustion engine
JP7442942B2 (en) 2020-08-28 2024-03-05 ダイハツ工業株式会社 Knock sensor simulation signal generation device

Also Published As

Publication number Publication date
JP2001164962A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP4275289B2 (en) Ignition timing control device for internal combustion engine
JPH0681946B2 (en) Anti-knock control method for spark ignition internal combustion engine with supercharger
JP3868172B2 (en) Control device for internal combustion engine
JP2715513B2 (en) Knock detection device for internal combustion engine
JPH11229951A (en) Knocking control device for multiple cylinder internal combustion engine provided with variable valve timing control device
JPH0366505B2 (en)
JP3799937B2 (en) Control device for continuously variable transmission
JPH04109075A (en) Ignition timing control device for internal combustion engine
JP4390939B2 (en) Knock control device for internal combustion engine
JPS58217774A (en) Electronic engine controlling apparatus
JP2007132218A (en) Knocking control system for engine
JP2009115011A (en) Knock determining device for internal combustion engine
JPH0445655B2 (en)
JP3690017B2 (en) Ignition timing control method
JP4496670B2 (en) Control device for vehicle engine
JP2528168B2 (en) Ignition timing control device for internal combustion engine
JP3282890B2 (en) Engine ignition timing control device
JP3737005B2 (en) Knock control device for internal combustion engine
JPS59136575A (en) Control of knocking in multi-cylinder engine
JPS6380075A (en) Ignition timing control device for internal combustion engine
JPS63263242A (en) Fuel increase controller of internal combustion engine
JP2712188B2 (en) Engine knock control device
JPH0759931B2 (en) Ignition timing control device for internal combustion engine
JP2021113528A (en) Controller of internal combustion engine
JP2606283B2 (en) Ignition timing control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees