JP3868153B2 - Slag monitoring device - Google Patents

Slag monitoring device Download PDF

Info

Publication number
JP3868153B2
JP3868153B2 JP20861499A JP20861499A JP3868153B2 JP 3868153 B2 JP3868153 B2 JP 3868153B2 JP 20861499 A JP20861499 A JP 20861499A JP 20861499 A JP20861499 A JP 20861499A JP 3868153 B2 JP3868153 B2 JP 3868153B2
Authority
JP
Japan
Prior art keywords
slag
ultrasonic
monitoring device
crusher
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20861499A
Other languages
Japanese (ja)
Other versions
JP2001033024A (en
Inventor
直樹 菅沼
哲也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20861499A priority Critical patent/JP3868153B2/en
Publication of JP2001033024A publication Critical patent/JP2001033024A/en
Application granted granted Critical
Publication of JP3868153B2 publication Critical patent/JP3868153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、事業用、産業用の石炭ガス化設備に適用されるスラグ監視装置に関する。
【0002】
【従来の技術】
石炭ガス化炉における従来のスラグ監視装置を図10により説明する。
燃焼炉(石炭ガス化炉)1の下部にはスラグホール2が設けられ、このスラグホール2の下方には冷却水を満たしたスラグホッパ3が設けられる。スラグホッパ3の下部(角管部)には、網棚4上をスライド可能なスラグクラッシャー5が対向配設されている。そして、スラグホール2とスラグホッパ3の上部間の炉壁には、スラグホール2とスラグホッパ3を指向して監視用のテレビカメラ6a,6bが取り付けられ、その画像信号が炉外のモニタ7へ送られている。
【0003】
従って、燃焼炉1には微粉炭及びチャーが投入されて燃焼する。燃焼後の灰分が溶融スラグとして燃焼炉1の底部に溜まり、スラグホール2よりスラグホッパ3内へ流れ落ちる。スラグホッパ3内には冷却水が張られており、流れ落ちた溶融スラグは冷却後固化してホッパ下部より系外へ排出される。この際、スラグホール2での溶融スラグの流動性が悪い場合は、ある程度の塊となってスラグホッパ3に落下し網棚4上に大塊スラグを形成する。
【0004】
【発明が解決しようとする課題】
ところで、このような石炭ガス化炉においては、溶融スラグや大塊スラグを迅速かつ確実に炉外に排出することが重要である。従って、監視用のテレビカメラ6a,6bでスラグホール2下部やスラグホッパ3内の溶融スラグの排出状況が撮影され、モニタ7に送られ表示される。この像を見て、目視によりオペレータが判断してスラグクラッシャー5を作動させ、スラグを破砕していた。または、スラグクラッシャー5を連続的に作動させていた。
【0005】
ところが、このような従来のスラグ監視装置にあっては、以下に述べる問題点があった。
▲1▼スラグホール下部の雰囲気がかなりダーティになることがあり、テレビカメラの視界が悪く、スラグの落下状況の十分な把握ができない。
▲2▼スラグホッパ水は、スラグ及び未燃分のチャーなどにより混濁するので、光学的手法では減衰が大きく、スラグクラッシャー部における大塊スラグの有無やスラグ堆積状況などを把握することは出来ない。
▲3▼スラグクラッシャーを起動した結果、スラグが除去されたかが把握できない。
▲4▼スラグクラッシャーを定期的に作動させる場合、長期運転では作動回数が増加し油圧シリンダの耐久性の面から限界がある。
【0006】
本発明は、上述した実情に鑑みてなされたもので、スラグの排出状況を確実に把握することが出来ると共に、スラグクラッシャーを効果的に作動させてスラグクラッシャーの耐久性向上と消費電力の低減が図れるスラグ監視装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
斯かる目的を達成する本発明のスラグ監視装置は、石炭ガス化炉におけるスラグ監視装置において、スラグホッパ下部のスラグクラッシャー部に超音波送受波器を水平に複数個並設し、該超音波送受波器の受波信号の状態からスラグクラッシャー部の網棚上に堆積するスラグの堆積状況を検知することを特徴とする。
【0008】
また、前記超音波の周波数を100kHz≦freq≦1MHzに選定したことを特徴とする。
【0009】
また、前記超音波送受波器を網棚上方のスラグクラッシャー部の最上部に取り付けたことを特徴とする。
【0010】
また、前記超音波送受波器を網棚上方のスラグクラッシャー部に多段的に取り付けたことを特徴とする。
【0011】
また、前記超音波送受波器を、高さ方向に上下する機構を持った治具を介して、上下動可能に設けたことを特徴とする。
【0012】
また、前記スラグによる超音波の減衰の影響を全く受けない超音波送受波器を別途設け、該超音波受波器から送られてきた超音波受波信号の状態から実時間的な水による超音波の減衰の影響を判断することを特徴とする。
【0013】
また、前記超音波送受波器の受波信号の状態からスラグの堆積状況を検知し、このスラグの堆積状況に応じて前記スラグクラッシャーの作動制御を行う制御手段を設けたことを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明に係るスラグ監視装置を実施例により図面を用いて詳細に説明する。
【0015】
[第1実施例]
[構成]
図1は本発明の第1実施例を示す、スラグ監視装置の概略構成図、図2は同じく超音波の送波及び回折減衰の特性図である。尚、図1において、図10と同一部材には同一符号を付して重複する説明は省略する。
【0016】
図示のように、燃焼炉1におけるスラグホッパ3の下部(角管部)には、スラグWが捕獲・堆積される網棚4の上方(スラグクラッシャー5部の高さ方向略中間部)に位置して、スラグクラッシャー5のスライド方向と直角な方向の伝搬経路が水平面上を複数(図示例では四つ)に分割して形成され、これら各伝搬経路に送波器10aと受波器10bとからなる超音波送受波器(超音波センサ)10が割り当て(取り付け)られている。これら超音波送受波器10は、信号増幅器11を介して監視計器12に回路接続されている。
【0017】
そして、本実施例では、前記超音波は、図2にも示すように、混入チャー、細粒スラグ等による音波の散乱・減衰の影響を受けにくい1MHz以下の周波数であり、また伝搬経路上に大塊スラグが存在する場合に十分な回折減衰が得られるように100kHz以上の周波数が選定される。
【0018】
[作用・効果]
このように構成されるため、スラグホッパ3内を冷却水であるホッパ水で満たしてから超音波送受波器10により超音波を送受波させる。ここで得た超音波受波信号は信号増幅器11で増幅された後、監視計器12に送られる。監視計器12では、送られてきた超音波受波信号の状態から異物としての大塊スラグの有無や網棚4上におけるスラグ堆積状況が検知される。
【0019】
例えば、スラグWの実際の形状がA−A’計測断面で示したようなものであると、三つの受波器10bからは受波信号が入らないので、表示画面としては、A−A’断面像のように円形の推定スラグ形状Waで表示され、このような場合は、実際は大塊スラグが『有り』と判断され、スラグクラッシャー5を作動させて、スラグWを破砕する。
【0020】
このように本実施例では、減衰が小さい超音波を用いているので、光学的手法では減衰が大きく監視が難しかった従来例と異なり、十分なスラグWの監視が可能となる。また、前記超音波の周波数を100kHz≦freq≦1MHzとしたので、検知誤差が微小になる。
【0021】
これにより、スラグクラッシャー5を大塊スラグの有無や網棚4上におけるスラグ堆積状況に応じて効果的に作動させられ、この結果、スラグクラッシャー5の作動回数の低減(消費電力低減)、耐久性の向上及びスラグクラッシャー5の効果等が的確に把握できる。
【0022】
[第2実施例]
[構成]
図3は本発明の第2実施例を示す、スラグ監視装置の概略構成図である。尚、図3において、図1と同一部材には同一符号を付して重複する説明は省略する。
【0023】
この実施例は、第1実施例における、送波器10aと受波器10bとからなる超音波送受波器10を網棚4上方のスラグクラッシャー5部の最上部に取り付けた例で、その他の構成は第1実施例と同様である。
【0024】
[作用・効果]
この実施例によれば、第1実施例と同様の作用・効果の他に、超音波の送受波面をスラグクラッシャー5のスラグ破砕限界である最大寸法付近にすることにより、スラグクラッシャー5の作動回数を最も少なくでき、かつスラグWの堆積状況が三次元的に把握できる利点がある。
【0025】
[第3実施例]
[構成]
図4は本発明の第3実施例を示す、スラグ監視装置の概略構成図である。尚、図4において、図1と同一部材には同一符号を付して重複する説明は省略する。
【0026】
この実施例は、第1実施例における、送波器10aと受波器10bとからなる超音波送受波器10を網棚4上方に多段的に(高さ方向に複数個)取り付けた例で、その他の構成は第1実施例と同様である。
【0027】
[作用・効果]
この実施例によれば、第1実施例と同様の作用・効果の他に、高さ方向へ複数個の超音波送受波器10を取り付けることで、三次元でのスラグWの概略形状把握(図中推定スラグ形状Wa参照)ができる利点がある。
【0028】
[第4実施例]
[構成]
図5は本発明の第4実施例を示す、スラグ監視装置の概略構成図である。尚、図5において、図1と同一部材には同一符号を付して重複する説明は省略する。
【0029】
この実施例は、第1実施例における、送波器10aと受波器10bとからなる超音波送受波器10を、高さ方向に上下する機構を持った図示しない治具を介して、送波器10aと受波器10bとを完全に同期させて上下動可能に設けた例で、その他の構成は第1実施例と同様である。
【0030】
[作用・効果]
この実施例によれば、第1実施例と同様の作用・効果の他に、任意の高さでの水平断面像が得られる。また、複数回高さを変化させて超音波を送受波させることによって、必要最小限のセンサ数で、三次元でのスラグ形状認識ができる利点がある(図中推定スラグ形状Wa参照)。
【0031】
[第5実施例]
[構成]
