JP3867374B2 - Aqueous solution for preparing titanium oxide film and method for producing titanium oxide film - Google Patents

Aqueous solution for preparing titanium oxide film and method for producing titanium oxide film Download PDF

Info

Publication number
JP3867374B2
JP3867374B2 JP32293697A JP32293697A JP3867374B2 JP 3867374 B2 JP3867374 B2 JP 3867374B2 JP 32293697 A JP32293697 A JP 32293697A JP 32293697 A JP32293697 A JP 32293697A JP 3867374 B2 JP3867374 B2 JP 3867374B2
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide film
acid
aqueous solution
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32293697A
Other languages
Japanese (ja)
Other versions
JPH11158691A (en
Inventor
敏和 竹田
美文 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP32293697A priority Critical patent/JP3867374B2/en
Publication of JPH11158691A publication Critical patent/JPH11158691A/en
Application granted granted Critical
Publication of JP3867374B2 publication Critical patent/JP3867374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光触媒、光化学電池、紫外線吸収膜、誘電体膜などに利用しうるチタン酸化物被膜を作製する水溶液、およびその水溶液を用いたチタン酸化物被膜の製造方法に関するものである。
【0002】
【従来の技術】
従来よりチタン酸化物被膜は、光触媒、光化学電池、紫外線吸収膜、誘電体膜等の分野での利用が進められている。
【0003】
このようなチタン酸化物被膜の製造方法は、スパッタリング法、真空蒸着法、CVD法などの乾式成膜法により基板上に成膜することが試みられている。また、湿式成膜法においては、チタン金属を酸またはアルカリ溶液中で陽極酸化することによりチタン酸化物被膜を得たり、Journal of Electrochemical Society 143、1547(1996年)に記載されているように、チタンイオンを含むpH1.0から3.0の酸性溶液中で陰極析出することによりチタン酸化物被膜を製造する方法が知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のスパッタリング法、真空蒸着法、CVD法などの乾式成膜法では成膜装置が大掛かりで高価であり、また成膜可能な基板面積が制限される、組成や膜厚制御が難しい、複雑な形状の基板には成膜が難しいなどの欠点がある。また、湿式成膜法において、チタン金属を陽極酸化する方法では使用可能な基板が限定されてしまい、またチタンイオンを含む酸性溶液中で陰極析出する方法でも、酸性溶液中で溶出してしまうアルミ、亜鉛、スズ、鉛などの金属や、酸化物基板上にチタン酸化物被膜を成膜することが困難である、またpH3.0を越える溶液中では、溶液中に沈殿物が生じてしまい成膜の用に供することが不可能となってしまう、等の問題点を有していた。
【0005】
【課題を解決するための手段】
本発明者は、上述の技術的問題点に鑑みて鋭意研究を重ねた結果、チタンイオン、硝酸イオン、過酸化物、および錯化剤を含有し、かつpHが3.0より大きい水溶液を用いて電解析出を行うことにより、大掛かりな装置を必要とせず、大面積および複雑形状の基板上にも、膜厚および組成が均一で幅広い基板の選択が可能なチタン酸化物被膜を容易に製造できる方法を見出し、本発明を完成するに至った。
【0006】
すなわち本発明は、チタンイオン、硝酸イオン、過酸化物、および錯化剤を含有し、かつpHが3.0より大きい水溶液、および該水溶液を用いてチタン酸化物被膜の電解析出を施すことを特徴とする。
【0007】