図6は本発明の第5実施例を示す、スラグ監視装置の概略構成平面図、図7は同じく概略構成側面図である。尚、図6及び図7において、図1と同一部材には同一符号を付して重複する説明は省略する。
【0032】
この実施例は、第1実施例における、送波器10aと受波器10bとからなる超音波送受波器10とは別に、スラグによる超音波の減衰の影響を全く受けないスラグクラッシャー5部の伝搬経路と同じ距離を持つ伝搬経路(図示例では、スラグホッパ3下部の圧力容器15の内部)に送波器20aと受波器20bとからなる超音波送受波器20を別途割り当てた例である。
【0033】
そして、監視計器12では、超音波送受波器20から送られてきた超音波受波信号の状態から実時間的な水による音波の減衰の影響を判断し、大塊スラグの有無を判断する受波信号の基準電圧を決定し(換言すれば、大塊スラグの有無を判定する受波信号のしきい値を水の減衰特性に応じて変更し)、この基準信号を基に超音波送受波器10から送られてきた超音波受波信号と比較を行い、大塊スラグの有無を検知するようになっている。その他の構成は第1実施例と同様である。
【0034】
[作用・効果]
この実施例によれば、第1実施例と同様の作用・効果の他に、水による超音波の減衰の影響が考慮できるようになり、超音波の減衰による誤動作を小さくすることができると共にスラグ検知の精度を向上させることができる利点がある。
【0035】
[第6実施例]
[構成]
図8は本発明の第6実施例を示す、スラグ監視装置の概略構成図、図9は同じくガス化炉制御装置の大塊スラグ検知・除去動作のフローチャートである。尚、図8において、図1と同一部材には同一符号を付して重複する説明は省略する。
【0036】
この実施例は、第1実施例における超音波送受波器10を、監視計器12に代えて、信号増幅器11を介してガス化炉制御装置13に回路接続した例である。ガス化炉制御装置13では、送られてきた超音波受波信号に基づいて、図9の大塊スラグ検知・除去動作のフローチャートに従って、スラグクラッシャー5の作動制御を行うようになっている。
【0037】
即ち、ステップP1で、例えば一段から成る複数個(図示例では4個)の超音波送受波器10の中の4分の3(図示例では3個)の受波器10bからの信号が受信されないで、表示画面の略4分の3が推定スラグ形状Waで埋まった場合に(図1参照)、大塊スラグが『有り』と検知し、次いでステップP2で、スラグクラッシャー5を作動させてこれを除去するのである。この後、ステップP3で、再度大塊スラグの検知を行い、大塊スラグが検知されなくなるまで検知と除去を繰り返す。大塊スラグが完全に除去されたら、ステップP4で、除去を停止し、次に大塊スラグが検知されるまで待機する。ただし、検知作業は連続的に行われる。
【0038】
[作用・効果]
この実施例によれば、大塊スラグの迅速かつ確実な検知・除去が可能となり、第1実施例と同様の作用・効果の他に、スラグ除去の自動化により監視員の労力を低減することができる利点がある。
【0039】
尚、本発明は上記各実施例に限定されず、本発明の要旨を逸脱しない範囲で、各種変更が可能である。例えば、第2乃至第5実施例においても第6実施例と同様の検知システム及び手順でスラグ除去を行うようにしても良い。この際、第3実施例のように、超音波送受波器10が多段的に取り付けられた場合は、表示画面における最上段の略4分の3が推定スラグ形状Waで埋まった場合に、大塊スラグが『有り』と検知すれば良い。
【0040】
【発明の効果】
以上詳細に説明したように、本発明の請求項1に係るスラグ監視装置は、石炭ガス化炉におけるスラグ監視装置において、スラグホッパ下部のスラグクラッシャー部に超音波送受波器を水平に複数個並設し、該超音波送受波器の受波信号の状態からスラグクラッシャー部の網棚上に堆積するスラグの堆積状況を検知することを特徴とするので、減衰が小さい超音波を用いることにより、光学的手法では減衰が大きく監視が難しかった従来例と異なり、十分なスラグの監視が可能となる。これにより、スラグクラッシャーを大塊スラグの有無やスラグ堆積状況に応じて効果的に作動させられ、この結果、スラグクラッシャーの作動回数の低減(消費電力低減)、耐久性の向上及びスラグクラッシャーの効果等が的確に把握できる。
【0041】
本発明の請求項2に係るスラグ監視装置は、前記超音波の周波数を100kHz≦freq≦1MHzに選定したことを特徴とするので、請求項1と同様の作用・効果の他に、細粒スラグによる音波の散乱・減衰の影響を受けにくく、かつ伝搬経路上に大塊スラグが存在する場合に十分な回折減衰が得られ、検知誤差が微小になるという利点がある。
【0042】
本発明の請求項3に係るスラグ監視装置は、前記超音波送受波器を網棚上方のスラグクラッシャー部の最上部に取り付けたことを特徴とするので、請求項1と同様の作用・効果の他に、超音波の送受波面をスラグクラッシャーのスラグ破砕限界である最大寸法付近にすることにより、スラグクラッシャーの作動回数を最も少なくでき、かつスラグの堆積状況が三次元的に概略把握できる利点がある。
【0043】
本発明の請求項4に係るスラグ監視装置は、前記超音波送受波器を網棚上方のスラグクラッシャー部に多段的に取り付けたことを特徴とするので、請求項1と同様の作用・効果の他に、高さ方向へ複数個の超音波送受波器を取り付けることで、三次元でのスラグの形状把握ができる利点がある。
【0044】
本発明の請求項5に係るスラグ監視装置は、前記超音波送受波器を、高さ方向に上下する機構を持った治具を介して、上下動可能に設けたことを特徴とするので、請求項1と同様の作用・効果の他に、任意の高さでの水平断面像が得られると共に、複数回高さを変化させて超音波を送受波させることによって、必要最小限のセンサ数で、三次元でのスラグ形状把握ができる利点がある。
【0045】
本発明の請求項6に係るスラグ監視装置は、前記スラグによる超音波の減衰の影響を全く受けない超音波送受波器を別途設け、該超音波受波器から送られてきた超音波受波信号の状態から実時間的な水による超音波の減衰の影響を判断することを特徴とするので、請求項1と同様の作用・効果の他に、水による超音波の減衰の影響が考慮できるようになり、超音波の減衰による誤動作を小さくすることができると共にスラグ検知の精度を向上させることができる利点がある。
【0046】
本発明の請求項7に係るスラグ監視装置は、前記超音波送受波器の受波信号の状態からスラグの堆積状況を検知し、このスラグの堆積状況に応じて前記スラグクラッシャーの作動制御を行う制御手段を設けたことを特徴とするので、請求項1と同様の作用・効果の他に、スラグ除去の自動化により監視員の労力を低減することができる利点がある。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す、スラグ監視装置の概略構成図である。
【図2】同じく超音波の送波及び回折減衰の特性図である。
【図3】本発明の第2実施例を示す、スラグ監視装置の概略構成図である。
【図4】本発明の第3実施例を示す、スラグ監視装置の概略構成図である。
【図5】本発明の第4実施例を示す、スラグ監視装置の概略構成図である。
【図6】本発明の第5実施例を示す、スラグ監視装置の概略構成平面図である。
【図7】同じく概略構成側面図である。
【図8】本発明の第6実施例を示す、スラグ監視装置の概略構成図である。
【図9】同じくガス化炉制御装置の大塊スラグ検知・除去動作のフローチャートである。
【図10】従来のスラグ監視装置の概略構成図である。
【符号の説明】
1 燃焼炉
2 スラグホール
3 スラグホッパ
4 網棚
5 スラグクラッシャー
10 超音波送受波器(超音波センサ)
10a 送波器
10b 受波器
11 信号増幅器
12 監視計器
13 ガス化炉制御装置
20 超音波送受波器(超音波センサ)
20a 送波器
20b 受波器
W スラグ
Wa 推定スラグ形状
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slag monitoring device applied to commercial and industrial coal gasification facilities.
[0002]
[Prior art]
A conventional slag monitoring device in a coal gasifier will be described with reference to FIG.
A slag hole 2 is provided below the combustion furnace (coal gasification furnace) 1, and a slag hopper 3 filled with cooling water is provided below the slag hole 2. A slag crusher 5 slidable on the net shelf 4 is disposed opposite to the lower portion (square tube portion) of the slag hopper 3. The TV walls 6a and 6b for monitoring are attached to the furnace wall between the slag hole 2 and the upper part of the slag hopper 3 so as to face the slag hole 2 and the slag hopper 3, and the image signals are sent to the monitor 7 outside the furnace. It has been.
[0003]
Accordingly, the combustion furnace 1 is charged with pulverized coal and char and burns. The ash after combustion accumulates as molten slag at the bottom of the combustion furnace 1 and flows down from the slag hole 2 into the slag hopper 3. The slag hopper 3 is filled with cooling water, and the molten slag that has flowed down is solidified after cooling and discharged from the lower part of the hopper to the outside of the system. At this time, when the fluidity of the molten slag in the slag hole 2 is poor, the molten slag falls to a certain amount and falls onto the slag hopper 3 to form a large slag on the net shelf 4.
[0004]
[Problems to be solved by the invention]
By the way, in such a coal gasification furnace, it is important to discharge molten slag and large lump slag out of the furnace quickly and reliably. Accordingly, the state of the molten slag discharged from the lower part of the slag hole 2 and the slag hopper 3 is photographed by the monitoring television cameras 6a and 6b and sent to the monitor 7 for display. Looking at this image, the operator judged it visually and actuated the slag crusher 5 to break up the slag. Or the slag crusher 5 was operated continuously.
[0005]
However, such a conventional slag monitoring device has the following problems.
(1) The atmosphere at the bottom of the slag hall may become quite dirty, the visibility of the TV camera is poor, and the slag falling situation cannot be fully grasped.
(2) Since slag hopper water becomes turbid due to slag and unburned char, etc., it is greatly attenuated by the optical method, and it is impossible to grasp the presence or absence of large slag in the slag crusher and the slag accumulation status.
(3) As a result of starting the slag crusher, it cannot be grasped whether the slag has been removed.
(4) When the slag crusher is operated periodically, the number of operations increases during long-term operation, and there is a limit in terms of durability of the hydraulic cylinder.
[0006]
The present invention has been made in view of the above-described circumstances, and can reliably grasp the state of slag discharge, and can effectively operate the slag crusher to improve durability of the slag crusher and reduce power consumption. It aims at providing the slag monitoring apparatus which can be aimed.
[0007]
[Means for Solving the Problems]
The slag monitoring device of the present invention that achieves such an object is the slag monitoring device in a coal gasification furnace, wherein a plurality of ultrasonic transducers are horizontally arranged in parallel in the slag crusher part at the bottom of the slag hopper, It is characterized by detecting the accumulation state of the slag accumulated on the net shelf of the slag crusher unit from the state of the received signal of the container.
[0008]
Further, the frequency of the ultrasonic wave is selected as 100 kHz ≦ freq ≦ 1 MHz.
[0009]
Further, the ultrasonic transducer is attached to the uppermost portion of the slag crusher portion above the net shelf.
[0010]
Further, the ultrasonic transducer is attached to the slag crusher portion above the net shelf in a multistage manner.
[0011]
Further, the ultrasonic transducer is provided so as to be movable up and down via a jig having a mechanism for moving up and down in the height direction.
[0012]
In addition, an ultrasonic transducer that is not affected by the attenuation of ultrasonic waves due to the slag is provided separately, and the ultrasonic wave signal transmitted from the ultrasonic receiver is used to detect the ultrasonic wave in real time. It is characterized by determining the influence of sound wave attenuation.
[0013]
Further, the present invention is characterized in that there is provided control means for detecting the slag accumulation state from the state of the reception signal of the ultrasonic transducer and controlling the operation of the slag crusher according to the slag accumulation state.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a slag monitoring device according to the present invention will be described in detail with reference to the drawings by way of examples.
[0015]
[First embodiment]
[Constitution]
FIG. 1 is a schematic configuration diagram of a slag monitoring device showing a first embodiment of the present invention, and FIG. 2 is a characteristic diagram of ultrasonic wave transmission and diffraction attenuation. In FIG. 1, the same members as those in FIG.
[0016]
As shown in the figure, the lower part (square tube part) of the slag hopper 3 in the combustion furnace 1 is located above the net rack 4 where the slag W is captured and deposited (substantially in the height direction of the slag crusher 5 part). A propagation path in a direction perpendicular to the sliding direction of the slag crusher 5 is formed by dividing a horizontal plane into a plurality of (four in the illustrated example), and each of the propagation paths includes a transmitter 10a and a receiver 10b. An ultrasonic transducer (ultrasonic sensor) 10 is assigned (attached). These ultrasonic transducers 10 are connected to a monitoring instrument 12 via a signal amplifier 11.
[0017]
In this embodiment, as shown in FIG. 2, the ultrasonic wave has a frequency of 1 MHz or less that is not easily affected by scattering and attenuation of sound waves due to mixed char, fine slag, etc., and is on the propagation path. A frequency of 100 kHz or higher is selected so that sufficient diffraction attenuation can be obtained when large slag is present.