本発明におけるチタンイオンのイオン源としては特に限定はない。すなわち、水溶性のチタン塩であればよく、例えば三塩化チタン、四塩化チタン等が挙げられ、さらにチタン金属、酸化チタン等を硫酸、硝酸、およびフッ化水素酸、過酸化水素水のそれぞれとアンモニア水とを混合した水溶液中で溶解させたものを用いることができる。
【0008】
また、硝酸イオンのイオン源としても特に限定はない。すなわち、硝酸、硝酸ナトリウム、硝酸カリウム、硝酸アンモニウム等が挙げられる。
【0009】
過酸化物としても特に限定はない。すなわち、過酸化水素、ペルオキソ硝酸、ペルオキソ一硫酸、ペルオキソ二硫酸、ペルオキソ一硫酸ナトリウム、ペルオキソ二硫酸ナトリウム、ペルオキソ一硫酸カリウム、ペルオキソ二硫酸カリウム、ペルオキソ一炭酸ナトリウム、ペルオキソ二炭酸カリウム、ペルオキソ一リン酸、ペルオキソ二リン酸、ペルオキソ一リン酸ナトリウム、ペルオキソ二リン酸ナトリウム、ペルオキソ一リン酸カリウム、ペルオキソ二リン酸カリウム、ペルオキソほう酸、ペルオキソほう酸ナトリウム等が挙げられる。
【0010】
さらに、錯化剤としては、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、クエン酸、クエン酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、シクロヘキサンジアミン四酢酸等が挙げられる。
【0011】
これらの化合物のうち、チタンイオン源として四塩化チタン、硝酸イオン源として硝酸、過酸化物としてペルオキソほう酸、錯化剤としてクエン酸を用いることが、各試薬の取り扱い易さ、調合のしやすさから考えて望ましい。
【0012】
なお本発明で、チタンイオン源、硝酸イオン源として使用する化合物および過酸化物、錯化剤として使用する化合物は、それぞれ一種類の物を用いてもよく、あるいは複数の物を混合して用いても良い。
【0013】
本発明では、チタンイオン、硝酸イオン過酸化物、および錯化剤の濃度は広い範囲で使用可能であるが、低濃度すぎると電解による被膜を得にくく、また高濃度すぎると水溶液の安定性が悪化し、沈殿物を生成する傾向がある。このため、通常、チタンイオン、硝酸イオン、過酸化物、錯化剤のそれぞれの濃度が0.001mol/L〜1.0mol/L程度の範囲にあることが適当であり、特にそれぞれの濃度が0.05mol/L程度であることが好ましい。
【0014】
本発明のチタン酸化物被膜の製造方法には、電解メッキ法やオートクレーブ中の高温高圧下で電解を行う水熱電気化学法など通常の電解析出法がいずれも採用できる。
【0015】
本発明ではこの様に、チタンイオン、硝酸イオン、過酸化物、および錯化剤を含有し、かつpHが3.0より大きい水溶液を用いてチタン酸化物被膜を成膜するが、これに対して、チタンイオン、硝酸イオンは含むが過酸化物、錯化剤を含まない水溶液、およびチタンイオン、硝酸イオン、過酸化物は含むが錯化剤を含まない水溶液を用いた場合では、加水分解による沈殿物が生じてしまいチタン酸化物被膜を製造することができない。
【0016】
本発明の水溶液を用いて、例えば、三極式の電解セルを形成装置として用いた場合、作用電極電位は、電解液中のチタンイオン、硝酸イオン、過酸化物、および錯化剤の濃度に応じて設定可能であるが、通常Ag/AgCl電極基準で−0.1〜−2.0V程度が適当であり、−0.5〜−1.5V程度が好ましく、−0.8〜−1.3V程度が特に好ましい。また、電解液の液温は広い範囲で設定可能であるが、通常は10℃〜100℃程度が適当であり、50℃〜80℃程度が好ましい。水溶液のpHは3.0より大きければ広い範囲でチタン酸化物被膜の成膜が可能であるが、この際調整されるpHによっては、電解液調整時に沈殿物が生じたり、電解中に電解液が分解したりして、良好なチタン酸化物被膜が得られなくなるので、pH3.0〜9.0程度とすることが適当であり、pH5.0〜8.0程度とすることが基板の耐溶解性の点から好ましい。
【0017】
本発明のチタン酸化物被膜を成膜する基板とには、既知の種々の基板を用いることが可能である。例えば、アルミニウム、銅、ニッケル、白金、金、ステンレス鋼などの金属材料、セラミックス材料、ガラス材料等が挙げられる。また、基板は電解を行う前に表面改質、導電化等の処理を施しても良い。
【0018】
【発明の実施の形態】
以下、本発明に従って実施した実験について説明する。なお、使用した薬品はすべて試薬特級(ナカライテスク(株)製)であった。チタン酸化物被膜を作製する基板(すなわち作用電極)として、熱酸化膜付きシリコンウェハ(大阪特殊金属(株)製)上に真空蒸着法によりチタン、白金をそれぞれ100nm、300nm積み重ね、最表面を白金で覆ったものを用い、常法に従い、脱脂、エッチング処理を行った。また、電解セルは通常用いられている3極式のもの(対極:Pt箔20×30×0.1mm、高純度化学(株)製、参照極:飽和KCl入りAg/AgCl、堀場製作所(株)製、セル容量:300mL)を使用した。
【0019】
【実施例1】
電解セルに下記の組成のチタン酸化物被膜作製用水溶液を入れた後、恒温槽中にセットしたのち、以下の条件で電解を行った。
【0020】
四塩化チタン 0.05 mol/L
硝酸ナトリウム 0.05 mol/L
ペルオキソほう酸 0.05 mol/L
クエン酸 0.05 mol/L
(28重量%アンモニア水溶液でpH6まで調整)
上記水溶液中で、液温を60℃に保持し、−1.0V、20分で電解を行ったところ、基体上に透明な膜が生成した。この膜をX線光電分光法により測定したところ、図1のようにTi2pのピークが見られ、Ti2p3のピークよりチタン酸化物が生成していることがわかった。
【0021】
【実施例2】
電解セルに下記の組成のチタン酸化物被膜作製用水溶液を入れた後、恒温槽中にセットしたのち、以下の条件で電解を行った。
【0022】
三塩化チタン 0.05 mol/L
硝酸 0.05 mol/L
ペルオキソ二硫酸ナトリウム 0.05 mol/L
エチレンジアミン四酢酸 0.05 mol/L
(28重量%アンモニア水溶液でpH5まで調整)
上記水溶液中で、液温を50℃に保持し、−1.0V、20分で電解を行ったところ、基体上に透光性のある膜が生成した。この膜を実施例1と同様に、X線光電分光法により同定したところ、チタン酸化物であった。
【0023】
【実施例3】
電解セルに下記の組成のチタン酸化物被膜作製用水溶液を入れた後、恒温槽中にセットしたのち、以下の条件で電解を行った。
【0024】
四塩化チタン 0.01 mol/L
硝酸アンモニウム 0.01 mol/L
ペルオキソ二炭酸ナトリウム 0.01 mol/L
ニトリロ三酢酸ナトリウム 0.01 mol/L
(28重量%アンモニア水溶液でpH5まで調整)
上記水溶液中で、液温を65℃に保持し、−0.9V、20分で電解を行ったところ、基体上に透光性のある膜が生成した。この膜を実施例1と同様に、X線光電分光法により同定したところ、チタン酸化物であった。
【0025】
【実施例4】
チタン酸化物被膜作製用水溶液を準備するに先立って、350メッシュTi粉末4.79gを30重量%の過酸化水素水50mlおよび28重量%アンモニア水50mlからなる混合液中に投入、溶解し、ゲル状物を得た。このゲル状物を乾燥して得た粉末を1mol/Lの硝酸水溶液中にて溶解し、下記のチタンイオン、硝酸イオン濃度になるようにそれぞれ電解セル内に取り出した。次に、以下のようにチタン酸化物被膜作成用水溶液を作製した。
【0026】
チタンイオン 0.03mol/L
硝酸イオン 0.03mol/L
過酸化水素 0.01mol/L
クエン酸ナトリウム 0.02mol/L
(28重量%アンモニア水溶液でpH7まで調整)
上記水溶液中で、液温を50℃に保持し、−1.2V、30分で電解を行ったところ、基体上に透光性のある膜が生成した。この膜を実施例1と同様に、X線光電分光法により同定したところ、チタン酸化物であった。
【0027】
【比較例1】
電解セルに下記の組成の亜鉛酸化物被膜作製用電解液を入れた後、恒温槽中にセットしたのち、以下の条件で電解を行った。
【0028】
三塩化チタン 0.05mol/L
硝酸ナトリウム 0.05mol/L
ペルオキソほう酸ナトリウム 0.05mol/L
上記水溶液を28重量%アンモニア水溶液を用いて、徐々にpH上昇を試みたところ、pH2.8付近で沈殿物が生じてしまい、pHの調整が困難であった。このため電解析出は不可能であった。
【0029】
【発明の効果】
このように、本発明によれば、チタンイオン、硝酸イオン、過酸化物、および錯化剤を含有するpHが3.0より大きい水溶液を用いて電解析出を行うことにより、大掛かりな装置を必要とせず、大面積および複雑形状の基板上にも、膜厚および組成が均一で、幅広い基板の選択が可能なチタン酸化物被膜を容易に製造することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるX線光電分光チャートを示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aqueous solution for producing a titanium oxide film that can be used for a photocatalyst, a photochemical battery, an ultraviolet absorbing film, a dielectric film, and the like, and a method for producing a titanium oxide film using the aqueous solution.