[0018]
[Action / Effect]
Since the slag hopper 3 is filled with hopper water that is cooling water, the ultrasonic transducer 10 transmits and receives ultrasonic waves. The ultrasonic wave reception signal obtained here is amplified by the signal amplifier 11 and then sent to the monitoring instrument 12. The monitoring instrument 12 detects the presence / absence of large slag as foreign matter and the state of slag accumulation on the net shelf 4 from the state of the received ultrasonic wave reception signal.
[0019]
For example, if the actual shape of the slag W is as shown in the AA ′ measurement cross section, no received signal is input from the three receivers 10b, so that the display screen is AA ′. A circular estimated slag shape Wa as shown in the cross-sectional image is displayed. In such a case, it is actually judged that the large slag is “present”, and the slag crusher 5 is operated to crush the slag W.
[0020]
As described above, in this embodiment, since the ultrasonic wave having a small attenuation is used, unlike the conventional example in which the optical method has a large attenuation and is difficult to monitor, it is possible to sufficiently monitor the slag W. Further, since the frequency of the ultrasonic wave is set to 100 kHz ≦ freq ≦ 1 MHz, the detection error becomes minute.
[0021]
As a result, the slag crusher 5 can be effectively operated according to the presence or absence of large slag and the state of slag accumulation on the net shelf 4. As a result, the number of operations of the slag crusher 5 is reduced (power consumption is reduced) and the durability is improved. The improvement and the effect of the slag crusher 5 can be accurately grasped.
[0022]
[Second Embodiment]
[Constitution]
FIG. 3 is a schematic configuration diagram of a slag monitoring device showing a second embodiment of the present invention. In FIG. 3, the same members as those in FIG.
[0023]
This embodiment is an example in which the ultrasonic transmitter / receiver 10 composed of the transmitter 10a and the receiver 10b in the first embodiment is attached to the uppermost part of the slag crusher 5 part above the net shelf 4, and other configurations Is the same as in the first embodiment.
[0024]
[Action / Effect]
According to this embodiment, in addition to the same operations and effects as in the first embodiment, the number of operations of the slag crusher 5 can be increased by making the ultrasonic wave transmission / reception surface near the maximum dimension that is the slag crusher 5 limit. There is an advantage that the accumulation state of the slag W can be grasped three-dimensionally.
[0025]
[Third embodiment]
[Constitution]
FIG. 4 is a schematic configuration diagram of a slag monitoring apparatus showing a third embodiment of the present invention. In FIG. 4, the same members as those in FIG.
[0026]
This embodiment is an example in which the ultrasonic transmitter / receiver 10 composed of the transmitter 10a and the receiver 10b in the first embodiment is attached in a multistage manner (a plurality in the height direction) above the net shelf 4. Other configurations are the same as those of the first embodiment.
[0027]
[Action / Effect]
According to this embodiment, in addition to the same operations and effects as in the first embodiment, by attaching a plurality of ultrasonic transducers 10 in the height direction, the general shape grasp of the slag W in three dimensions ( There is an advantage that an estimated slag shape Wa in the figure can be formed.
[0028]
[Fourth embodiment]
[Constitution]
FIG. 5 is a schematic configuration diagram of a slag monitoring apparatus showing a fourth embodiment of the present invention. In FIG. 5, the same members as those in FIG.
[0029]
In this embodiment, the ultrasonic transmitter / receiver 10 composed of the transmitter 10a and the receiver 10b in the first embodiment is transmitted via a jig (not shown) having a mechanism for moving up and down in the height direction. This is an example in which the wave generator 10a and the wave receiver 10b are provided so as to be able to move up and down completely in synchronism, and the other configurations are the same as those in the first embodiment.
[0030]
[Action / Effect]
According to this embodiment, a horizontal cross-sectional image at an arbitrary height can be obtained in addition to the same operations and effects as the first embodiment. In addition, there is an advantage that three-dimensional slag shape recognition can be performed with the minimum number of sensors by changing the height a plurality of times and transmitting and receiving ultrasonic waves (see the estimated slag shape Wa in the figure).
[0031]
[Fifth embodiment]
[Constitution]