[0002]
[Prior art]
Conventionally, titanium oxide coatings have been used in fields such as photocatalysts, photochemical cells, ultraviolet absorbing films, and dielectric films.
[0003]
As a method for producing such a titanium oxide film, attempts have been made to form a film on a substrate by a dry film forming method such as a sputtering method, a vacuum evaporation method, or a CVD method. In the wet film-forming method, a titanium oxide film is obtained by anodizing titanium metal in an acid or alkali solution, or as described in Journal of Electrochemical Society 143, 1547 (1996), There is known a method for producing a titanium oxide film by cathodic deposition in an acidic solution having a pH of 1.0 to 3.0 containing titanium ions.
[0004]
[Problems to be solved by the invention]
However, the dry deposition methods such as the conventional sputtering method, vacuum deposition method, and CVD method are large and expensive, and the substrate area on which the film can be formed is limited. It is difficult to control the composition and film thickness. Complex substrates have drawbacks such as difficulty in film formation. Further, in the wet film formation method, the usable substrate is limited in the method of anodizing titanium metal, and the aluminum that is eluted in the acidic solution also in the method of cathodic deposition in an acidic solution containing titanium ions. In addition, it is difficult to form a titanium oxide film on a metal such as zinc, tin, or lead, or an oxide substrate. In addition, a precipitate is formed in the solution in a solution exceeding pH 3.0. There were problems such that it was impossible to use the film.
[0005]
[Means for Solving the Problems]
As a result of intensive studies in view of the above technical problems, the present inventor used an aqueous solution containing titanium ions, nitrate ions, peroxides, and complexing agents and having a pH of more than 3.0. By performing electrolytic deposition, a titanium oxide film can be easily produced on a large-area or complex-shaped substrate, with a uniform film thickness and composition and capable of selecting a wide range of substrates, without requiring a large-scale apparatus. A method that can be used has been found and the present invention has been completed.
[0006]
That is, the present invention includes an aqueous solution containing titanium ions, nitrate ions, peroxides, and a complexing agent and having a pH higher than 3.0, and electrolytic deposition of a titanium oxide film using the aqueous solution. It is characterized by.
[0007]
There is no limitation in particular as an ion source of the titanium ion in this invention. That is, any water-soluble titanium salt may be used, for example, titanium trichloride, titanium tetrachloride, and the like. Further, titanium metal, titanium oxide, etc. may be combined with sulfuric acid, nitric acid, hydrofluoric acid, and hydrogen peroxide water. What was dissolved in the aqueous solution which mixed ammonia water can be used.
[0008]
There is no particular limitation on the ion source of nitrate ions. That is, nitric acid, sodium nitrate, potassium nitrate, ammonium nitrate and the like can be mentioned.
[0009]
There is no particular limitation on the peroxide. Hydrogen peroxide, peroxonitric acid, peroxomonosulfuric acid, peroxodisulfuric acid, sodium peroxodisulfate, sodium peroxodisulfate, potassium peroxomonosulfate, potassium peroxodisulfate, sodium peroxomonocarbonate, potassium peroxodicarbonate, peroxomonophosphorus Acid, peroxodiphosphate, sodium peroxomonophosphate, sodium peroxodiphosphate, potassium peroxomonophosphate, potassium peroxodiphosphate, peroxoborate, sodium peroxoborate and the like.
[0010]
Furthermore, examples of the complexing agent include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, citric acid, sodium citrate, nitrilotriacetic acid, sodium nitrilotriacetate, and cyclohexanediaminetetraacetic acid.
[0011]
Of these compounds, titanium tetrachloride as the titanium ion source, nitric acid as the nitrate ion source, peroxoboric acid as the peroxide, and citric acid as the complexing agent make each reagent easy to handle and easy to prepare. It is desirable to think from.
[0012]
In the present invention, a compound used as a titanium ion source and a nitrate ion source, a peroxide, and a compound used as a complexing agent may each be a single type or a mixture of a plurality of types. May be.
[0013]
In the present invention, the concentration of titanium ion, nitrate ion peroxide, and complexing agent can be used in a wide range. However, if the concentration is too low, it is difficult to obtain a coating film by electrolysis, and if the concentration is too high, the stability of the aqueous solution is decreased. It tends to worsen and produce a precipitate. For this reason, it is usually appropriate that the concentrations of titanium ions, nitrate ions, peroxides, and complexing agents are in the range of about 0.001 mol / L to 1.0 mol / L. It is preferably about 0.05 mol / L.
[0014]
For the method for producing a titanium oxide film of the present invention, any of ordinary electrolytic deposition methods such as an electrolytic plating method and a hydrothermal electrochemical method in which electrolysis is performed under high temperature and high pressure in an autoclave can be adopted.
[0015]
In the present invention, as described above, a titanium oxide film is formed using an aqueous solution containing titanium ions, nitrate ions, peroxides, and a complexing agent and having a pH higher than 3.0. In the case of using an aqueous solution containing titanium ions and nitrate ions but not containing peroxides and complexing agents, and an aqueous solution containing titanium ions, nitrate ions and peroxides but not containing complexing agents, As a result, a titanium oxide film cannot be produced.
[0016]
When the aqueous solution of the present invention is used, for example, when a tripolar electrolytic cell is used as a forming apparatus, the working electrode potential is set to the concentration of titanium ion, nitrate ion, peroxide, and complexing agent in the electrolytic solution. Although it can be set according to the standard, it is usually about −0.1 to −2.0 V, preferably about −0.5 to −1.5 V, preferably −0.8 to −1 based on the Ag / AgCl electrode standard. About 3V is particularly preferable. Moreover, although the liquid temperature of electrolyte solution can be set in the wide range, about 10 to 100 degreeC is suitable normally, and about 50 to 80 degreeC is preferable. If the pH of the aqueous solution is larger than 3.0, it is possible to form a titanium oxide film in a wide range. However, depending on the pH adjusted at this time, a precipitate may be formed during the adjustment of the electrolytic solution, or the electrolytic solution may be generated during electrolysis. Or the like, and a good titanium oxide film cannot be obtained. Therefore, it is appropriate to adjust the pH to about 3.0 to 9.0, and to about 5.0 to 8.0. It is preferable from the viewpoint of solubility.
[0017]
Various known substrates can be used as the substrate on which the titanium oxide film of the present invention is formed. For example, metal materials, such as aluminum, copper, nickel, platinum, gold | metal | money, stainless steel, ceramic material, glass material etc. are mentioned. In addition, the substrate may be subjected to treatment such as surface modification and electrical conductivity before electrolysis.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, experiments conducted according to the present invention will be described. The chemicals used were all reagent grade (manufactured by Nacalai Tesque). As a substrate for producing a titanium oxide film (that is, working electrode), titanium and platinum are stacked by 100 nm and 300 nm, respectively, on a silicon wafer with a thermal oxide film (manufactured by Osaka Special Metal Co., Ltd.) by vacuum deposition, and the outermost surface is platinum. In accordance with a conventional method, degreasing and etching treatment were performed using the material covered with. In addition, the electrolysis cell is a commonly used three-electrode type (counter electrode: Pt foil 20 × 30 × 0.1 mm, manufactured by High Purity Chemical Co., Ltd., reference electrode: Ag / AgCl with saturated KCl, HORIBA, Ltd. ), Cell capacity: 300 mL).
[0019]
[Example 1]
An aqueous solution for preparing a titanium oxide film having the following composition was placed in an electrolytic cell, and after setting in a thermostatic chamber, electrolysis was performed under the following conditions.