FIG. 6 is a schematic plan view of a slag monitoring device showing a fifth embodiment of the present invention, and FIG. 7 is a schematic side view of the same. 6 and FIG. 7, the same members as those in FIG.
[0032]
In this embodiment, in addition to the ultrasonic wave transmitter / receiver 10 composed of the wave transmitter 10a and the wave receiver 10b in the first embodiment, the slag crusher 5 part which is not affected by the attenuation of ultrasonic waves by the slag at all. In this example, an ultrasonic transducer 20 including a transmitter 20a and a receiver 20b is separately assigned to a propagation path (in the illustrated example, inside the pressure vessel 15 below the slag hopper 3) having the same distance as the propagation path. .
[0033]
The monitoring instrument 12 determines the influence of attenuation of sound waves by water in real time from the state of the ultrasonic wave reception signal sent from the ultrasonic wave transmitter / receiver 20, and determines whether there is a large lump slag. The reference voltage of the wave signal is determined (in other words, the threshold value of the received signal for determining the presence or absence of large slag is changed according to the attenuation characteristics of water), and ultrasonic transmission / reception is performed based on this reference signal. The ultrasonic wave reception signal sent from the vessel 10 is compared to detect the presence or absence of large slag. Other configurations are the same as those of the first embodiment.
[0034]
[Action / Effect]
According to this embodiment, in addition to the operation and effect similar to the first embodiment, it becomes possible to consider the influence of ultrasonic attenuation due to water, and it is possible to reduce malfunctions due to ultrasonic attenuation and to reduce slag. There is an advantage that the accuracy of detection can be improved.
[0035]
[Sixth embodiment]
[Constitution]
FIG. 8 is a schematic configuration diagram of a slag monitoring device showing a sixth embodiment of the present invention, and FIG. 9 is a flowchart of a large mass slag detection / removal operation of the gasifier control device. In FIG. 8, the same members as those in FIG.
[0036]
In this embodiment, the ultrasonic transducer 10 in the first embodiment is connected to a gasifier control device 13 via a signal amplifier 11 instead of the monitoring instrument 12. The gasifier control device 13 controls the operation of the slag crusher 5 according to the flow chart of the massive slag detection / removal operation shown in FIG. 9 based on the transmitted ultrasonic wave reception signal.
[0037]
That is, at step P1, for example, signals from three quarters (three in the illustrated example) of the ultrasonic transducers 10b (four in the illustrated example) consisting of one stage are received. If approximately three-quarters of the display screen is filled with the estimated slag shape Wa (see FIG. 1), it is detected that large slag is “present”, and then the slag crusher 5 is activated in step P2. This is removed. Thereafter, in step P3, the large chunk slag is detected again, and detection and removal are repeated until no large chunk slag is detected. When the massive slag is completely removed, the removal is stopped in step P4, and then the process waits until the massive slag is detected. However, the detection work is performed continuously.
[0038]
[Action / Effect]
According to this embodiment, large-scale slag can be detected and removed quickly and reliably, and in addition to the same actions and effects as in the first embodiment, the labor of the supervisor can be reduced by the automation of slag removal. There are advantages you can do.
[0039]
In addition, this invention is not limited to said each Example, A various change is possible in the range which does not deviate from the summary of this invention. For example, in the second to fifth embodiments, slag removal may be performed by the same detection system and procedure as in the sixth embodiment. At this time, as in the third embodiment, when the ultrasonic transducers 10 are attached in multiple stages, when the uppermost three-quarters of the display screen are filled with the estimated slag shape Wa, What is necessary is just to detect that there is lump slag.
[0040]
【The invention's effect】
As described above in detail, the slag monitoring device according to claim 1 of the present invention is a slag monitoring device in a coal gasification furnace, wherein a plurality of ultrasonic transducers are horizontally arranged in parallel in a slag crusher portion below a slag hopper. In addition, it is characterized in that the state of slag accumulated on the net shelf of the slag crusher unit is detected from the state of the received signal of the ultrasonic transducer, so that by using ultrasonic waves with low attenuation, optical Unlike the conventional example, which has a large attenuation and is difficult to monitor with this method, sufficient slag can be monitored. As a result, the slag crusher can be operated effectively according to the presence or absence of large slag and the slag accumulation status. Etc. can be accurately grasped.