[0020]
Titanium tetrachloride 0.05 mol / L
Sodium nitrate 0.05 mol / L
Peroxoboric acid 0.05 mol / L
Citric acid 0.05 mol / L
(Adjusted to pH 6 with 28 wt% aqueous ammonia)
When electrolysis was performed in the above aqueous solution at a liquid temperature of 60 ° C. and −1.0 V for 20 minutes, a transparent film was formed on the substrate. When this film was measured by X-ray photoelectric spectroscopy, a Ti 2p peak was observed as shown in FIG. 1, and it was found that titanium oxide was produced from the Ti 2p3 peak.
[0021]
[Example 2]
An aqueous solution for preparing a titanium oxide film having the following composition was placed in an electrolytic cell, and after setting in a thermostatic chamber, electrolysis was performed under the following conditions.
[0022]
Titanium trichloride 0.05 mol / L
Nitric acid 0.05 mol / L
Sodium peroxodisulfate 0.05 mol / L
Ethylenediaminetetraacetic acid 0.05 mol / L
(Adjusted to pH 5 with 28 wt% aqueous ammonia)
When electrolysis was performed in the above aqueous solution at a liquid temperature of 50 ° C. and −1.0 V for 20 minutes, a translucent film was formed on the substrate. When this film was identified by X-ray photoelectric spectroscopy in the same manner as in Example 1, it was a titanium oxide.
[0023]
[Example 3]
An aqueous solution for preparing a titanium oxide film having the following composition was placed in an electrolytic cell, and after setting in a thermostatic chamber, electrolysis was performed under the following conditions.
[0024]
Titanium tetrachloride 0.01 mol / L
Ammonium nitrate 0.01 mol / L
Sodium peroxodicarbonate 0.01 mol / L
Sodium nitrilotriacetate 0.01 mol / L
(Adjusted to pH 5 with 28 wt% aqueous ammonia)
In the above aqueous solution, the liquid temperature was kept at 65 ° C., and electrolysis was performed at −0.9 V for 20 minutes. As a result, a translucent film was formed on the substrate. When this film was identified by X-ray photoelectric spectroscopy in the same manner as in Example 1, it was a titanium oxide.
[0025]
[Example 4]
Prior to preparing an aqueous solution for preparing a titanium oxide film, 4.79 g of 350 mesh Ti powder was put into a mixed solution consisting of 50 ml of 30 wt% hydrogen peroxide water and 50 ml of 28 wt% ammonia water, dissolved, and gel A product was obtained. The powder obtained by drying this gel was dissolved in a 1 mol / L nitric acid aqueous solution and taken out into the electrolytic cell so that the following titanium ion and nitrate ion concentrations were obtained. Next, an aqueous solution for preparing a titanium oxide film was prepared as follows.
[0026]
Titanium ion 0.03 mol / L
Nitrate ion 0.03 mol / L
Hydrogen peroxide 0.01mol / L
Sodium citrate 0.02 mol / L
(Adjusted to pH 7 with 28 wt% aqueous ammonia)
When electrolysis was performed in the above aqueous solution at a liquid temperature of 50 ° C. and −1.2 V for 30 minutes, a translucent film was formed on the substrate. When this film was identified by X-ray photoelectric spectroscopy in the same manner as in Example 1, it was a titanium oxide.
[0027]
[Comparative Example 1]
After putting an electrolytic solution for producing a zinc oxide film having the following composition into an electrolytic cell, the electrolytic cell was set in a thermostatic chamber, and then electrolyzed under the following conditions.
[0028]
Titanium trichloride 0.05mol / L
Sodium nitrate 0.05mol / L
Sodium peroxoborate 0.05mol / L
When an attempt was made to gradually raise the pH of the above aqueous solution using a 28 wt% aqueous ammonia solution, a precipitate was formed around pH 2.8, and it was difficult to adjust the pH. For this reason, electrolytic deposition was impossible.
[0029]
【The invention's effect】
Thus, according to the present invention, a large-scale apparatus is obtained by performing electrolytic deposition using an aqueous solution containing titanium ions, nitrate ions, peroxides, and complexing agents and having a pH of greater than 3.0. A titanium oxide film having a uniform film thickness and composition and capable of selecting a wide range of substrates can be easily manufactured on a substrate having a large area and a complicated shape.
[Brief description of the drawings]
FIG. 1 is a diagram showing an X-ray photoelectric spectroscopic chart in Example 1 of the present invention.

Claims (4)

チタンイオン、硝酸イオン、過酸化物、および錯化剤を含有し、かつpHが3.0より大きいことを特徴とするチタン酸化物被膜作成用水溶液であって、
前記錯化剤に、エチレンジアミン四酢酸、エチレンジアミン四酢酸塩、クエン酸、クエン酸塩、ニトリロ三酢酸、ニトリロ三酢酸塩、シクロヘキサンジアミン四酢酸のうちの少なくとも一種を用いたことを特徴とするチタン酸化物被膜作成用水溶液
An aqueous solution for producing a titanium oxide film characterized by containing titanium ions, nitrate ions, peroxides, and a complexing agent, and having a pH of greater than 3.0 ,
Titanium oxidation characterized by using at least one of ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid, citric acid, citrate, nitrilotriacetic acid, nitrilotriacetic acid, and cyclohexanediaminetetraacetic acid as the complexing agent. Aqueous solution for physical coating .
前記過酸化物に、過酸化水素水、ペルオキソ酸、ペルオキソ炭酸塩、ペルオキソリン酸塩、ペルオキソホウ酸塩のうちの少なくとも一種を用いたことを特徴とする請求項1記載のチタン酸化物被膜作成用水溶液。   The titanium oxide film according to claim 1, wherein the peroxide is at least one of hydrogen peroxide, peroxo acid, peroxo carbonate, peroxophosphate, and peroxoborate. Aqueous solution. チタンイオン、硝酸イオン、過酸化物、および錯化剤を含有し、かつpHが3.0より大きい水溶液中で、電解析出を施すチタン酸化物被膜の製造方法であって、
前記錯化剤に、エチレンジアミン四酢酸、エチレンジアミン四酢酸塩、クエン酸、クエン酸塩、ニトリロ三酢酸、ニトリロ三酢酸塩、シクロヘキサンジアミン四酢酸のうちの少なくとも一種を用いたことを特徴とするチタン酸化物被膜の製造方法
Titanium ions, nitrate ions, peroxides, and contains a complexing agent, and a pH in 3.0 greater aqueous solution, a method of manufacturing facilities to titanium oxide coating electrolytic deposition,
Titanium oxidation characterized by using at least one of ethylenediaminetetraacetic acid, ethylenediaminetetraacetic acid, citric acid, citrate, nitrilotriacetic acid, nitrilotriacetic acid, and cyclohexanediaminetetraacetic acid as the complexing agent. Manufacturing method of physical coating .
前記過酸化物に、過酸化水素水、ペルオキソ酸、ペルオキソ炭酸塩、ペルオキソリン酸塩、ペルオキソホウ酸塩のうちの少なくとも一種を用いたことを特徴とする請求項記載のチタン酸化物被膜の製造方法。The titanium oxide film according to claim 3 , wherein at least one of hydrogen peroxide, peroxo acid, peroxo carbonate, peroxophosphate, and peroxoborate is used as the peroxide. Production method.