[0041]
The slag monitoring device according to claim 2 of the present invention is characterized in that the frequency of the ultrasonic wave is selected to be 100 kHz ≦ freq ≦ 1 MHz, so that the fine slag other than the same function and effect as in claim 1 In addition, there is an advantage that sufficient diffraction attenuation can be obtained and detection error becomes small when there is a large lump slag on the propagation path.
[0042]
The slag monitoring apparatus according to claim 3 of the present invention is characterized in that the ultrasonic transducer is attached to the uppermost part of the slag crusher part above the net shelf. In addition, by making the ultrasonic wave transmission / reception surface near the maximum dimension that is the limit of slag crusher slag crushing, the number of operations of slag crusher can be minimized, and the slag accumulation status can be roughly grasped in three dimensions. .
[0043]
The slag monitoring apparatus according to claim 4 of the present invention is characterized in that the ultrasonic transducer is attached to the slag crusher portion above the net shelf in a multistage manner. In addition, by attaching a plurality of ultrasonic transducers in the height direction, there is an advantage that the shape of the slag can be grasped in three dimensions.
[0044]
Since the slag monitoring apparatus according to claim 5 of the present invention is characterized in that the ultrasonic transducer is provided so as to be movable up and down via a jig having a mechanism that moves up and down in the height direction. In addition to the functions and effects similar to those of the first aspect, a horizontal cross-sectional image at an arbitrary height can be obtained, and a minimum number of sensors can be obtained by changing the height a plurality of times and transmitting and receiving ultrasonic waves. Thus, there is an advantage that the slag shape can be grasped in three dimensions.
[0045]
The slag monitoring apparatus according to claim 6 of the present invention is provided with an ultrasonic transducer that is not affected at all by the attenuation of ultrasonic waves by the slag, and an ultrasonic wave received from the ultrasonic receiver. Since it is characterized in that the influence of ultrasonic attenuation due to water in real time is determined from the signal state, the influence of ultrasonic attenuation due to water can be considered in addition to the same actions and effects as in claim 1. Thus, there is an advantage that malfunction due to attenuation of ultrasonic waves can be reduced and accuracy of slag detection can be improved.
[0046]
The slag monitoring device according to claim 7 of the present invention detects the slag accumulation state from the state of the reception signal of the ultrasonic transducer, and controls the operation of the slag crusher according to the slag accumulation state. Since the control means is provided, there is an advantage that the labor of the supervisor can be reduced by automation of slag removal in addition to the same operation and effect as in the first aspect.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a slag monitoring device according to a first embodiment of the present invention.
FIG. 2 is a characteristic diagram of ultrasonic transmission and diffraction attenuation.
FIG. 3 is a schematic configuration diagram of a slag monitoring apparatus showing a second embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of a slag monitoring apparatus showing a third embodiment of the present invention.
FIG. 5 is a schematic configuration diagram of a slag monitoring device according to a fourth embodiment of the present invention.
FIG. 6 is a schematic plan view of a slag monitoring device showing a fifth embodiment of the present invention.
FIG. 7 is a side view schematically showing the configuration.
FIG. 8 is a schematic configuration diagram of a slag monitoring device showing a sixth embodiment of the present invention.
FIG. 9 is a flow chart of the large mass slag detection / removal operation of the gasifier control device.
FIG. 10 is a schematic configuration diagram of a conventional slag monitoring device.
[Explanation of symbols]
1 Combustion furnace 2 Slag hole 3 Slag hopper 4 Net shelf 5 Slag crusher 10 Ultrasonic transducer (ultrasonic sensor)
10a transmitter 10b receiver 11 signal amplifier 12 monitoring instrument 13 gasifier control device 20 ultrasonic transmitter / receiver (ultrasonic sensor)
20a Transmitter 20b Receiver W Slag Wa Estimated slug shape

Claims (7)

石炭ガス化炉におけるスラグ監視装置において、スラグホッパ下部のスラグクラッシャー部に超音波送受波器を水平に複数個並設し、該超音波送受波器の受波信号の状態からスラグクラッシャー部の網棚上に堆積するスラグの堆積状況を検知することを特徴とするスラグ監視装置。In a slag monitoring device in a coal gasification furnace, a plurality of ultrasonic transducers are horizontally arranged in the slag crusher part at the lower part of the slag hopper, and the state of the received signal of the ultrasonic transducer is determined on the net shelf of the slag crusher part. A slag monitoring device that detects the accumulation state of slag accumulated on the surface. 前記超音波の周波数を100kHz≦freq≦1MHzに選定したことを特徴とする請求項1記載のスラグ監視装置。2. The slag monitoring device according to claim 1, wherein the frequency of the ultrasonic wave is selected to be 100 kHz ≦ freq ≦ 1 MHz. 前記超音波送受波器を網棚上方のスラグクラッシャー部の最上部に取り付けたことを特徴とする請求項1又は2記載のスラグ監視装置。The slag monitoring device according to claim 1 or 2, wherein the ultrasonic transducer is attached to an uppermost portion of a slag crusher portion above a net shelf. 前記超音波送受波器を網棚上方のスラグクラッシャー部に多段的に取り付けたことを特徴とする請求項1又は2記載のスラグ監視装置。The slag monitoring device according to claim 1 or 2, wherein the ultrasonic transducer is attached to a slag crusher portion above the net shelf in a multistage manner. 前記超音波送受波器を、高さ方向に上下する機構を持った治具を介して、上下動可能に設けたことを特徴とする請求項1又は2記載のスラグ監視装置。The slag monitoring device according to claim 1 or 2, wherein the ultrasonic transducer is provided so as to be movable up and down via a jig having a mechanism for moving up and down in the height direction. 前記スラグによる超音波の減衰の影響を全く受けない超音波送受波器を別途設け、該超音波受波器から送られてきた受波信号の状態から実時間的な水による超音波の減衰の影響を判断することを特徴とする請求項1,2,3,4又は5記載のスラグ監視装置。An ultrasonic transmitter / receiver that is completely unaffected by the attenuation of ultrasonic waves due to the slag is provided, and the attenuation of ultrasonic waves due to real-time water is determined from the state of the received signal transmitted from the ultrasonic receiver. 6. The slag monitoring device according to claim 1, wherein the influence is judged. 前記超音波送受波器の受波信号の状態からスラグの堆積状況を検知し、このスラグの堆積状況に応じて前記スラグクラッシャーの作動制御を行う制御手段を設けたことを特徴とする請求項1,2,3,4,5又は6記載のスラグ監視装置。2. A control means is provided for detecting a slag accumulation state from a state of a received signal of the ultrasonic transducer, and controlling operation of the slag crusher according to the slag accumulation state. , 2, 3, 4, 5 or 6.
JP20861499A 1999-07-23 1999-07-23 Slag monitoring device Expired - Lifetime JP3868153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20861499A JP3868153B2 (en) 1999-07-23 1999-07-23 Slag monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20861499A JP3868153B2 (en) 1999-07-23 1999-07-23 Slag monitoring device

Publications (2)

Publication Number Publication Date
JP2001033024A JP2001033024A (en) 2001-02-09
JP3868153B2 true JP3868153B2 (en) 2007-01-17

Family

ID=16559147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20861499A Expired - Lifetime JP3868153B2 (en) 1999-07-23 1999-07-23 Slag monitoring device

Country Status (1)

Country Link
JP (1) JP3868153B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142682A (en) * 2008-12-16 2010-07-01 Mitsubishi Heavy Ind Ltd Slag jaw crusher

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448669B2 (en) 2009-09-17 2014-03-19 三菱重工業株式会社 Slag monitoring device for coal gasifier and coal gasifier
CN110470787A (en) * 2019-07-05 2019-11-19 江苏省镔鑫钢铁集团有限公司 A kind of steel slag fine powder all iron content detection system and detection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205555A (en) * 1990-01-08 1991-09-09 Mitsubishi Heavy Ind Ltd Monitoring device for gas staying in internal pipe of double pipe
JP2523492Y2 (en) * 1991-08-05 1997-01-22 日立造船株式会社 Granulated slag production equipment
JPH0774345B2 (en) * 1993-08-26 1995-08-09 バブコック日立株式会社 Slag flow monitor for coal gasifier
JP3477244B2 (en) * 1994-01-20 2003-12-10 三菱重工業株式会社 Sand slag crusher for coal gasifier
JPH09145693A (en) * 1995-11-16 1997-06-06 Mitsubishi Electric Corp Scum detection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142682A (en) * 2008-12-16 2010-07-01 Mitsubishi Heavy Ind Ltd Slag jaw crusher

Also Published As

Publication number Publication date
JP2001033024A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
AU2010296349B2 (en) Slag monitoring device for coal gasifier and coal gasifier
JP3868153B2 (en) Slag monitoring device
WO2001020303A8 (en) Miniaturized contactless sonic ir device for remote non-destructive inspection
JP6651627B2 (en) Apparatus and method for detecting internal defects in steel sheet using height-adjustable ultrasonic sensor
CN110142084B (en) Crushing cavity wear monitoring method
CN102879300A (en) Method for detecting fluidity of slag in coal gasifier
KR101824051B1 (en) Pulverizer condition monitoring system for thermal power plant and the condition monitoring method thereof
CN107055037A (en) The intelligent detection equipment and slag remover of a kind of slag remover
CN106199762B (en) Hail feelings monitor and its monitoring method
CN100507511C (en) Particle monitor and processing apparatus therewith
JP4625682B2 (en) Analysis program
CN215198345U (en) Black spot color selecting device for instant noodle production line
CN113145494A (en) Black spot color selecting device for instant noodle production line
EP4159328B1 (en) Arrangement for handling screening material having an ultrasonic detection system and method
CN210071063U (en) Powder explosion-proof ultrasonic material level detection system
JP2010142682A (en) Slag jaw crusher
CN215179440U (en) Particle size online measurement system device
EP0760465B1 (en) Molten slag flow rate measuring device and furnace facilities using the same
CN210392439U (en) Chain grate bulk cargo elephant trunk bold putty detection device
CN221739253U (en) Glass fiber material's batch charging device
CN117225298B (en) Solid raw material feeding system based on moving bed reactor
CN221894218U (en) Railway intelligent loading system
CN219522709U (en) Plastic rice detects and sieving mechanism
CN220316023U (en) Bagasse blanking barrel with brand-new material level detection function
CN213833085U (en) Monitor for monitoring garbage classification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R151 Written notification of patent or utility model registration

Ref document number: 3868153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term