JP32293697A 1997-11-25 1997-11-25 Aqueous solution for preparing titanium oxide film and method for producing titanium oxide film Expired - Fee Related JP3867374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32293697A JP3867374B2 (en) 1997-11-25 1997-11-25 Aqueous solution for preparing titanium oxide film and method for producing titanium oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32293697A JP3867374B2 (en) 1997-11-25 1997-11-25 Aqueous solution for preparing titanium oxide film and method for producing titanium oxide film

Publications (2)

Publication Number Publication Date
JPH11158691A JPH11158691A (en) 1999-06-15
JP3867374B2 true JP3867374B2 (en) 2007-01-10

Family

ID=18149294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32293697A Expired - Fee Related JP3867374B2 (en) 1997-11-25 1997-11-25 Aqueous solution for preparing titanium oxide film and method for producing titanium oxide film

Country Status (1)

Country Link
JP (1) JP3867374B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697354B1 (en) 2001-12-04 2007-03-20 신닛뽄세이테쯔 카부시키카이샤 Metal material coated with metal oxide and/or metal hydroxide coating film and method for production thereof
EP1548157A1 (en) * 2003-12-22 2005-06-29 Henkel KGaA Corrosion-protection by electrochemical deposition of metal oxide layers on metal substrates
KR100599879B1 (en) 2004-05-28 2006-07-13 한국과학기술연구원 Method of preparing film of titanium oxide using electrodeposition
WO2006136335A1 (en) * 2005-06-22 2006-12-28 Henkel Kommanditgesellschaft Auf Aktien PROCESS FOR PROVIDING A CORROSION-PROTECTIVE LAYER OF TiO2 ON AN ELECTRICALLY CONDUCTIVE SUBSTRATE AND METAL SUBSTRATE COATED WITH A LAYER OF TiO2
WO2006136333A2 (en) * 2005-06-22 2006-12-28 Henkel Kommanditgessellschaft Auf Aktien ELECTRODEPOSITION MATERIAL, PROCESS FOR PROVIDING A CORROSION-PROTECTIVE LAYER OF TiO2 ON AN ELECTRICALLY CONDUCTIVE SUBSTRATE AND METAL SUBSTRATE COATED WITH A LAYER OF TiO2
WO2006136334A2 (en) * 2005-06-22 2006-12-28 Henkel Kommanditgesellschaft Auf Aktien Electrodeposition material, process for providing a corrosion-protective layer of tio2 on an electrically conductive substrate and metal substrate coated with a layer of tio2
TWI458862B (en) * 2009-05-12 2014-11-01 Nat Univ Tsing Hua Method for titanium dioxide coating and the electrolyte used therein
US20160356242A1 (en) 2015-06-08 2016-12-08 GM Global Technology Operations LLC TiO2 APPLICATION AS BONDCOAT FOR CYLINDER BORE THERMAL SPRAY
WO2022059367A1 (en) 2020-09-18 2022-03-24 三井金属鉱業株式会社 Aqueous titanic acid solution

Also Published As

Publication number Publication date
JPH11158691A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
Natarajan et al. Cathodic electrodeposition of nanocrystalline titanium dioxide thin films
JP3858058B2 (en) Method for producing anatase-type titanium oxide film by anodic electrolytic oxidation treatment
FI57132C (en) ELEKTROD AVSEDD FOER ANVAENDNING VID ELEKTROKEMISKA PROCESSER
KR100735588B1 (en) Cathode for electrolysing aqueous solutions
KR101210416B1 (en) Process for producing crystalline titanium oxide coating film through electrolytic anodizing
WO2006030685A1 (en) Electrolysis electrode and method for producing aqueous quaternary ammonium hydroxide solution using such electrolysis electrode
JP3867374B2 (en) Aqueous solution for preparing titanium oxide film and method for producing titanium oxide film
US4005004A (en) Electrode coating consisting of a solid solution of a noble metal oxide, titanium oxide, and zirconium oxide
JP3273294B2 (en) Electrolyte for zinc oxide film production
JPS5857516B2 (en) Cathode for seawater electrolysis
KR20110013177A (en) Electrolytic electrode material, electrolytic electrode and manufacturing method of electrolytic electrode
JPH11172489A (en) Production of barium titanate coating film
JP3921763B2 (en) Method for forming bismuth titanate film
JP3887899B2 (en) Method for producing bismuth oxide coating
US4067783A (en) Gold electroplating process
GB2204325A (en) A method of electrolytically treating metals and an electrode for use in the method
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
JPS6027754B2 (en) Manufacturing method of metal anode for electrolytically producing manganese dioxide
CA2030092C (en) Electrocatalytic coating
GB1406568A (en) Electrolytic surface preparation process for recoating of used coated metallic electrodes
Machida et al. Methanol electro-oxidation and surface characteristics of amorphous Pt-Zr alloys doped with tin or ruthenium
JP4193390B2 (en) Oxygen generating electrode
EP3118351A1 (en) Reactivation of an exhausted electrode
JP3048648B2 (en) Electrode for electrolysis
SU976838A3 (en) Electrrode production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees